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Abstract: The axle temperature is an index factor of the train operating conditions. The axle tem-
perature forecasting technology is very meaningful in condition monitoring and fault diagnosis
to realize early warning and to prevent accidents. In this study, a data-driven hybrid approach
consisting of three steps is utilized for the prediction of locomotive axle temperatures. In stage I,
the Complementary empirical mode decomposition (CEEMD) method is applied for preprocessing
of datasets. In stage II, the Bi-directional long short-term memory (BILSTM) will be conducted for
the prediction of subseries. In stage III, the Particle swarm optimization and gravitational search
algorithm (PSOGSA) can optimize and ensemble the weights of the objective function, and combine
them to achieve the final forecasting. Each part of the combined structure contributes its functions
to achieve better prediction accuracy than single models, the verification processes of which are
conducted in the three measured datasets for forecasting experiments. The comparative experiments
are chosen to test the performance of the proposed model. A sensitive analysis of the hybrid model is
also conducted to test its robustness and stability. The results prove that the proposed model can
obtain the best prediction results with fewer errors between the comparative models and effectively
represent the changing trend in axle temperature.

Keywords: axle temperature forecasting; hybrid model; data decomposition; optimization algorithm

1. Introduction

The reliability and efficient operation of the trains has a vital influence on the railway
systems because of the continuous increase of railway transport demand. The approaches
applied for railway vehicle safety monitoring have attracted much attention to the devel-
oping trend of modern railways [1]. The axle performance of the bogies in railway vehicles
is essential to maintain the safety of railway transportation. The abnormal thermal failure
of the axles and bearings in the bogies may bring potential risks to driving safety and the
operation of the railway vehicles. As an effective indicator to reflect the condition of the
axles, the research on the axle and bearing temperature monitoring and fault diagnosis
can effectively ensure the safety of locomotives and can improve the management level of
the railway for significant economic benefits [2]. The bearings have a certain temperature
fluctuation range under normal conditions. When faults occur, the increased vibration
and friction of the bearings will accumulate the generated heat, resulting in a higher
temperature than the normal range, so the temperature can be used as an indicator to
determine whether the bearing is under normal conditions. When the axles are damaged,
it may lead to accidents of the cut axle, hot axle, or even train derailment [3]. Mostly,
the axle temperature is measured and controlled by the real-time monitoring and alarm
equipment and the classified information will be transmitted by the sensors to achieve
an early warning over the limits for further decision-making [4,5]. In response to the
demand, many axle temperature monitoring systems have been developed for the research
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direction. Bing et al. [6] improved restriction from the debugging methods and developed
the non-destructive embedded method for EMU with axle temperature compensation as
adjustment. Vale et al. [7] proposed the on-board condition monitoring system, includ-
ing temperature and other factors with different types of sensors to explore the fault for
early warning. Liu [8] presented an axle temperature monitoring system with an onboard
switched Ethernet, connecting temperature sensors in the axle boxes for the fault diagnosis
of high-speed trains. The abovementioned temperature detecting method could obtain
the real-time monitoring of the axle temperature, but these methods cannot predict the
changing trend of the temperatures, which is more helpful to conduct preventive measures
and to avoid unnecessary loss of equipment maintenance. In recent years, researchers
have put forward many prediction methods in the research field of fault diagnosis [9,10],
temperature forecasting [11–13], wind speed forecasting [14], power forecasting [15,16],
traffic flow prediction [17,18], air pollutant forecasting [19] and so on. Hence, it is meaning-
ful to apply effective data-driven approaches to the axle temperatures for real-time status
detection and prediction.

1.1. Related Work

The time series prediction approaches have been commonly applied for statistical
application in the scientific study of fault diagnosis. The multiple linear regression is
a widely used time series prediction method and the relevant factors are analyzed and
compared by regression diagnosis to get the possible trend as the verification for the
applicability of the model in temperature prediction [20]. Ma et al. [3] used the stepwise
regression analysis to handle the axle temperature data. The stepwise regression analysis
can input the independent variables into the regression equation, in which the original
temperature data and other relevant factors are collected by sensors in high-speed trains.
The results showed that the model improved resulted in short-term forecasting contributed
to showing the potential trend of the original temperature dataset. From the application, it
can be found that the statistical model still requires stable time series data and has difficulty
in dealing with non-stationary data for information extraction.

In recent years, machine learning algorithms and artificial intelligence have attracted
more attention, with the significant development and the new computing platforms which
have also provided new perspectives for the predictive approaches. To further improve
the accuracy, scholars have recently established many models, mainly including the sta-
tistical methods, machine learning methods, and hybrid methods [19,21]. The hybrid
methods combine machine learning methods and data processing methods to provide
more satisfactory prediction accuracy than single predictors [22].

The trains are running at non-uniform speed, which leads to the collected original
non-stationary axle temperature. To reduce the irregular undulations of the raw datasets,
the data processing methods like the decomposing methods are applied to analyze non-
stationary and nonlinear processes, which could differentiate the interior features of over-
lapping and complex data. Wang et al. [23] utilized the Empirical mode decomposition
(EMD) to decompose original datasets. Then the preprocessed results would be input to
the ARIMA. The proposed model has increased the accuracy compared to single predictors.
Bai et al. [24] proposed the EEMD-LSTM model for time series predictions, showing the
satisfying improvement by the ensemble empirical mode decomposition (EEMD) and a
successful attempt to enhance the LSTM predictor, thus reducing the complexity of the raw
datasets. Chang et al. [25] applied the complementary ensemble empirical mode decompo-
sition method (CEEMD) to preprocess and extract the remaining useful life of lithium-ion
battery data. The practice proved that the CEEMD had good applicability to preprocess
the non-stable datasets and extract characteristic information effectively. Considering the
above analysis, the CEEMD is chosen to handle the raw data in the paper.

