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Abstract: Modular multilevel converters (MMCs) have a complex structure and a large number of
submodules (SMs). If there is a fault in one of the SMs, it will affect the reliable operation of the
system. Therefore, rapid fault diagnosis and accurate fault positioning are crucial to ensuring the
continuous operation of the system. However, the IGBT open-circuit faults in different submodules
of MMCs have similar fault features, and the traditional fault feature extraction method cannot
effectively extract the key features of the fault so as to accurately locate the faulty submodules. In
response to this problem, this paper proposes a fault diagnosis method based on weighted-amplitude
permutation entropy (WAPE) and DS evidence fusion theory. The simulation results show that
WAPE has better feature extraction ability than basic permutation entropy, and the fused multiscale
feature decision output has better diagnostic accuracy than the single-scale feature. Compared with
traditional fault diagnosis methods, this method achieves the diagnosis of multiple fault types by
collecting a single signal, which greatly reduces the number of samples and leads to higher diagnostic
accuracy and faster diagnostic speed.

Keywords: modular multilevel converter (MMC); fault diagnosis; wavelet packet transform;
permutation entropy; LSTM; DS evidence fusion

1. Introduction

In recent years, with the rapid development of power electronics technology, as a
new type of voltage source converter topology, MMCs have been widely used in various
engineering fields [1–3], such as high-voltage direct current (HVDC) transmission [4],
high-voltage power drive systems [5], renewable energy [6], etc. However, due to exposure
to harsh working environments, the safety of power electronic switches is one of the most
critical issues in the normal operation of MMCs [7]. If an internal fault in the converter
occurs, it may lead to an increase in voltage harmonics, waveform distortion, power quality
decline, or even commutation failure [8,9]. MMCs have a large number of submodules
(SMs), and because of device aging, overload, and accidental operation, the insulated-gate
bipolar transistor (IGBT) in the SMs is most likely to fail [10]. Therefore, the adoption of
efficient fault diagnosis technology helps to improve the operational reliability of MMCs
and reduce costs [11].

The proposed MMC fault diagnosis methods can be divided into three categories ac-
cording to their working principles, namely, fault diagnosis methods based on mechanism
models, signal processing, and data-driven methods [12].

Mechanism-based fault diagnosis methods mostly use additional sensors. Faults can
be detected by comparing the internal characteristics (circulating current, arm current,
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capacitor voltage, etc. [13]) and external characteristics. This approach is simple and
reliable, but increases costs and hardware complexity. In [14], an integral sliding mode
observer (ISMO)-based fault diagnosis method for MMCs is proposed; the fault is detected
by judging whether the observed state deviates from the measured state, and then the
average voltage of all SMs and the error between the capacitor voltage and the threshold
of an SM is compared to locate the faulty SM; however, the fault detection and location
depend on the observer model, so the time of the fault diagnosis process is still long, and
the amount of calculation is relatively large. In [15], a fault diagnosis method based on
redundant voltage sensors is proposed; by comparing the output voltage of a group of
SMs with two calculated reference voltages, switch and sensor faults can be detected; this
method can locate various open-circuit faults, but the computational complexity and cost
increase with the increase in the number of SMs.

