
machines

Article

A Graph-Based Optimal On-Ramp Merging of Connected
Vehicles on the Highway

Yanjun Shi *, Zhiheng Yuan, Hao Yu, Yijia Guo and Yuhan Qi

����������
�������

Citation: Shi, Y.; Yuan, Z.; Yu, H.;

Guo, Y.; Qi, Y. A Graph-Based

Optimal On-Ramp Merging of

Connected Vehicles on the Highway.

Machines 2021, 9, 290. https://

doi.org/10.3390/machines9110290

Academic Editor: Domenico Mundo

Received: 9 October 2021

Accepted: 12 November 2021

Published: 16 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China;
yzhiheng@mail.dlut.edu.cn (Z.Y.); yh_work@mail.dlut.edu.cn (H.Y.); gyijia@mail.dlut.edu.cn (Y.G.);
qiyuhan.dut@foxmail.com (Y.Q.)
* Correspondence: syj@ieee.org

Abstract: Connected and automated vehicles (CAVs) are a very promising alternative for reducing
fuel consumption and improving traffic efficiency when vehicles merge at on-ramps. In this study,
we propose a graph-based method to coordinate CAVs to merge at the highway ramp. First, the
optimized vehicles were divided into groups to pass the merging point. Then we built a directed
graph model for each group of vehicles, where each path of the graph corresponds to one of all
possible merging sequences. The improved shortest path algorithm is proposed to find the optimal
merging sequence for minimizing total fuel consumption. The results of the simulation showed that
the proposed graph-based method reduced fuel consumption and ensured high traffic efficiency;
moreover, the vehicles can form a platoon after passing the merge point.

Keywords: connected and automated vehicles; cooperative driving; on-ramp merging; the graph-based
optimal model

1. Introduction

Traffic jams that occur at highway on-ramps are a significant challenge to overcome to
improve traffic efficiency [1,2]. Traffic congestion not only adds to travel time and makes
drivers anxious but also increases fuel consumption and air pollutants, which violates
the concept of green travel. The emergence of cooperative driving technologies provides
opportunities to solve the above problems [3,4]. With the help of vehicle to everything
technology (V2X) [5,6], including vehicle to vehicle (V2V) and vehicle to infrastructure
(V2I), CAVs can shorten the gaps between vehicles, improve response speed and increase
traffic efficiency. CAVs can change the modes of future transportation management and
organization [7]. Utilizing advanced technology, more intelligent management systems
have been developed to coordinate CAVs to merge at freeway on-ramps efficiently [8,9].
These systems roughly contain two main modules: merging sequences optimization and
motion planning [10,11]. In this study, we propose a graph-based optimal method to obtain
merging sequences and trajectories of CAVs on the highway.

In recent research, the cooperative merging problems were solved sequentially [12].
The merging sequence, namely the passing order of all vehicles, was first determined. Then
the trajectory of each vehicle was planned in the motion planning. The methods in the
literature rarely consider the impact of merging sequences on the vehicle trajectory while
optimizing the merging sequences of the vehicles. Different merging sequences lead to
different vehicle trajectories so that the fuel consumption of the vehicles also differs [13].
To the best of our knowledge, there is no study of an optimal model considering merging
sequences and vehicle trajectories simultaneously in the literature.

In the study, we propose a graph-based optimal global method for on-ramp merging
of CAVs. In this framework, vehicles in the traffic control area send their own information
to the central controller through V2I technology. The central controller clusters the vehicles
into groups according to the initial state of the vehicles and establishes a graph model that
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represents all possible merging sequences for each group of vehicles. The weight of the
path is calculated by the predicted minimum cost of the vehicle trajectory. The improved
shortest path planning algorithm is adopted to find the path representing the optimal
merging sequence. For vehicle motion planning, the vehicle trajectories are guaranteed to
meet the minimum cost that acts as a weight in the graph model. The central controller
finally coordinates vehicles to merge at the highway ramp by sending the optimized control
information to vehicles.