The predictors are the key parts of hybrid models. With the better nonlinear fitting
ability, the neural network methods and deep learning methods have been widely applied
in hybrid models in time series prediction. The deep learning algorithms contain a complex
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learning structure, in which the hidden layers lead to better learning accuracy by massive
data than the statistical methods and traditional machine learning methods. Hao and
Liu [26] proposed the Back Propagation Neural Network (BPNN) in the axle temperature
prediction for high-speed trains. The comparative results have proved that the forecasting
error of BPNN is lower than the GM (1,1) model. Yang et al. [11] presented an intelligent
forecasting structure based on the Long Short-Term Memory (LSTM) for high-speed trains
during operation. In the training process, a mean squared error (MSE) is used as the loss
function with batch size 100 and the learning rate 0.0001. It was proved to be a feasible
solution where the prediction error is arranged within a reasonable range. Luo et al. [12]
also provided the LSTM-based method to predict the locomotive axle temperature based
on sensor data, and the forecasting framework provided a referable result with acceptable
error levels. However, the LSTM structure only inputs information in one direction. A
better solution, as presented by the former study, is the BILSTM method, which is suitable
for time series data and raises prediction accuracy. Zhang et al. [27] used the BILSTM to
establish the hybrid time series prediction model. The experimental results indicated that
the proposed BILSTM had good robustness and accuracy between the comparative models
in time series prediction. The BILSTM model can use the non-linearity of series to extract
deep information and to identify the characteristics of datasets. As an improved vision of
LSTM, the BILSTM is applied as the time series predictor in this study.

The optimization algorithms with hybridized techniques can bring further optimiza-
tion of the raw data and the prediction accuracy besides the decomposition methods and
predictors. Kouchami et al. [28] designed a GA-ANN model, in which the ANN is opti-
mized by the genetic algorithm. Xing et al. [29] used the modified grey wolf optimization
(MGWO) to determine the deep belief network (DBM) structure parameters. Singh [30]
combined the particle swarm optimization (PSO) algorithm with neutrosophic set theory.
It was evaluated with the benchmark datasets and the hybrid model obtained improved
forecasting accuracy by employing the PSO algorithm. Zhang et al. [31] also proposed
PSO to improve the initial weights and thresholds of the predictor in daily global solar
radiation forecasting, combining the advantages of PSO and the BPNN. In the comparative
experiments, PSO-BPNN showed better accuracy than single BPNN and statistical models.
Zhu et al. [32] utilized the PSOGSA optimization algorithm, which contained the particle
swarm optimization (PSO) and gravitational search algorithm (GSA). By the combination
of the global search ability from PSO and the local fine search ability from GSA, PSOGSA
has acquired the capability of exploitation and exploration to raise the possibility of finding
the best outcome. Then, the results can be easier to reach with fast convergence speed.
Furthermore, the PSOGSA algorithm aims to find the global optimum between all possible
values. Therefore, it is very meaningful to study the principle and the framework of the
hybrid PSOGSA algorithm and to conduct more experiments for further optimization in
this paper.

Therefore, this paper utilizes the information mining ability of the decomposing
methods as well as deep learning, and integrates the optimization algorithm to establish
a hybrid model to achieve accurate prediction of the axle temperature. According to the
above literature survey, several reviewed axle temperature forecasting models are provided
in Table 1.

Table 1. The reviewed axle temperature forecasting models.

Reference Published Year Predictors

[11] 2019 LSTM
[12] 2017 LSTM
[26] 2020 BPNN
[33] 2019 SVM
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1.2. Novelty of the Study

The main purpose of conducting this study is the research for an effective algorithm to
achieve an accurate prediction of the axle temperature of locomotive bogies. A new hybrid
model based on the abovementioned algorithms is proposed for the research direction. The
innovation of the research is presented as below:

(a) The time series prediction helps with the real-time monitoring onboard and the fault
diagnosis of axle temperature to ensure the train safety and efficient operation. To
deal with the evolving information of axle temperature series, a time series hybrid
prediction model is proposed to support short-term axle temperature forecasting for
early warning. Different to the multiple regression models and physical methods in
the previous study, the proposed innovative model can handle the axle temperature
data and reduce the calculation complexity without a decrease in the prediction
accuracy.

(b) The decomposition algorithm could efficiently process non-stationary data from a
time series. The CEEMD is applied for the first time in the original non-stationary
axle temperature datasets to reduce the random fluctuations and to preprocess and
decompose the raw data into multiple sub-series for digging into the primary compo-
nent hidden in the raw datasets. Compared to the EMD and EEMD, problems of the
mode mixing and the contamination in the signal reconstruction have been solved in
CEEMD so that the information of the datasets can be better extracted to enhance the
predictive ability of the predictor.