Fault diagnosis methods based on signal processing use output characteristics rather
than internal characteristics to achieve fault diagnosis, by processing voltage or current sig-
nals and comparing their characteristics in real time. Data-driven fault diagnosis methods
use artificial intelligence algorithms (machine learning, etc.) [16] to obtain the diagnosis
through the analysis of data, reflecting the relationships among system faults and between
faults and non-faults. Although the algorithms are complex, they do not require very
complex hardware, and their costs are relatively low. Compared with the model-based and
signal-based fault diagnosis methods, the data-driven diagnosis methods have better clas-
sification ability, and are more suitable for various types of faults and complex systems [17].
Because of the similarity of faults, it is difficult to locate the faults directly and accurately
via signal-based diagnosis methods. Therefore, the data-driven diagnosis methods are
more suitable for MMC fault diagnosis, and the key lies in feature extraction and classifica-
tion methods. Most feature extraction methods for MMC faults use wavelet transform to
preprocess the data. Wavelet transform can analyze and process nonstationary signals in
both the time and frequency domains. The combination of wavelet transform and informa-
tion entropy can extract fault features more effectively and accurately. The authors of [18]
proposed a fault diagnosis method based on wavelet analysis and an improved neural
network; the wavelet energy spectrum entropy was used to extract the characteristics of the
signal after wavelet transform, constituting a statistical analysis of the energy distribution
of the signal in each frequency band. The authors of [19] proposed a method using wavelet
time entropy to achieve fast and accurate fault detection. The characteristics of wavelet time
entropy enable it to quantify the changes in high-frequency transients by reconstructing the
high-frequency component of the current signal, in order to analyze the specific frequency
band of the fault current and quickly detect faults. Additionally, improved algorithms for
entropy are constantly emerging. The authors of [20] propose an index based on weighted
residual regression to reduce the sensitivity of kurtosis and entropy to impulse noise, which
is more effective for the detection of bearing and gear faults.

The common classification methods for MMC fault diagnosis are mainly concentrated
in the field of machine learning. In [21], an optimized support vector machine (SVM)
method for fault diagnosis is proposed, and the fault characteristics are extracted by using
the average value of three-phase AC current. However, with the development of deep
learning technology, classification methods based on deep learning have also achieved good
results in MMC fault diagnosis, and have been widely applied. In [22], the authors used
a stacked sparse autoencoder to extract fault features from an MMC, and used classifiers
based on deep neural networks to detect faults more accurately. Although these methods
use artificial intelligence algorithms and even deep learning algorithms to classify faults,
they can only locate one arm of the bridge, rather than a specific SM.

In summary, data-driven methods can accurately locate faults without establishing
an accurate mathematical model, making them suitable for complex systems. Therefore,
data-driven methods are considered for the fault diagnosis of MMCs. To solve the problem
of the similarity of faults in MMCs, this paper proposes a fault diagnosis method based
on weighted-amplitude permutation entropy and DS evidence fusion theory. In the first
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part, the time–frequency information of the three-phase output voltage of the MMC is
extracted by wavelet packet transform, and the weighted-amplitude permutation entropy
of the reconstructed signal at different scales is calculated. The second part uses LSTM to
establish the fault diagnosis model, and outputs the probability matrix of this group of
data being classified into a certain fault. The third part uses the advantages of incomplete
and uncertain information from DS evidence fusion theory [23,24]—the basic probability
assignment (BPA) matrix obtained by selecting permutation entropy at different scales
as inputs is fused by the DS evidence fusion algorithm to obtain the final classification
results. This method is applied to IGBT open-circuit fault diagnosis in a specific SM. The
simulation results show that, compared with other algorithms, this method has advantages
in both accuracy and diagnosis time.

2. Problem Description

In this section, the problem of the similarity of faults in fault diagnosis for MMCs
is described.

2.1. Basic Principle of MMCs

The typical MMC topology is shown in Figure 1a, being composed of three phases
and six legs, and each phase is divided into upper and lower arms. Each bridge arm is
composed of a reactor L and n SMs, where Ua, Ub, and Uc on the right-hand side represent
the phase voltage on the AC side of the MMC, while Ud on the left-hand side is the DC
voltage. The structure of the SM is shown in Figure 1b; it consists of two IGBTs (T1 and
T2), two diodes (D1 and D2) in reverse parallel, and a capacitor (C), where C is the DC
capacitor, Uc is the voltage at both ends of the capacitor, and ism is the current flowing into
the SM.

Figure 1. Topology of three-phase MMC and submodule: (a) topology of three-phase MMC; (b) topology of submodule.

Each SM of the MMC has two IGBTs, which are always in a complementary state at
any time during normal operation. The working state of the SMs is shown in Table 1.
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Table 1. Working status of the submodule.