The purpose of this study is to improve traffic efficiency and minimize fuel consump-
tion of all CAVs without vehicle collision. Our main contributions in this paper are as
follows: (1) to establish a graph-based optimal on-ramp merging sequence model using
predicted vehicle fuel consumption as the weight; (2) to solve the problem in real-time
and present an improved shortest path algorithm with the quadratic polynomial compu-
tational complexity of O(N2) complexity, where N denotes the number of vehicles; (3) to
conduct vehicle motion planning so that a group of vehicles passing through the merging
point at the highway on-ramp is made to form into a platoon with a constant distance
between vehicles.

2. Related Work

Research efforts have focused on optimizing merging sequences and planning vehicle
trajectories for coordinating CAVs in merging highways [14]. The approaches of determin-
ing the merging sequence can be classified into two categories: optimal and sub-optimal.
For vehicle trajectory planning, the methods in recent research mainly include two types:
discrete control solution and closed-form analytical solution.

For merging sequence scheduling, several optimization methods are used to solve
the merge sequence to maximize traffic efficiency. Pei et al. [15] resolved the problem of
on-ramp merging by using a dynamic programming model to get the optimal merging
sequence, which reduces the computation complex by defining the state space, state
transition and the criterion function. Haigen Min et al. [16] developed a centralized
merging control algorithm based on gaming theory aiming to prioritize the merging of cars.
The benefit is formulating the priority problem as a double-objective optimization problem
to get the best weight of every gaming rule. The proposed method improved fuel economy
and saved travel time. Fei Ye et al. [17] proposed a bi-level optimal edge computing
model to optimize the merging time and vehicle trajectory for on-merge merging, which
aimed to get the minimum vehicle arrival time and energy consumption. The simulation
results showed that the proposed model achieves great benefits in vehicle mobility, energy-
saving and air pollutant emission reduction. Yuanchang Xie [18] modeled the merging
control strategy as a constrained non-linear optimization problem and solved it using the
MATLAB optimization toolbox. The study results indicated that the proposed optimal
control strategy could effectively improve the average speed and throughput.

Sub-optimization methods are proposed to obtain the merging sequence, which re-
duces the computational complexity to achieve real-time performance in practical appli-
cations. Jackeline Rios-Torres et al. [19] addressed the merging sequence problem by a
FIFO-like rule, defining a hierarchical vehicle sequence based on which vehicle is closer
to the merging zone. Although this simple method is easy to implement, it sacrifices
the optimization of the merge sequence. Jishiyu Ding et al. [20] proposed a rule-based
cooperative merging strategy to coordinate vehicles going through the merging zone safely,
which tries to allow several vehicles from one direction to pass first if possible and then a
group of vehicles from the other direction to pass afterward to avoid the alternating merge.
The proposed method struck a good balance between traffic efficiency and computational
cost. Wenjing Cao et al. [21] presented a cooperative merging path generation method for
vehicles to merge using a Model Predictive Control (MPC) scheme, which controls the
slight acceleration or deceleration of vehicles on the main road to let the merging vehicle
merge in easily. The results proved that, as long as the initial conditions are reasonable, the
proposed method can generate a cooperative merging path. Riccardo Scarinci et al. [22]
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addressed a novel merging assistant strategy that exploits cooperative systems to reduce
congestion at the highway ramp by grouping vehicles together on the main road and
adjusting inter-vehicle spaces into gaps that are usable by merging traffic.

For motion planning, in the discrete control solution, Yuanchang Xie et al. [18] pro-
posed a motion planning method that provides individual vehicles with step-by-step
control instructions in the ramp merging area. The study results showed that the proposed
strategy can effectively coordinate the merging vehicles at freeway on-ramps. In the closed-
form analytical solution, Ye et al. [17] obtained the trajectory of each vehicle by selecting the
‘cruise,’ ‘acceleration and cruise’ or ‘deceleration and cruise’ pattern to follow the assigned
time to pass the merging zone. The simple method fails to optimize fuel consumption.
Rios-Torres and Malikopoulos [23] applied Hamiltonian analysis to derive an analytical
closed-form solution that can reduce fuel consumption.