(c) In the predictive process, the long short-term memory network is utilized to learn the
characteristics of the decomposed IMFs. The improved version BILSTM can further
learn long-term dependency of sequences by the deep learning structure of the evalu-
ation of past and future information without keeping redundant characteristics [34].
It is also the first application in axle temperature prediction.

(d) Different to other statistical computation or neural network methods, the proposed
model is an ensemble predicting method focusing on the new hybrid metaheuristic
optimization algorithm PSOGSA, which takes advantage of the exploitation function
from PSO and the exploration function from GSA. The hybrid algorithm used each
subsequence prediction result matrix from CEEMD-BILSTM and the weight matrix to
find the optimal solution in the objective function and combine the calculation results
for output.

(e) The proposed hybrid CEEMD-BILSTM-PSOGSA is a novel structure. Recently, many
applied forecasting models of the axle temperature have been single predictors. There-
fore, the combining performance of hybrid models and the ability of the single models
are worth studying. To test the robustness and accuracy and to evaluate the total
performance, the experiments were conducted as the benchmark test.

2. Methodology
2.1. The Overall Structure of the Axle Temperature Forecasting Model

The structure of the proposed hybrid model is shown in Figure 1, including the
decomposition methods, the deep learning predictor, and the ensemble learning methods.
The detailed process is demonstrated as follows:

Part A: The original axle temperature series are decomposed by the CEEMD method
into several subseries separately, which could decrease the non-stationarity of the model
for further optimization in the next step. The raw temperature data can be separated and
applied as the training set and testing set. The input data can be trained in the training set
and then the total performance of the optimal model will be tested by the testing set. The
detailed explanations of CEEMD are shown in Section 2.2.

Part B: The BILSTM, a combination of forward LSTM and backward LSTM, will be
conducted to obtain the prediction results for the sub-series after the process of CEEMD.
The deep network receives the forecasting results by combining all the forecasting results
from the sub-series. The principles of the BILSTM are shown in Section 2.3.
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Part C: The PSOGSA is applied to optimize and ensemble the weights of the objective
function in model training. The PSOGSA can analyze the features of sub-series results and
optimize the weight coefficients of the decomposed subseries. Then, the sub-results from
each model should be integrated by the corresponding weights (w1, w2 . . . wn) to obtain
the final predictive data. The formula is shown as follows:

Â(t) = w1Â1(t) + w2Â2(t) + · · ·+ wnÂn(t) (1)

where wi are the weight coefficients, Âi(t) are the prediction results of each sub-series.
The product of each subsequent prediction result matrix and the weight matrix will be
compared to the raw data to get the satisfying results, which are evaluated by the indexes.
The principles of the PSOGSA are shown in Section 2.4.

2.2. Complementary Ensemble Empirical Mode Decomposition Method

As an important member in a series of data preprocessing approaches based on EMD,
the CEEMD was proposed by Yeh et al. [35] to develop the EMD and the ensembled
EMD (EEMD) decomposition methods. The EMD can decompose raw complicated data
adaptively into a group of intrinsic mode functions (IMFs) [36]. However, the method
also presents mode mixing that a single IMF signal may contain different time scales or
at the same time scale appears in different IMFs. The EEMD was designed to eliminate
the mode mixing problem [37]. They added the normally distributed white noise to the
raw signal and then performed EMD decomposition to acquire each IMF. However, EEMD
still has the problem of contamination in the data reconstruction. To solve the problem
that the white noise cannot be completely removed after reconstruction, and because the
noise is too large after the addition, CEEMD was proposed and widely used. In addition
to reducing the mode mixing, the CEEMD also eliminates the final white noise residual
and raises the calculated efficiency. The main process of the CEEMD is briefly summarized
below:
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Step 1: The raw signal y(t) has a plus of opposite white noises to produce new signals
with positive and negative noises separately [38], and the new signals are:{

y+
i (t) = y(t) + wi(t)

y−i (t) = y(t)−wi(t)
(2)

where wi(t) is the ith plus white noise, y+
i (t) and y−i (t) represent the ith positive and

negative signals.
Step 2: The new signals y+

i (t), y−i (t) are separated into two sets of IMFs by the EMD
method, 

y+
i (t) =

m
∑

j=1
d+

ij (t)

y−i (t) =
m
∑

j=1
d−ij (t)

(3)

where y+
i (t), and y−i (t) represent the jth IMFs obtained in the ith time with positive and

negative noise, m is the number of IMFs.
Step 3: Repeat steps 1 and 2 N times with varying sizes of white noises in each time to

get IMF components.
Step 4: Get the ensemble average of all the relative IMFs, described as:

dj(t) =
1

2N

N

∑
i=1

(
d+

ij (t) + d−ij (t)
)

(4)

where dj(t) is the jth IMF item obtained by the CEEMD method.
Step 5: After step 4, when there are not more than two peaks in the remainder

rN(t) = y(t)− ∑N
j=1 dj(t), the step is finished and conducted the next step. If not, begin

steps 1–4 again [39].
Step 6: The raw signal y(t) can be concluded as:

y(t) =
N

∑
j=1

dj(t) + rN(t) (5)

where dj(t) is the jth IMF and rN(t) is the remainder.