Model SM
State T1 T2 D1 D2 Current

Direction Usm Capacitor
State

1 On 1 0 1 0 A→B Uc Charge
2 On 1 0 0 0 B→A Uc Discharge
3 Off 0 1 0 0 A→B 0 Bypass
4 Off 0 1 0 1 B→A 0 Bypass
5 Close 0 0 1 0 A→B Uc Charge
6 Close 0 0 0 1 B→A 0 Bypass

2.2. Existing Problem

Once the IGBT open-circuit fault occurs, not only will the output performance of
the MMC deteriorate due to the unsatisfactory output voltage of the faulty SM, but the
capacitor in the faulty SM will also be dangerous due to overcharging if the faulty SM is not
detected and isolated in time, which may eventually lead to the failure of the entire system.

It can be seen from the above MMC SM topology that second working status will not
appear in the SM when the first IGBT (T1) fails, and the capacitor discharge process will
make the capacitor voltage gradually rise. When the first IGBT (T2) fault occurs, the third
working status of the SM will not appear, while at the same time the continued charging
process also makes the capacitor voltage rise. The states of different SMs are consistent
when faults occur, leading to the similarity of the fault conditions of IGBTs in the same
position in different SMs. Figure 2 shows the problem in the difference between the output
voltages of a cycle after different faults occur.

It can be seen from Figure 2 that the voltage waveform similarity of IGBT faults at the
same position in different SMs is very high, which makes it difficult to distinguish them.

The method of solving similar faults can be improved via feature extraction. However,
thus far, there is still much room to improve the open-circuit fault diagnosis performance of
MMC SMs. Most data-based methods can only diagnose the faulty bridge arm, and cannot
determine which IGBT of which submodule is faulty. In the method of solving similar
faults of other inverters, [25] proposes a fast fault location strategy based on path state
reconstruction. Additional diagnostic information can be obtained by applying specific
current path states to help locate abnormal transistors with similar fault characteristics.
Considering similar faults, in [26], a more detailed feature extraction method is selected to
distinguish similar faults, with high diagnostic accuracy.

Information entropy has a good ability to deal with signal complexity [27]. Feature
extraction based on variable entropy is directly carried out for the three-phase output
voltage under different MMC faults, such as the commonly used permutation entropy,
fuzzy entropy, and sample entropy. However, it can be seen from Figure 3 that the features
extracted based on permutation entropy have low discrimination for all faults. Except for
the first normal state (special fault state), the features extracted based on fuzzy entropy
have high similarity with IGBT faults in the same position of different submodules. The
features extracted based on sample entropy have certain advantages over the other two
kinds of entropy, but there are still similar faults.
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Figure 2. Single-phase output voltage waveforms (fault at 0.5 s).
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Figure 3. Different entropy of different fault signals: (a) permutation entropy; (b) fuzzy entropy; (c) sample entropy.

In addition, most entropy algorithms are limited to single-scale analysis, ignoring
the information of other scales. For most signals, single-scale features are not enough to
describe the complexity of the signal. Multiscale analysis can fully describe the microstruc-
tural complexity and amplitude information of time series, making it more suitable for
analyzing various actual signals. As shown in Figure 4, the fault discrimination of WAPE at
scale 1 is very poor, and scale 2 shows a certain improvement. Scale 3 further distinguishes
similar faults, while scale 4 only distinguishes some similar faults.

Figure 4. WAPE at different scales: (a) WAPE at scale 1; (b) WAPE at scale 2; (c) WAPE at scale 3; (d) WAPE at scale 4.
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Therefore, only using single-scale basic entropy to extract the features of MMC fault
signals is not the most suitable method for similar faults, and it is difficult to obtain high
classification accuracy. Aiming at this problem, this paper improves the basic entropy
algorithm, and combines it with decision fusion to make it more suitable for fault diagnosis
of MMCs.

3. Fault Diagnosis Method Based on WAPE and DS Evidence Fusion Theory

In order to solve the problem of entropy in the feature extraction of similar MMC
faults, a fault diagnosis method based on weighted-amplitude permutation entropy and
DS evidence fusion theory is proposed. This method includes feature extraction based
on WAPE, classification based on an LSTM network, and multiscale fusion based on DS
evidence fusion theory.