The structure of the paper is as follows. In Section 3, the problem of on-ramp merging
for vehicles is formulated; Section 4 proposes a graph-based optimal CAVs merging model
and an improved shortest path algorithm to solve it; the simulation results are presented in
Section 5; conclusions are outlined in Section 6.

3. Problem Formulation
3.1. General System Description

In a multi-lane scenario, vehicles should not be allowed to change lanes near the
ramp for safety. We only focus on the merging of the vehicles on the outermost lane of the
road. Therefore, a typical ramp merging scenario includes a single-lane main road and
a ramp road, and vehicles on the ramp road merge into the main road after passing the
merging point. In the traditional situation without coordination, the vehicles on the ramp
and the vehicles on the main road compete to pass through the merging point, leading
to traffic jams and even vehicle collisions, which results in low traffic efficiency, high
fuel consumption and unsafe conditions [24]. In the scenario we considered, the central
controller near the merging point coordinates the CAVs on the main road and ramp road to
merge smoothly at the highway ramp. Specifically, within the communication range of V2I,
we divided the whole area into two zones: the detecting zone and control zone. The main
optimization process occurs in the detecting zone. Obtaining the optimal merging sequence
in the detecting zone, the vehicles will follow the trajectory of the lowest fuel consumption
until reaching the merging point in the control zone. The architecture of the optimization
method proposed in this study is shown in Figure 1, with the following assumptions:
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Figure 1. Framework for merging sequence decisions and control systems. 
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1. All vehicles are CAVs that can communicate with the central controller through V2I;
2. Overtaking on a single-lane road is not allowed;
3. Vehicles on the ramp are forced to merge into the main road at the merging point.

To simplify the control of the vehicle [25], each vehicle can be modeled as a point mass
moving along a specified road with the equation described as:[ .

p
.
v

]
=

[
0 1
0 0

][
p
v

]
+

[
0
1

]
a, (1)

where p, v and a denote position, speed and acceleration/deceleration of each vehicle,
respectively.

3.2. Optimization Problem Formulation

In this section, we formulate a multi-objective cost function that represents travel
efficiency and fuel consumption to model the optimal coordination for merging. The
multi-objective cost function of vehicle i can be expressed as:

Fi = w1Ti + w2

∫ tassgin
i

t0
i

a2
i (t), (2)

where vehicle i represents the ith vehicle passing through the merge point, w1 and w2 are
weight coefficients, the time Ti represents the delay of vehicle i compared to its minimum
time to reach the merge point and t0

i and tassgin
i denote the start time at which vehicle i is

optimized and the optimized time which vehicle i arrives at the merging point, respectively.
Considering the acceleration and deceleration capacity of the vehicles and the speed

limit of the road, we defined the following constraints as:

vmin ≤ vi(t) ≤ vmax,
amin ≤ ai(t) ≤ amax,

(3)

where amin and amax are the minimum deceleration and maximum acceleration, respec-
tively, and vmin and vmax are the road limit speeds without distinguishing between main
road and ramp road.

4. The Graph-Based Optimal Global Method
4.1. Graph-Based Optimal Global Modeling

In actual scenarios, vehicles on the main and ramp road enter continuously and in real-
time. The vehicles travel at a constant speed before they are optimized. It is challenging
to optimize all the vehicles’ trajectories from the global perspective, so we decided to
optimize the entering vehicles round-by-round in the detecting area. In detail, the traffic
controller starts to optimize all vehicles in the detecting area when the first entering vehicle
(which may be on the main or the ramp road) is about to leave the detecting area. After the
optimization, the traffic controller starts to process the next round of incoming vehicles
when the first vehicle of the next round of vehicles is about to leave the detecting area.