2.3. Bi-Directional Long Short-Term Memory Method

The LSTM belongs to the recurrent neural network and it was proposed in 1997 [40].
Due to the characteristics of its design, LSTM is very appropriate for modeling time
series data. Compared with other recurrent neural networks, LSTM networks provide the
application of the threshold structure to selectively retain or forget relevant information.
An LSTM unit has three gate structures, including the input gate, the output gate, and the
forget gate [41]. The gating units are responsible for controlling the information flow as
an interface [42]. In the learning process, the weight can be renovated automatically [43].
The input and forget gates determine the data which should be added or removed and the
output gate determines the parts of the output. The structure of LSTM is shown in Figure 2.
The process of LSTM is expressed as the following steps with the notations [42]:

n it, ft, and ot are respectively vectors for the input gate, forget gate, and output gate.
n rt and r̃t are the cell status and the values vectors.
n xt is the input data and ht is the output variable.
n wcx, wix, wfx, wox, wch, wih, wfh, woh represent the relative weight matrices.
n bi, br, bf, bo are the relative bias vectors and σ is a sigmoid activation function.
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Step 1: The LSTM layer obtains the information from its last cell states rt−1. The
input xt, the previous output ht−1, and the bias terms bf of the forget gates are used for
calculating the activation values ft by a sigmoid activation function σ [44].

ft = σ(wfxxt + wfhht−1 + bf) (6)

Step 2: The LSTM layer determines the new data to be stored and then calculates the
data to be transferred to the network.

r̃t = tanh(wcxxt + wchht−1 + br) (7)

it = σ(wixxt + wihht−1 + bi) (8)

Step 3: Take the outcome in the above process to acquire new call status rt and the ◦
means the Hadamard product.

rt = ft ◦ rt−1 + it ◦ r̃t (9)

Step 4: the output ht of the LSTM layer by the following calculations:

ot = σ(woxxt + wohht−1 + bo) (10)

ht = ot ◦ tanh(rt) (11)

The BILSTM is short for Bi-directional Long Short-Term Memory and it is architec-
turally composed of forwarding LSTM and backward LSTM [45]. Similar to LSTM, both
are often used to model context information in natural language processing tasks [42]. The
BILSTM can connect two hidden layers with different directions to output, which means it
includes forward and backward data at the same time. The BILSTM can raise LSTM model
performance in classification processes and effectively learn long-term dependency. The
output layer can get past and future information in the input data by the structure. The
structure of the BILSTM network is expressed in Figure 3.

2.4. Ensemble Learning Method Based on PSOGSA Optimization

Kennedy and Eberhart [46] proposed the concept of the position and velocity-based
meta-heuristic algorithm PSO in 1995, which searches for the optimal value by simulating the
foraging behavior of birds. The PSO algorithm is popular for its efficiency to converge to the
optimum value and its special characteristics takes advantage of both the individual and group
information to adjust status. Finally, it could have a fast speed to an optimal value.
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The PSO draws inspiration from this phenomenon to conduct optimization. In the
PSO algorithm, the potential result to the optimal problem is similar to a bird in the search
area. All particles start with a fitness value decided by the optimized function [39]. They
also have a speed according to the direction and distance they move, and move along the
current best particle and search for the optimal solution through multiple iterations, in
which the particle updates by the individual extremum pbest and the optimal value from
the entire group as the global extremum gbest [47]. It can also update with the extreme
values of the neighbors of the particle as local extreme values [48]. The equations of the
PSO is expressed as follows:

vi(t + 1) = w× vi(t) + d1 × rand× (pbesti − xi(t)) + d2 × rand× (gbest− xi(t)) (12)

xi(t + 1) = xi(t) + vi(t + 1) (13)

where vi is the velocity, xi(t) represents the current location of ith particle, t means iteration,
w represents the weight, d1 and d2 are the acceleration coefficients. rand means a uniform
random variable between the interval [0, 1]. pbest represents the local best location of ith
particle, and gbest has been defined as the global optimal result [48].

The gravitational search algorithm (GSA) was originally designed in 2009 [49]. It is
based on the law of universal gravitation and Newton’s second law. The GSA can lead the
group to conduct an optimization search by the universal gravity between the particles
in the entire population. Taking advantage of GSA’s strong global optimization ability
and the feature that PSO can increase memory and social information exchangeability for
particles, Mirjalili and Hashim [50] proposed a hybrid algorithm PSOGSA combined the
PSO and GSA, which includes the exploration ability of PSO and the research localization
ability of GSA [51]. The Figure 4 shows the schematic process of PSOGSA.

The developed velocity of PSOGSA is shown as follows:

Vi(t + 1) = w′ ×Vi(t) + d′1 × rand× aci(t) + d′
2
× rand× (gbest− Xi(t)) (14)

Xi(t + 1) = Xi(t) + Vi(t + 1) (15)

where Vi is the velocity, Xi(t) represents the current location of the ith particle. t is the
iteration, w’ is the weight, d′1 and d′2 are the acceleration coefficients. rand represents a
random variable between the interval [0, 1]. aci(t) means the acceleration of the ith agent.
The gbest means the current best result and vi represents the velocity of the ith agent [48].

In the study, the mean square error is applied as the objective function,

MSE = (
N

∑
t=1

[
A(t)− Â(t)

]2
)/n (16)
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where A(t) means the raw data, Â(t) represents the predictive result and n is the number 

of samples in A(t) . 