3.1. Signal Preprocessing Based on Wavelet Packet Decomposition

The three-phase output voltage Uout collected from the MMC can be regarded as a
one-dimensional time series {X(i), i = 1, 2, . . . , n}. It is difficult to classify faults by using
only one-dimensional signals of fault voltage for feature extraction and fault characteristics
of fault voltage in the time and frequency domains. Wavelet analysis is an effective tool
to represent the transient signal in the time–frequency domain [28]. In addition to the
low-frequency subdivision of the signal, the wavelet packet is also subdivided in the
high-frequency band, thereby improving the analysis accuracy in the time–frequency
domain [29]. Therefore, the wavelet packet decomposition is used to preprocess the
signal, and the n-layer wavelet packet decomposition and reconstruction can obtain a
2n-dimensional signal {Xj(i), j = 1, 2, . . . , 2n; i = 1, 2, . . . , n} with the same length as the
original data.

Taking three-layer wavelet packet decomposition as an example, the signal of each
reconstructed node after MMC output voltage decomposition is shown in Figure 5. Because
the fundamental frequency of the output voltage is 50 Hz, according to the characteristics
of wavelet packet decomposition scale division, the reconstructed signals of other nodes
show the characteristics of nonlinearity, disorder, and mutation, with the exception of the
first node.

Figure 5. Reconstruction signals after three-layer wavelet packet decomposition.
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3.2. Feature Extraction Based on Weighted-Amplitude Permutation Entropy

After the fault signal is decomposed and reconstructed by wavelet packets, multi-
dimensional signals can be obtained. For network classification, the direct classification
of multidimensional signals as feature evidence greatly increases the calculation amount
and calculation time. Therefore, the simplification of the feature matrix and extraction
of the most obvious features is an important step. By measuring the complexity of the
reconstructed signal after wavelet packet decomposition, and solving the information en-
tropy of each one-dimensional component in the matrix component, the matrix component
can be simplified and the fault feature change information contained in each component
can be accurately extracted, which is beneficial to extracting the subtle differences from
the signals with different complex faults. Among the various information entropy algo-
rithms, permutation entropy [30] (PE) is simple in calculation and has strong anti-noise
ability, which can be used to measure the complexity of one-dimensional time series.
Therefore, the permutation entropy algorithm is used to reflect and amplify the extremely
weak feature information in the data. The basic permutation entropy and the proposed
weighted-amplitude permutation entropy are introduced below.

3.2.1. Basic Permutation Entropy

For the signal Xj(i) after wavelet packet decomposition and reconstruction, the phase
space is reconstructed for each dimension, and different spatial matrices are obtained:

x(1) x(1 + τ) . . . x(1 + (m− 1)τ)
x(2) x(2 + τ) . . . x(2 + (m− 1)τ)

...
...

...
...

x(k) x(k + τ) . . . x(k + (m− 1)τ)

 (1)

where m and τ denote the dimensions and delay time of the embedding matrix, respectively;
k = n − (m − 1) τ. Each row in the space matrix is regarded as a reconstruction component,
and the jth component [x(j), x(j + τ), . . . , x(j + (m − 1) τ)] in the reconstruction matrix
is rearranged in ascending order. Any reconstruction component can be mapped to a
specific symbol sequence πn = (j1, j2, . . . , jm), where 1 ≤ j ≤ k. There are m! different
symbol sequences in the m-dimensional phase space matrix. The probability of each symbol
sequence can be defined as [30]:

Pj(π
m,τ
n ) =

k
∑

j=1
1
∣∣when xj has type πn

N − λ(m− 1)
(2)

3.2.2. Weighted-Amplitude Permutation Entropy

It can be seen from the new signal after wavelet decomposition that most of the signals
in Figure 5 have large fluctuation and high mutation. The difference between similar fault
signals is not reflected in the sequence of the signals, but in their amplitude. However, it
can be seen that the calculation of PE only retains the order relationship in the time series,
ignoring the amplitude information, which usually contains more important and useful
time-series information. Taking the reconstruction components (1, 1.01, 1.02), (1, 5, 9),
(1, 1, 3) as examples, they are all mapped to the same sequential mode (1 2 3) according
to the algorithm. Therefore, PE simply treats the same pattern with different amplitudes
as equal, which obviously affects the estimation accuracy of entropy, and also leads to
difficulty in distinguishing similar faults.