We divided the vehicles of the detecting zone into several groups before optimizing
the merging sequence. A criterion for dividing vehicle groups is proposed to ensure that
the leader of each group is not affected by the chaser of the preceding group. Let (pi, vi) be
the initial state of vehicle i, where pi and vi are distance to the merge point and speed of
vehicle i, respectively. The time Thd is the safe gap. The constant Kr is a safety coefficient
related to the road. Vehicle i acts as the leader of a new vehicle group when its initial state
satisfies the equation described as:

vmax − vi
amax

+
pi −

v2
max−v2

i
2amax

vmax
≥ Kr(

vmin − vi−1

amin
+

pi−1 −
v2

min−v2
i−1

2amin

vmin
) + Thd (4)
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Otherwise, vehicle i follows vehicle i − 1 to pass through the merging point. The
leader and its followers form a new group. As shown in Figure 2, vehicles 1–9 are divided
into two groups, vehicles 1–4 and vehicles 5–9. Vehicle 5 is the leader of the second vehicle
group because vehicle 5 fails to follow vehicle 4 with the limitation of vehicle capacity.
Each group of vehicles forms a platoon with a constant distance after passing through the
merge point. In a group of vehicles, the time where the vehicle i arrives at the merging
point can be described as:

tassgin
i = tassgin

i−1 + Thd (5)

Machines 2021, 9, x FOR PEER REVIEW 5 of 14 
 

 

4. The Graph-Based Optimal Global Method 
4.1. Graph-Based Optimal Global Modeling 

In actual scenarios, vehicles on the main and ramp road enter continuously and in 
real-time. The vehicles travel at a constant speed before they are optimized. It is challeng-
ing to optimize all the vehicles’ trajectories from the global perspective, so we decided to 
optimize the entering vehicles round-by-round in the detecting area. In detail, the traffic 
controller starts to optimize all vehicles in the detecting area when the first entering vehi-
cle (which may be on the main or the ramp road) is about to leave the detecting area. After 
the optimization, the traffic controller starts to process the next round of incoming vehi-
cles when the first vehicle of the next round of vehicles is about to leave the detecting area. 

We divided the vehicles of the detecting zone into several groups before optimizing 
the merging sequence. A criterion for dividing vehicle groups is proposed to ensure that 
the leader of each group is not affected by the chaser of the preceding group. Let (p , v ) 
be the initial state of vehicle 𝑖, where 𝑝  and 𝑣  are distance to the merge point and speed 
of vehicle 𝑖, respectively. The time 𝑇  is the safe gap. The constant 𝐾  is a safety coeffi-
cient related to the road. Vehicle 𝑖 acts as the leader of a new vehicle group when its initial 
state satisfies the equation described as: 

2 2 2 2
max min 1

1
max max min 1 min

max max min min

2 2( )

i i
i i

i i
r hd

v v v vp p
v v a v v aK T

a v a v

−
−

−

− −− −
− −+ ≥ + +

 
(4)

Otherwise, vehicle 𝑖 follows vehicle 𝑖 − 1 to pass through the merging point. The 
leader and its followers form a new group. As shown in Figure 2, vehicles 1–9 are divided 
into two groups, vehicles 1–4 and vehicles 5–9. Vehicle 5 is the leader of the second vehicle 
group because vehicle 5 fails to follow vehicle 4 with the limitation of vehicle capacity. 
Each group of vehicles forms a platoon with a constant distance after passing through the 
merge point. In a group of vehicles, the time where the vehicle 𝑖 arrives at the merging 
point can be described as: 

1
assgin assgin
i i hdt t T−= +  (5)

Vehicle 𝑖 = 1, the leader of each vehicle group, is not restricted by the safe gap and 𝑡  can be obtained by optimizing the cost Equation (2). We get the time series of each 
vehicle arrival to the merging point according to Equation (5) as long as the merging se-
quence is fixed. 

Detecting zone

13

2
4

ThdThd

5

6

7

89

 
Figure 2. Vehicles clustered in the detecting zone. 

To obtain the optimal merging sequence for one group of clustered vehicles, we mod-
eled the ramp merging as a directed graph shortest path problem to minimize the total 
fuel consumption while improving traffic efficiency. We construct a directed graph 𝐺 =

Figure 2. Vehicles clustered in the detecting zone.

Vehicle i = 1, the leader of each vehicle group, is not restricted by the safe gap and
tassgin
1 can be obtained by optimizing the cost Equation (2). We get the time series of each

vehicle arrival to the merging point according to Equation (5) as long as the merging
sequence is fixed.