For the n decomposed sub-series from CEEMD, the state matrix S can be presented 

as the weight matrix, 

2 n1
...wS w ,w=     (17) 

where w1, w2…wn are the corresponding weights and n represents the number of the de-

composed sub-series from CEEMD. The product of the prediction result matrix and the 

weight matrix will be compared to the raw data by the optimization algorithm for ful-

filling results in the objective function. The iteration ends up with a fulfilling condition. 

The test set is inputted into the trained model and the PSOGSA determines the optimal 

weights by the data features of the test set. 

3. Case Study 

3.1. The Applied Datasets 

In the research, the raw collected data are applied to verify the performance of the 

proposed hybrid model. The temperature datasets #1, #2, and #3 were measured with a 1-

Figure 4. The flowchart of the PSOGSA.

where A(t) means the raw data, Â(t) represents the predictive result and n is the
number of samples in A(t).

For the n decomposed sub-series from CEEMD, the state matrix S can be presented as
the weight matrix,

S = [w1, w2 . . . wn] (17)

where w1, w2 . . . wn are the corresponding weights and n represents the number of the
decomposed sub-series from CEEMD. The product of the prediction result matrix and the
weight matrix will be compared to the raw data by the optimization algorithm for fulfilling
results in the objective function. The iteration ends up with a fulfilling condition. The test
set is inputted into the trained model and the PSOGSA determines the optimal weights by
the data features of the test set.

3. Case Study
3.1. The Applied Datasets

In the research, the raw collected data are applied to verify the performance of the proposed
hybrid model. The temperature datasets #1, #2, and #3 were measured with a 1-min interval by
different axles in the Harmony diesel locomotive. The original data are displayed in Figure
5 with 600 sample points in each subseries. As a description of the datasets, Table 2 lists the
maximum, minimum, and average values of the three datasets. According to the literature
survey [14,52,53] of prediction models, the proportion of training set and testing set can be 5:1
to 7:1. In the paper, each series includes 600 samples, in which the training set has 500 samples
for the predictor and the testing set includes 100 samples to test the accuracy of the models. All
experiments are supported by the Matlab2020a platform.

Table 2. Dataset description.

Dataset Maximum (◦C) Minimum (◦C) Average (◦C)

1 40 32 35.9317
2 46 30 39.0567
3 46 34 40.4950
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3.2. The Evaluation Indexes in the Study

The evaluation indexes are necessary to assess the model performance. In this paper,
the indexes have been utilized, which are the mean absolute error (MAE), the mean absolute
percentage error (MAPE), and the root mean square error (RMSE). Moreover, the promoting
percentages (PMAE, PMAPE, PRMSE) are also utilized in the study for a further comparison
between the models. The indexes are expressed as follows:

MAE = (
n
∑

t=1

∣∣A(t)− Â(t)
∣∣)/n

MAPE = (
n
∑

t=1

∣∣(A(t)− Â(t))/A(t)
∣∣)/n

RMSE =

√
(

n
∑

t=1

[
A(t)− Â(t)

]2
)/n

(18)


PMAE = (MAEa −MAEb)/MAEa
PMAPE = (RAPEa −MAPEb)/MAPEa
PRMSE = (RMSEa − RMSEb)/RMSEa

(19)

where A(t) is the original data, Â(t) is the predictive output and n is the number of samples
in A(t).

3.3. Comparing Experiments and Results

To test the model forecasting ability, different relevant models are compared and analyzed
by different indexes in the paper. The conducted experiments contain three stages.

3.3.1. Experimental Results of Part 1

As the first application in axle temperature forecasting, BILSTM is tested in exper-
iments with other predictors, which are LSTM, DBN, ENN, BPNN, MLP, ARIMA, and
ARMA models, including the aspects of neural networks, deep learning, and regression
methods. Table 3 presents the test results and Figures 6–8 also show the part of the error
evaluation results of the single predictors.
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Table 3. The error evaluation results of different predictors in series #1, #2, and #3.

Series Forecasting Models MAE (◦C) MAPE (%) RMSE (◦C)

#1

BILSTM 0.2297 0.6159 0.3814
LSTM 0.2702 0.7522 0.4475
DBN 0.3673 0.8565 0.4516
ENN 0.2814 0.7531 0.4832

BPNN 0.2805 0.9234 0.5297
MLP 0.5456 1.6037 0.7350

ARIMA 0.5835 1.7129 0.8644
ARMA 0.6326 1.9583 1.1152

#2

BILSTM 0.2568 0.6086 0.3764
LSTM 0.2838 0.6987 0.4167
DBN 0.3185 0.7586 0.4684
ENN 0.3911 0.7922 0.4396

BPNN 0.4055 1.1015 0.5007
MLP 0.7026 1.8110 0.8988

ARIMA 0.7941 1.9375 0.9259
ARMA 0.9102 2.1479 1.2074

#3

BILSTM 0.3135 0.6830 0.4710
LSTM 0.3929 0.7851 0.5490
DBN 0.3703 0.7582 0.5784
ENN 0.3563 0.7225 0.5739

BPNN 0.4342 1.0436 0.6290
MLP 0.7340 1.6931 1.0061

ARIMA 0.9351 1.7859 1.2134
ARMA 1.1046 1.8705 1.3743
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3.3.2. Experimental Results of Part 2

To validate the superiorities of the decomposition methods, the research lists the
results of the hybrid EMD-BILSTM, EEMD-BILSTM, and CEEMD-BILSTM models. The
prediction accuracy, the advantages, and the disadvantages of the decomposition algorithm
are also demonstrated. Tables 4 and 5 show the test results and the promoting percentages.