Therefore, in order to solve this problem, a weighted-amplitude permutation entropy
(WAPE) algorithm is proposed in this paper. The purpose is to highlight the amplitude
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information in the time series on the basis of the weight factor, leading to better extraction
of the features of the time series. The improved permutation probability can be defined as:

Pj(π
m,τ
n ) =

k
∑

j=1
max

1≤i≤m!
(xj ∗G(i)) ∗ wj

∣∣∣∣when xj has type πn

m!
∑

n=1

k
∑

j=1
max

1≤i≤m!
( xj ∗G(i)) ∗ wj

∣∣∣∣when xj has type πn

(3)

where G(i) is the vector composed of permutation serial numbers under each permutation
pattern, and the weight factor wj is the mean square error of component xj, namely:

wj =
1
m

m

∑
k=1

[xj+λ(k−1) − xj]
2 (4)

Then, WAPE can also be obtained according to the definition of information entropy:

HWAPE(m, τ) = −
k

∑
j=1

Pj lnPj (5)

WAPE introduces the maximum inner product of the reconstructed component and
the permutation vector. The maximum inner product indicates that the reconstructed com-
ponent has the highest similarity with the permutation pattern. Taking the reconstructed
components (1, 2, 3) and (3, 4, 5) as examples, they are mapped to the vector (1, 2, 3)
corresponding to the permutation pattern, and then the inner product of the permutation
vector and the reconstructed component corresponding to the permutation pattern must
be the maximum. However, since their amplitudes are not at the same interval, their
maximum values of inner product are also different (14 and 26, respectively). From the
comparison of signals after decomposition of similar faults, it can be clearly seen that the
amplitude of signal mutation has corresponding changes. Therefore, the difference in the
inner product highlights the differences in amplitude information, and also enables similar
faults to be better distinguished.

3.3. LSTM Network

Hochreiter [31] proposed to improve the traditional RNN, proposing the LSTM model.
By introducing a gating unit to replace memory, this solves the problem of gradient
disappearance that can easily occur in traditional recurrent neural networks, and solves
the problem that it cannot deal with long-term dependence [32]. LSTM is continuous in the
time dimension, and the information at a given moment is affected not only by the input at
the present moment, but also by the information retained at the previous moment.

The LSTM schematic is shown in Figure 6.

Figure 6. LSTM structure.
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The LSTM structure includes an input gate, output gate, and forget gate [33]. The
forget gate determines the part that current cells need to forget, the input gate determines
the part that current cells need to retain, and the output gate determines the output content
of current cells. The calculation formula is as follows [31]:

ft = σ(W f xxt + W f hht−1 + b f ) (6)

it = σ(Wixxt + Wihht−1 + bi) (7)

gt = tanh(Wgxxt + Wghht−1 + bg) (8)

ot = σ(Woxxt + Wohht−1 + bo) (9)

St = gt � it + St−1 � ft (10)

ht = tanh(St)� ot (11)

3.4. Multiscale Fusion Based on DS Evidence Fusion Theory

Aiming at the problem of single-scale entropy in solving similar faults, this paper uses
a multiscale fusion method based on DS evidence fusion theory. In addition, the data of
the MMC fault diagnosis model are randomly selected during the training process, and
the threshold of neural network classification is also random. Therefore, introducing DS
evidence fusion theory for the decision fusion of multiscale fault classification results can
not only solve the problem of incomplete single-scale feature extraction, but also reduce
the uncertainty and randomness of fault diagnosis.

Multiscale analysis [34] makes the original time series undergo a coarse-grained
process to obtain a new coarse-grained time series, which can estimate the complexity
of time signals at different scales. Coarse-grained time series are obtained by averaging
continuous data points in non-overlapping windows at a given scale [35], as shown in the
following formula:

y(s)j =
1
s

js

∑
i=(j−1)τ+1

xi (12)

where when the scale factor s = 1, the original time series is obtained. The entropy of
coarse-grained time series is calculated to obtain the WAPE at this scale.