To obtain the optimal merging sequence for one group of clustered vehicles, we
modeled the ramp merging as a directed graph shortest path problem to minimize the
total fuel consumption while improving traffic efficiency. We construct a directed graph
G = (V, E) as shown in Figure 3, where V and E ⊆ V × V denote vertex and edge set,
respectively. As a node of the graph, Vj,k means that j vehicles on the main road and k
vehicles on the ramp road have the right to go through the merging point. Since overtaking
is not allowed on a single-lane road, vehicles on each road obtain the right in an order
closer to the merging point.

The set of directed edge E contains two subsets, the set of (Vj,k → Vj+1,k ) and (Vj,k →
Vj,k+1). The directed edge (Vj,k → Vj+1,k ), from node Vj,k to node Vj+1,k, denotes a vehicle
of the main road assigned the right to pass through the merge point at this step. Similarly,
(Vj,k → Vj,k+1 ) represents that a vehicle of the ramp road obtains the right. We assume that
the m vehicles of the main road and the n vehicles of the ramp road are clustered into the
vehicle group. The possible merging sequences of vehicles correspond to the paths from
V0,0 to Vm,n one-to-one. For example, the path of V0,0 → V1,0 → V2,0 → V2,1 → V2,2 , m = 2
and n = 2, indicates that the two vehicles of the main road pass the merge point first, and
then the two vehicles of the ramp pass. Next, we find the shortest path from V0,0 to Vm,n
in the graph G = (V, E) to solve the optimal merging sequence of vehicles. The weight
of the edge represents the predicted fuel consumption of the vehicle. The shortest path
from V0,0 to Vm,n represents the merging sequence with the smallest total fuel consumption.
Therefore, the improved shortest path algorithm ensures that the final merging sequence
is optimal.
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4.2. The Predicted Fuel Consumption of the Vehicles

In this section, we get an analytical solution for predicting the fuel consumption of
the vehicle, reducing computational complexity. For vehicles i, the cost function of fuel
consumption can be written as:

minai

1
2

∫ tassgin
i

t0
i

a2
i (t)dt (6)

Following Ding et al.’s solution [9] to the problem, the Pontryagins Maximum Prin-
ciple is adopted to obtain the analytical solution of each vehicle trajectory. We write the
Hamiltonian function for each vehicle i as:

Hi =
1
2

a2
i + λi

1 × vi + λi
2 × ai (7)

where λi
1 and λi

2 denotes the co-state variables of vehicle i. From Equation (7) and the
Pontryagins Maximum Principle, we can get the necessary conditions of optimality as
follows:

.
λ

i
1 = −∂Hi

∂xi
= 0 (8)

.
λ

i
2 = −∂Hi

∂vi
= −λi

1 (9)

∂Hi
∂ai

= ai + λi
2 = 0 (10)

From (9) and (10) we have:
λi

1(t) = bi (11)

λi
2(t) = −bit− ci (12)

From (11) and (12) we obtain that:

ai(t) = bit + ci (13)

vi(t) =
1
2

bit2 + cit + di (14)
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pi(t) =
1
6

bit3 +
1
2

cit2 + dit + ei (15)

where bi, ci, di and ei are constants. The initial state and final state of vehicle i are used as
boundary conditions to compute the four constants: pi(0) = pi, vi(0) = vi, pi

(
tassgin
i

)
= 0

and vi

(
tassgin
i

)
= vmerge, where the velocity vmerge represents the speed at which vehicles

reach the merge point. The constants bi and ci, corresponding to acceleration ai(t), are
calculated as:

bi =
6

(tassgin
i )

2 (vmerge + vi) +
12pi

(tassgin
i )

3 (16)

ci = −
6

(tassgin
i )

2 −
2ve + 4vi

tassgin
i

(17)

For simplicity, the start time of optimization is set to 0. From (7), (13), (16) and (17),
we obtain an analytical solution for predicting the fuel consumption of the vehicle i as:

wi =
∫ tassgin

i

0
a2

i (t)dt =
∫ tassgin

i

0
(bit + ci)