3.3.3. Experimental Results of Part 3

To further evaluate the performance, the proposed model is tested with other models
optimized by ensemble algorithms. This experiment can prove that the superiority of the
hybrid framework to other single predictors without the optimization algorithms and can
demonstrate exceptional application prospects of the proposed model.
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Table 4. The error evaluation results of different models in series #1, #2, and #3.

Series Forecasting Models MAE (◦C) MAPE (%) RMSE (◦C)

#1

BILSTM 0.2297 0.6159 0.3814
EMD-BILSTM 0.2180 0.5987 0.3466

EEMD-BILSTM 0.2115 0.5673 0.3092
CEEMD-BILSTM 0.1735 0.4545 0.2797

#2

BILSTM 0.2568 0.6086 0.3764
EMD-BILSTM 0.2329 0.5272 0.3039

EEMD-BILSTM 0.2164 0.4802 0.2736
CEEMD-BILSTM 0.1937 0.4628 0.2529

#3

BILSTM 0.3135 0.6830 0.4710
EMD-BILSTM 0.2901 0.6321 0.4361

EEMD-BILSTM 0.2831 0.5954 0.4055
CEEMD-BILSTM 0.2511 0.5692 0.3895

Tables 6 and 7 show the promoting level of the proposed CEEMD-BILSTM-PSOGSA
to other models. Figures 6–8 indicate the evaluation results of the eight models for different
axle temperature datasets. Figure 9 presents the loss values by the iterations of PSOGSA,
PSO, and GWO. Figures 10–12 show the total forecasting results and errors for experiments,
which describe the curve of the forecasting results in eight models with the raw data, and
the error distribution and the local enlargement.
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Table 5. The promoting percentages of the EMD decomposition algorithms.

Methods Indexes Series #1 Series #2 Series #3

EMD-BILSTM vs.
BILSTM

PMAE (%) 5.0936 9.3069 7.4641
PMAPE (%) 2.7927 13.3750 7.4524
PRMSE (%) 9.1243 19.2614 7.4098

EEMD-BILSTM vs.
BILSTM

PMAE (%) 7.9234 15.7321 9.9697
PMAPE (%) 7.8909 21.0976 12.8258
PRMSE (%) 18.9303 27.3114 13.9066

CEEMD-BILSTM vs.
BILSTM

PMAE (%) 24.4467 24.5717 19.9043
PMAPE (%) 26.2056 23.9566 16.6618
PRMSE (%) 26.6650 32.8108 17.3036

Table 6. The promoting percentages of the proposed model, the CEEMD-BILSTM and the BILSTM.

Methods Indexes Series #1 Series #2 Series #3

CEEMD-BILSTM-PSOGSA
vs.

CEEMD-BILSTM

PMAE (%) 40.8360 49.6644 51.4138
PMAPE (%) 39.7360 54.3431 38.3345
PRMSE (%) 33.5001 51.2456 43.7741

CEEMD-BILSTM-PSOGSA
vs. BILSTM

PMAE (%) 55.0283 62.0327 61.0845
PMAPE (%) 55.5285 65.2810 48.6091
PRMSE (%) 51.2323 67.2423 53.5032
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Table 7. The promoting percentages of the proposed model, the CEEMD-BILSTM-GWO model and
the hybrid CEEMD-BILSTM-PSO model.

Methods Indexes Series #1 Series #2 Series #3

CEEMD-BILSTM-PSOGSA
vs. CEEMD-BILSTM-PSO

PMAE (%) 11.9352 14.9956 15.5709
PMAPE (%) 15.1487 18.2276 17.4118
PRMSE (%) 16.2162 25.4534 13.7795

CEEMD-BILSTM-PSOGSA
vs. CEEMD-BILSTM-GWO

PMAE (%) 21.2652 38.9480 44.5958
PMAPE (%) 20.9067 47.7756 33.2953
PRMSE (%) 25.5702 47.3077 33.3738
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3.4. Comparison and Discussion with Alternative Algorithms
3.4.1. Analysis of Applied Single Predictors

From Table 3 and Figures 6–8, it can be summarized that:

(a) The prediction accuracies of the neural network model and deep learning models are
much higher than that of ARIMA and ARMA in all the datasets. For the statistical
regression methods, the high fluctuation, nonstationary and nonlinear features of
axle temperature series may increase the difficulty of the prediction process and lead
to low prediction accuracy. The corresponding experiment results of three datasets
reflected the insufficient ability of ARIMA and ARMA methods to solve nonlinear
modeling. Besides, the prediction accuracy of the MLP is lower than other deep
learning models in the series. It demonstrates that the performance of the shallow
neural network is not good as the deep neural network in the research. The multiple
hidden layers in the deep neural networks may complete the analysis of the deep wave
information of original datasets and improve training and optimization capabilities
to analyze the fluctuation and nonlinear features of the temperature data. Taking
advantage of the deep learning methods, they can conduct a full analysis by the
continuous iteration training process to keep stable and robust in the calculation of
the temperature datasets.