DS evidence fusion theory aims to explore the main reason (hypothesis) for the
occurrence of events according to the results (evidence) of those events. When dealing with
uncertainty problems, DS evidence fusion theory is an effective means of fusing uncertainty
information. In the DS evidence theory, the identification framework is represented by a
finite non-empty set [36,37]:

Θ = {θ1, θ2, . . . , θn} (13)

where θi (i = 1, 2, . . . , n) represents the ith hypothesis and reflects the ith possible recognition
results, while n represents the number of assumptions. Based on the recognition framework,
the set of all subsets of Θ is a power set, which can be expressed as:

2Θ = {∅, {θ1}, {θ2}, . . . , {θn}, {θ1, θ2}, . . . , {θ1, θn}, . . . , {θ1, θ2, . . . , θn}} (14)

where θi ∈ Θ, θ ⊆ 2Θ. Then, the BPA is defined to describe the support for the hypothesis,
as follows:  m(∅) = 0

∑
A⊂Θ

m(A) = 1 (15)

where A is the proposition in 2Θ, containing one or more assumptions; m(A) represents the
basic support of evidence for proposition A.
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Finally, for the assumption that there is n evidence m1, m2, . . . , mn, the DS evidence
fusion results in the recognition framework are: m(A) = 1

1−K ∑
A1∩A1 ...∩An=A

m1(A1)m2(A2) . . . mn(An)

m(∅) = 0
(16)

where k is the conflict coefficient, reflecting the degree of conflict among the evidence.

K = ∑
A1∩A1 ...∩An=∅

m1(A1)m2(A2) . . . mn(An)

= 1− ∑
A1∩A1 ...∩An 6=∅

m1(A1)m2(A2) . . . mn(An)
(17)

The overall flow chart of fault diagnosis is depicted in Figure 7:

Figure 7. Flow chart of the proposed diagnostic method.

4. Simulation Validation and Results Discussion

In order to verify the feasibility of the proposed fault diagnosis method, a three-
phase five-level MMC simulation model was built on MATLAB/Simulink, the simulation
parameters of which are shown in Table 2. In the simulation, the voltage balancing control
strategy based on a carrier phase-shift modulation strategy was adopted. The simulation
was mainly aimed at the state of an MMC when it works as an inverter.

Table 2. MMC parameters.

Parameters Value

Number of SMs per arm 4
Carrier switching frequency 1250 Hz

DC link voltage 4 kV
Arm inductance 5 mH
SM capacitance 4.7 mF

Load 5 Ω
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The three-phase output voltage of the simulation under normal operation is shown in
Figure 8.

Figure 8. Three-phase output voltage in normal state.

Under these conditions, the five-level MMC contains a total of 24 SMs and 48 IGBTs.
Therefore, the dataset includes the output voltages of the normal state and 48 IGBT open-
circuit fault states. Each voltage time series consists of 2 basic periods with 400 sample
points in each period after the fault occurs. The normal state is regarded as a special
fault state, and each fault type is given an output label with a value of 0–48. Each fault
type generates 100 data by adding Gaussian white noise to the signal in order to improve
the generalization performance of the network. Finally, the training set and test set are
randomly assigned from 100 data to train and test the model.

In the fault diagnosis for the simulation of a five-level MMC, in order to analyze
whether WAPE has better ability of feature extraction and fault diagnosis than other
entropy algorithms, and to analyze the influence of wavelet packet decomposition with
different layers on the diagnosis accuracy, a broken line diagram of the accuracy obtained
by using different forms of permutation entropy under wavelet packet decomposition with
different layers was drawn, as shown in Figure 9.

Figure 9. Comparison of different forms of permutation entropy under wavelet packet decomposition
with different layers.
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As illustrated in Figure 9, WAPE shows a great improvement in diagnostic accuracy
compared with other forms of entropy. In addition, with the increase in the number
of decomposition layers, the diagnostic accuracy also increases. Considering that with
the increase in the number of wavelet packet decomposition layers, the computation
time and algorithm complexity are multiplied, we only used four-layer wavelet packet
decomposition to obtain 16-dimensional decomposed signals.