2dt =
4(v2

i + vvmerge + v2
merge)

tassgin
i

−
12p2

i − 12tassgin
i pi(vi + vmerge)(
tassgin
i

)3 (18)

Fuel consumption is infinite when tassgin
i does not meet the limitation of vehicle

capacity. In Section 4.1, the weight of the edge represents the predicted fuel consumption
of the vehicle. Therefore, the weights of the graph can be obtained from the following
equation directly, as:

wi =


4(v2

i +vvmerge+v2
merge)

tassgin
i

− 12p2
i −12tassgin

i pi(vi+vmerge)(
tassgin
i

)3 , if tmin
i ≤ tassgin

i ≤ tmax
i

∞ , else
(19)

where tmin
i and tmax

i are the minimum and maximum time to reach the merge point within
the capacity of vehicle i.

4.3. Improved Shortest Path Algorithm to Find Optimal Merging Sequence

In this section, we improve the shortest path algorithm to solve the optimal merging
sequence in the characteristic graph constructed by this study. The specific steps of the
improved the shortest path algorithm are as follows:

1. Determine the time tassgin
1 for the first vehicle to pass through the merge point, based

on which leading vehicles on the main road and the ramp are closer to the merging
point. Then, generate the time series by Equation (5) for the group of vehicles passing
the merge point;

2. Calculate the weight by Equation (19) to construct the graph. The w(j, k, 1) and
w(j, k, 2) store the weights of (Vj−1,k → Vj,k ) and (Vj,k−1 → Vj,k ), respectively. When
j = 0 or k = 0, the weight is infinite;

3. Calculate matrix D and R. The D(j, k) denotes the length of the shortest path from
V0,0 to Vj,k. Therefore, D(j, k) = min{D(j− 1, k) + w(j, k, 1), D(j, k− 1) + w(j, k, 2)}.
The matrix R records the shortest path. The R is initialized to the zero matrix. When
D(j− 1, k) + w(j, k, 1) > D(j, k− 1) + w(j, k, 2), the R(j, k) is assigned the value 1;

4. The optimized merge sequence is obtained from the matrix R. Then each vehicle on
the main road and the ramp road gets the time to pass the merge point according to
the time series in step 1;

5. Calculate the trajectory of each vehicle to meet the minimum fuel consumption
condition. Therefore, Equation (13) is the analytical solution of the vehicle trajectory.
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The graph is two-dimensional in this study. The matrix D and R are calculated to find
the shortest path from V0,0 to Vm,n in the graph. The number of each dimension for the
matrix is proportional to the number of vehicles on the main and ramp road. Therefore,
the improved shortest path algorithm solved the optimal merging sequence with O(N2)
computational complexity.

The flow chart of the algorithm is shown in Figure 4.
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5. Simulation Results

All experiments were performed in Matlab 2020a on a computer with Intel i5-9400F CPU
with 2.90 GHz and 8 GB RAM. The key simulation parameters are shown in Table 1. The
safety coefficient Kr is related to road conditions. We chose a value that performed well in
the simulation as Kr in the study. Note that all parameters can be changed according to the
actual road conditions.

Table 1. Simulation parameters.

Variable Value

L, S 400 m, 200 m
amin, amax −3 m/s2, 3 m/s2

vmin, vmax 10 m/s, 30 m/s
Thd 1.5 s

vmerge 20 m/s
Kr 0.4

5.1. Cast Study 1: A Group of Vehicles Passes through the Merging Point

The main purpose of this simulation was to verify the effectiveness of the shortest path
planning algorithm for finding the optimal merging sequence. The vehicles are adjusted to
the specified speed before entering the detection zone. In the case study, the vehicles on the
main road traveled at a speed of 20 m/s, and the vehicles on the ramp traveled at a speed
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of 15 m/s. Following Poisson distribution, vehicles were randomly generated to enter the
detecting area. When the detecting area was full of vehicles, the improved shortest path
algorithm was executed to solve the optimal merging sequence for the group of vehicles.
The position parameters of the vehicle are shown in Table 2. The position parameter is the
opposite of the distance from the vehicle to the merging point when the optimization starts.

Table 2. The parameters of the vehicles for case study 1.