(b) Comparing the results of the LSTM and other benchmarks DBN, ENN, BPNN, MLP,
ARIMA, and ARMA, the prediction error of the is lower than that of others and
BILSTM obtains the best prediction results in all series. In Figures 6–8, the evaluation
values of BILSTM are lower than the neural networks and deep networks. The differ-
ence in the figures can be found that the MAPE of BILSTM is 0.6086% and the MAPE
of BPNN is 1.1015%. The possible reason may be that the bidirectional operation
structure could analyze the contextual information to increase the calculation speed
and recognition abilities for different data series so that the type of neural network
training can acquire optimal results in axle temperature time-series forecasting. How-
ever, it can be observed that a single predictor is not enough to efficiently handle
different axle temperature series. Because of the hidden layer structures from different
deep networks, the recognition abilities of the deep networks for various types of
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time series are also varied, so that it is essential to utilize other algorithms to increase
the applicability and robustness of the model.

3.4.2. Analysis of Applied Decomposition Methods

From Tables 4 and 5 in the experimental results of Part 2, it can be found that:

(a) The results from the EMD-BILSTM, EEMD-BILSTM and CEEMD-BILSTM models
have shown better accuracy than the single BILSTM model. Therefore, the BILSTM
with the decomposition algorithms has the ability to achieve better feature extraction
of the axle temperature series and to produce more accurate forecasting results than
the single BILSTM. Although the decomposition methods may raise the complexity
and the time costs to a certain extent, considering the overall improvement effect,
the application of real-time decomposition is feasible and is worthy of recognition in
forecasting.

(b) From the tables, it can be found that the forecasting errors of the EMD-BILSTM are
higher than the EEMD-BILSTM and CEEMD-BILSTM in all series, which is a gradual
decrease process. This application proves that the ability of the EMD method on
decomposing the original signal and selecting the related partial characteristic of
the original signal is lower than other models. The possible reason is that the mode
mixing problem affects the processing and extraction capabilities of the EMD method
for non-stationary and nonlinear data. Likewise, the signal reconstruction problem
can also reduce the accuracy of the EEMD by the data decomposition, which leads to
the production of white noise.

(c) The comparable data in the tables have proved that the CEEMD is more efficient than
the EMD and EEMD to raise the prediction accuracy. The CEEMD algorithm can
raise sharply more than 32% of the accuracy for a single BILSTM in the forecasting
results in all datasets, which can be also reflected in Figures 6–8. Due to the function
of improvement in eliminating the residual noise and the mode mixing, the CEEMD
takes advantage of EEMD and represents a superior research potential to deepen the
information extraction for temperature data.

3.4.3. Analysis of Different Optimization Methods

From Tables 6 and 7 and Figures 6–12 in experimental results of Part 3, it can be
demonstrated that:

(a) The forecasting models show satisfying accuracy and robustness for the research
of temperature changes. In Figures 6–8, the forecasting accuracy of the proposed
CEEMD-BILSTM-PSOGSA is higher than the CEEMD-BILSTM and BILSTM model.
The ensemble optimization in hybrid models could efficiently forecast the temporal
trend of temperature and improve the predictive performance to more than 67%. The
possible reason may be that the PSOGSA algorithm could conduct an efficient weight
optimization process by the axle temperature features, which is also the first time in
the data-driven approaches of the axle temperature data. The evaluation values of
the CEEMD-BILSTM-PSOGSA framework is the lowest among all the models in all
the datasets.

(b) The hybrid model also outperforms the classical single predictors and regression
methods, which is affected by the optimization in the prediction process from many
aspects. In Figures 6–8, all the hybrid models have better forecasting accuracies than
the single predictors in all datasets. In addition to the deep networks’ ability to
process nonstationary data, the proposed hybrid models are highly adaptable, so the
decomposition methods and optimization algorithms effectively analyze and simulate
the trend of nonstationary and nonlinear data, which contributed to better accuracy
than the single models and the effective application of hybrid models indicates a
possible research direction of time-series prediction for the early warning.

(c) The proposed CEEMD-BILSTM-PSOGSA model obtains the best forecasting results of
all data series with the evaluation indexes. The MAE can reach less than 0.1 ◦C and the
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MAPE can achieve almost 0.2%. Compared with other hybrid models, the proposed
model still outperforms them from 11.9% to 47.7% in the indexes. Figures 10–12 show
the final forecasting results and the deviation from the original data of all the models.
The predicted values of the proposed model are closer to the original data than others.
Figure 9 represents the changes in the loss during the iterations of PSOGSA, PSO, and
GWO. In comparison, the PSOGSA has a faster convergence speed and a lower final
loss than PSO and GWO in all the datasets, which credits the excellent exploration
and the research localization abilities from the combination of the PSO and GSA
algorithms. Thus, the CEEMD-BILSTM-PSOGSA model integrates the superiorities of
the single algorithms and has excellent application foregrounds in axle temperature
forecasting.