After the data preprocessing of wavelet packet decomposition, the decomposed signals
were analyzed by multiscale analysis, and the BPA matrix was obtained by using the LSTM
network for fault classification. The diagnostic results of WAPE at different scales are
shown in Figure 10.

Figure 10. Maximum diagnostic accuracy at different scales.

It can be seen from Figure 10 that the diagnostic accuracy of WAPE at different scales
is above 97%, and the maximum can reach 99.29%. As the scale increases, the accuracy
decreases. The classification BPA of WAPE at different scales is used as the evidence body
for DS evidence fusion. Assuming that the fuzzy uncertainty satisfies zero, the evidence is
fused according to the formula. From scale 1 to scale 5, the two pairs are fused, and the
classification accuracy after fusion is shown in Table 3.

Table 3. Fusion results of different scales.

Multiscale Fusion Accuracy/% Multiscale Fusion Accuracy/%

1 + 2 99.90% 2 + 4 99.69%
1 + 3 100% 2 + 5 99.80%
1 + 4 100% 3 + 4 100%
1 + 5 100% 3 + 5 100%
2 + 3 99.80% 4 + 5 100%

It can be seen that the classification accuracy of any scale of fusion was improved
by more than 99.5%, up to 100%. In order to better display the fusion process of DS
evidence fusion theory, two misclassified data in scale 3 and scale 4 are listed below. If the
confidence of the actual label is less than that of the predicted label, it means that the data
are misclassified, and vice versa. In Tables 4–6, the datum NO. 1 is misclassified at s = 3, the
datum NO. 2 is misclassified at s = 4, and the datum NO. 3 is misclassified at both scales.
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Table 4. Fusion results of misclassified data in scale s = 3.

Data Evidence Confidence of Type11 Confidence of Type13 Result

NO. 1 (Type13)
s = 3 0.5282 0.4624 Type11
s = 4 1.7726 × 10−7 0.9981 Type13

Fusion 0.0000 1.0000 Type13

Table 5. Fusion results of misclassified data in scale s = 4.

Data Evidence Confidence of Type39 Confidence of Type43 Result

NO. 2 (Type43)
s = 3 1.6367 × 10−5 0.9954 Type43
s = 4 0.6050 0.3510 Type39

Fusion 2.834 × 10−5 0.9999 Type43

Table 6. Fusion results of misclassification data at two scales.

Data Evidence Confidence of Type26 Confidence of Type30 Confidence of Type32 Result

NO. 3
(Type32)

s = 3 9.2716 × 10−4 0.5825 0.4162 Type30
s = 4 0.6546 5.3699 × 10−5 0.2700 Type26

Fusion 0.0054 2.7675 × 10−4 0.9943 Type32

After DS evidence fusion, the misclassified data are classified to the correct label,
and the diagnostic accuracy is up to 100%. Therefore, the results show that DS evidence
fusion makes use of fault information at different scales, and multiscale WAPE is more
effective in feature extraction of fault signals than single-scale WAPE. Finally, the accuracy
of fault classification is improved, and the deficiency of random initialization and training
randomness in neural network algorithms is also compensated.

Feature extraction and classifiers are two key points of traditional fault diagnosis
methods, and have great influence on the final diagnosis results. In order to further verify
the performance of the proposed fault diagnosis method, the feature extraction methods
used for comparison were fast Fourier transform (FFT), wavelet packet decomposition
(WPD), and principal component analysis (PCA). The classifiers used for comparison
included a BP neural network, support vector machine (SVM), and extreme learning
machine (ELM). The comparison results are shown in Table 7.

Table 7. Comparison of different methods.

Method Accuracy/% Time/s

WPD + WAPE + LSTM 99.29% 0.0389 s
FFT + PCA + SVM 68.98% 0.1898 s
FFT + PCA + ELM 65.61% 1.9851 s

WPD + BP 77.96% 0.0835 s
WPD + SVM 92.04% 0.5096 s
WPD + ELM 97.55% 2.4674 s

The results show that the proposed method has higher accuracy and faster time than
other comparison methods.

In addition, in order to verify the effectiveness of the proposed method under certain
double-IGBT open-circuit faults and single-IGBT short-circuit faults in SMs, the fault types
studied are shown in Table 8.
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Table 8. Fault types.