ID(Main Road) Position (m) ID (Ramp Road) Position (m)

A −264 H −249.5
B −330 I −290
C −378 J −327.5
D −420 K −360
E −464 L −395
F −532 M −447.5
G −600 N −501.5

In case study 1, the vehicles in the detecting area were clustered into a group of
vehicles passing through the merging point. The leading vehicle H on the ramp was
closer to the merging point than the leading vehicle A on the main road, so vehicle H
acted as the first vehicle in the group of vehicles to pass through the merging point.
For the other vehicles, including the vehicles A to E and I to N, the possible merging
sequences were (7+6)!

7!6! = 1716. The improved shortest path algorithm solved the optimal
merging sequence with O(N2) computational complexity, which minimizes the total fuel
consumption of the vehicles. In the case study, the final optimal merging sequence was
H−A− I− J−K− L− B−M−C−N−D− E− F−G.

The trajectories of the vehicles met the minimum fuel consumption, and the analytical
solution was Equation (15). The trajectories of all vehicles are shown in Figure 5. In Figure 5,
the red curves are the trajectories of the vehicles on the main road and the blue curves are
the trajectories of the vehicles on the ramp. The curves of the same color are not staggered,
indicating that the vehicle did not collide. The vehicles formed a vehicle platoon with the
constant distance of 1.5× 20 = 30 m and the speed of 20 m/s after passing the merging
point. The speed and acceleration of the vehicles are shown in Figure 6a,b, respectively.
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Figure 6. Speed and acceleration of the vehicles for case study 1: (a) speed of the vehicles and (b) acceleration of the vehicles.

Then, we verified the effect of this method in reducing accumulative fuel consumption.
The optimal method was compared with the FIFO-based method. The result is shown
in Figure 7. The optimal method decreased accumulative fuel consumption by 45.57%
based on the FIFO-based method. It can be seen that the accumulated fuel consumption
increases with time quickly at the beginning. The main factor was the large acceleration of
the leading vehicle. The leading vehicle in this group of vehicles arrived at the merging
point as quickly as possible, which shortened the time for this group of vehicles merging at
the highway on-ramp.
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Figure 7. Cumulative fuel consumption of vehicles for case study 1.

5.2. Case Study 2: Multiple Groups of Vehicles Pass through the Merging Point

When the vehicles in the detecting area were sparse, the vehicles were divided into
multiple groups of vehicles to pass through the merging point. To generate discontinuous
traffic flow, we randomly generated vehicles entering the detecting area with the random
generator pausing for a period of time. When the vehicles filled up the detecting area, the
vehicle grouping strategy was carried out, and then the improved shortest path algorithm
was performed to solve the optimal merging sequence for each group of vehicles. In case
study 2, the position parameters of the vehicles are shown in Table 3.
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Table 3. The parameters of the vehicles for case study 2.

ID (Main Road) O P Q R

position (m) −248 −314 −512 −560
ID (ramp road) U V W X

position (m) −242 −410 −477.5 −546.5

In case study 2, the vehicles in the detecting area were divided into two groups,
vehicles (O, P, U) and (Q, R, V, W, X), to pass through the merging point. With the
constraints of vehicle capacity, vehicle V cannot follow vehicle P through the merge
point, that is, the speed and position of vehicle V and its preceding vehicle P satisfied
Equation (15). Vehicle V acted as the leading vehicle of the next group passing through the
merging point. Then, the improved shortest path algorithm solved the optimal merging
sequence for each group of vehicles, and the results were U −O− P and V −W − X −
Q− R.

The trajectories of the vehicles in two groups are shown in Figure 8. In Figure 8, the
vehicles in the detecting area formed two platoons after passing through the merging point.
The speed and acceleration of the vehicles were shown in Figure 9a,b, respectively.
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In the case study, eight vehicles in the detecting area were coordinated to merge at the
highway. The optimized method reduced cumulative fuel consumption by 20.71% compared
to the FIFO-based method, as shown in Figure 10. The effect in reducing fuel consumption
of the proposed method improved as the number of coordinated vehicles increased.
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