3.5. Sensitive Analysis of the Parameters and the Validation of the Model

In this paper, the sensitivity of the parameters of the proposed model is also analyzed.
Each parameter will be tested by five different values. The results of the important param-
eters are listed in Figure 13. The MAEs stand for forecasting accuracy. It could be found
that the proposed framework is generally reliable and robust to the parameters with a few
fluctuations by different settings. For example, when the personal learning coefficient is 1.5,
the MAEs obtain the smallest values to be regarded as the best forecasting accuracy. In the
maximum iterations of PSOGSA, the changing of the parameter value has little influence
on the results of the proposed model. For the short calculation time, it is rational to set the
maximum iterations at 600.
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The hybrid framework has been tested on three axle temperature datasets, and the
results for deviation in Tables 3–7 are stable, which are obtained by repeated experiments
without too much fluctuation. The changing trends of different temperature datasets also
did not reduce the accuracy of the model results. Therefore, the reliability and robustness of
the proposed model have been validated on different datasets, so it can effectively analyze
the fluctuation features of axle temperature series. Therefore, it can be applied to precisely
forecast the changing trends of different axle temperature datasets. The involved single
predictors cannot relatively complete the information mining from the collected datasets,
which leads to inaccuracy in axle temperature forecasting. Therefore, the reliability and
robustness of the proposed model have been significantly improved compared with single
predictors.

4. Conclusions and Future Work

In the paper, a novel axle temperature forecasting model was constructed by inte-
grating the CEEMD method, the BILSTM neural network, and the PSOGSA optimization
algorithm. In the proposed framework, the CEEMD was used to preprocess the raw ir-
regular data into a set of sub-layers, which can facilitate the prediction of the next step.
The BILSTM is applied for the prediction for each sub-layer. The PSOGSA algorithm
would continue optimizing the initial value of forecasting results from each sub-layer
and combine them for the final data. To study the forecasting capability of the proposed
CEEMD-BILSTM-PSOGSA model, other benchmark predictors and hybrid models are
listed and observed in the comparative research. From the results of the above experiments,
the following conclusions can be drawn:

(a) The predictive performance of the deep networks with bidirectional operation struc-
ture is better than regression methods and shallow neural networks. The deep
structure can contribute to the analysis of the fluctuation and nonlinear features of
the axle temperature datasets. Therefore, the prediction by the deep networks has an
effective application in the research of axle temperature forecasting.

(b) The proposed model proved the fact that the decomposition algorithms can efficiently
raise the accuracy of the BILSTM. In the EMD series, the CEEMD showed excellent
adaptive decomposition ability in the process of the axle temperature data and had a
positive effect to improve the predictive ability rather than the EEMD and the EMD
in all data series.

(c) The ensemble process based on the PSOGSA optimization algorithm is significantly
better for the integration of deep network sub-series and for an improvement of the
prediction accuracy. Besides, the optimization levels of the proposed algorithm also
outperform the PSO and GWO algorithms.

(d) Compared with the classical predictors and other involved hybrid models, the pro-
posed effective model combined all advantages of the components and presented
a good prediction ability and adaptability in axle temperature forecasting, which
offered a new approach for the prediction and early warning for the effective axle
temperature research.

The proposed model can be utilized for accurate axle temperature forecasting. There-
fore, it can be effectively used in locomotive early warning systems. Some research could
be conducted for the further improvement of the model:

(a) The proposed model used a univariate axle temperature framework by time series,
which may be affected by the historical data. Moreover, the accuracy and reliability
of the model will be in recession according to the locomotive running period. To
guarantee the regular function of the model, it is necessary to update model param-
eters and to take the correlation by multivariate of the operating environment into
consideration.

(b) This paper aims to the short-term forecasting research of locomotive axle temperature.
For the massive data generated by the locomotive during long-term operation in
the future, an effective data processing platform can conduct a more comprehensive
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analysis of the locomotive. Within the application of the big data platform technology,
the proposed hybrid model can be embedded into the distributed computing system
for further application in the big data platform.
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ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
BPNN Back Propagation Neural Network
BILSTM Bi-directional Long Short-Term Memory
CEEMD Complementary Empirical Mode Decomposition
DBN Deep Belief Network
GA Generic Optimization
EMD Empirical Mode Decomposition
EEMD Ensemble Empirical Mode Decomposition
ENN Elman Neural Network
GSA Gravitational Search Algorithm
GWO Grey Wolf Optimization
IMF Intrinsic Mode Function
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
MAE Mean Averaging Error
MAPE Mean Average Percentage Error
MGWO Modified Grey Wolf Optimization
MSE Mean Squared Error
PSO Particle Swarm Optimization
PSOGSA Particle Swarm Optimization and Gravitational Search Algorithm
RMSE Root Mean Square Error
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Nomenclature

wi(t) The ith plus white noise
y+i (t) The ith positive signals
y−i (t) The ith negative signals
dj(t) The jth IMF item obtained by the CEEMD method
rN(t) The remainder of the raw signals
it The vectors for the input gate
ft The vectors for the forget gate
ot The vectors for the output gate
rt The cell status
r̃t The values vectors
xt The input data
ht The output variable.
wcx, wix wfx, wox, wch, wih wfh, woh The relative weight matrices
bi, br, bf, bo The relative bias vectors
σ Sigmoid activation function
ct New call status
vi, Vi The velocity
xi(t), Xi(t) The current location of ith particle
t The iteration
d1, d2 The acceleration coefficients
pbest The local best location of ith particle
gbest The global optimal result
rand Uniform random variable between the interval [0, 1]
aci(t) The acceleration of the ith agent
A(t) The raw data
Â(t) The predictive result
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