Fault Type Number

A-phase double-IGBT open-circuit fault of the same SM 8
B-phase double-IGBT open-circuit fault of the same SM 8
C-phase double-IGBT open-circuit fault of the same SM 8

A-phase single-IGBT short-circuit fault 16

According to the above table, the voltage signals of the MMC under the same SM
double-IGBT open-circuit fault and SM single-IGBT short-circuit fault are collected. The
expanded dataset includes the output voltages of 24 double-IGBT open-circuit faults and
16 single-IGBT short-circuit faults. The composition of each voltage time series is the same
as that of the single-IGBT open-circuit faults, and it is randomly assigned to the training set
and test set for model training and testing. According to the results of the above discussion,
the proposed method is used to diagnose these cases, and the accuracy of both cases can
still reach 100% after decision fusion.

Similarly, for double-IGBT open-circuit faults and single-IGBT short-circuit faults,
the proposed method was compared with other methods, and the results are shown in
Tables 9 and 10, respectively.

Table 9. Comparison of different methods for double-IGBT open-circuit faults.

Method Accuracy/% Time/s

WPD + WAPE + LSTM 98.33% 0.0225 s
FFT + PCA + SVM 63.33% 0.0287 s
WPD + PE + SVM 76.04% 0.0390 s

Table 10. Comparison of different methods for single-IGBT short-circuit faults.

Method Accuracy/% Time/s

WPD + WAPE + LSTM 99.06% 0.0191 s
FFT + PCA + SVM 96.88% 0.0044 s
WPD + PE + SVM 75.94% 0.0228 s

It can be seen from the above two tables that the proposed method outperforms the
other two methods in both diagnostic accuracy and time on both double-IGBT open-circuit
faults and single-IGBT short-circuit faults, except that the diagnostic time for short-circuit
faults in Table 10 is slightly longer than that of the second method.

Finally, the anti-noise performance of the proposed method was further studied, and
noise with different signal-to-noise ratios (SNRs) was added to the signal; the accuracy is
shown in Table 11.

Table 11. Accuracy under different noise.

SNR Accuracy/%

30 db 100%
25 db 91.02%
20 db 86.73%
15 db 79.59%

The verification results show that the method still has a certain anti-noise performance
for different sizes of noise.

5. Conclusions

In this paper, a fault diagnosis method based on weighted-amplitude permutation
entropy and DS evidence fusion theory was proposed to solve the problem that the IGBT
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open-circuit faults of different MMC SMs have similar characteristics. The correctness and
feasibility of the fault diagnosis method were verified by simulation. The contributions of
this article can be summarized as follows:

(1) Traditional entropy algorithms struggle to distinguish similar faults in MMCs. In
this paper, the weighted-amplitude permutation entropy (WAPE) was proposed,
combining the advantages of wavelet packet transform and information entropy, in
order to highlight the amplitude information in the signal and solve the disadvantages,
so that it can better extract the features of the similar fault signals;

(2) Single-scale entropy does not fully distinguish similar faults at different locations.
Based on the multiscale analysis and DS evidence fusion theory, the LSTM output
was used for evidence fusion after a comprehensive multiscale analysis of the time
series, making the fault feature extraction more comprehensive. This enables a more
comprehensive distinction between similar faults in different locations, and reduces
the uncertainty and randomness of fault diagnosis results, so as to further improve
the accuracy of MMC fault diagnosis;

(3) In addition, compared with the traditional fault diagnosis algorithm, the three-phase
output voltage of the MMC was selected instead of the capacitor voltage of each
SM. This greatly reduces the complexity of sampling, while reducing the amount of
data for subsequent data processing and classification. When using LSTM to train
and predict, compared with other networks, fault classification accuracy is greatly
improved, and the diagnostic speed is faster.

Finally, since this paper only studied single-IGBT open-circuit faults in a low-level
MMC, and verified the effectiveness of the proposed method in the case of partial multiple
faults and other fault types of SMs, our method has certain limitations. In the future, we
will increase the number of MMC levels and introduce more fault types for comprehensive
fault diagnosis, which will be more beneficial for MMC research.
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