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Abstract: This study investigates the statistic behavior and parameter estimation problems of a
double-sided, LCC-compensated, wireless power transfer system. Based on the commonly used
wireless charging circuit model, this study proposes a five-step parameter estimation method, which
is applicable to automotive static wireless charging systems. The eight parameters in the circuit model
of this study are the most important key components of the wireless charging system. The study also
found that, under certain conditions, the statistic mode of wireless charging systems has a specific
distribution. However, the current status of these eight components for wireless charging of electric
vehicles will have complex parameter drift problems. These drift problems will deteriorate the
performance of the vehicle power systems. This study probes these factors and proposes some related
mathematical theories. The noted factors can be applied to the analysis of the wireless charging
system and provide alternative solutions to explain the deteriorations from coil misalignments. Both
simulations and experiments are given to show the evaluated issues of the proposed study.

Keywords: wireless power transfer; Levy process; proposal density function; coil misalignment

1. Introduction

A wireless power transfer (WPT) system is a resonant circuit consisting of transmitting
and receiving coils and a compensation circuit. The compensation circuit determines
the system performance, so its topology and parameter design have become the most
important part of WPT systems. Regarding the wireless power transfer, many approaches
are referenced and studied, such as magnetic flux induction, two-coil loosely coupled
transformer, microwaves, and lasers [1,2]. Herein, the two-coil loosely coupled transformer,
which can transfer power wirelessly with high efficiency across large air gaps, is of note.
Four basic topologies are often referenced. Depending on how the compensation capacitors
are added to the transmitting and receiving coils, they are simply named as series–series
(SS), series–parallel (SP), parallel–series (PS), and parallel–parallel (PP) topologies [3,4].
Compared with the conventional topologies, the double-sided LCC compensation network
is shown in Figure 1. It works as a current source to both the input and output [5–9],
which is suitable for light and heavy load conditions. Even when no load is placed in
the load side, this topology can maintain suitable power distributions. This feature is
very suitable for dynamic WPT because misalignment will commonly appear during the
dynamic charging. The compensation capacitor is determined by the self-inductance, so coil
misalignment does not significantly affect the resonance. Moreover, the circuit can realize
unity power factor at the input, so there is no reactive power in the system. Furthermore,
the circuit can be designed to provide zero-voltage-switching (ZVS) for the input inverter
and eliminate the reverse recovery loss in the rectifier, so the system efficiency can reach
96%. Also, two of the inductors can be designed as planar inductors, integrated with
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the main coils to save space [10,11]. As illustrated in Figure 1a, this topology consists of
one inductor and two capacitors at both the primary and secondary sides. Note that in
Figure 1a, the double-sided LCC compensation topology was applied in the WPT unit of
this paper. Its applications are highly suitable for both dynamic and static WPT of electric
vehicles [12,13]. Additionally, due to the coils, the system can be placed under the chassis.
Such structure of WPT is also easy to integrate into autonomous vehicles [14,15]. Eight
parameters in the LCC circuit model are applied in the wireless charging system. These
factors affect the system performance such as power, efficiency, and safety [16]. Basically,
temperature, DC bias, and stochastic process may affect the parameter drift significantly.
In practice, these drift affections will deteriorate the output performance of the vehicle
systems. Clearly, parameter drift problems in static WPT and misalignment issues in
dynamic WPT reveal similar effects to unsteady output, which are both important issues
that could be investigated.
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Figure 1. Double-sided LCC compensation topology. (a) Double-sided LCC resonant circuit.
(b) Equivalent circuit.

From Figure 1a, the equivalent circuit can be obtained, as Figure 1b. The circuit in
Figure 1b can be described by the following equations:


V1
0
0
0

 =


a −1

jωC f 1
0 0

−1
jωC f 1

b jωLM 0

0 jωLM c −1
jωC f 2

0 0 −1
jωC f 2

d




I1
IL1
IL2
I2

 (1)

where
a = jωL f 1 +

1
jωC f 1

b = 1
jωC1

+ 1
jωC f 1

+ jωL1

c = 1
jωC2

+ 1
jωC f 2

+ jωL2

d = jωL f 2 +
1

jωC f 2
+ RL.

(2)
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Note that LM = k
√

L1L2 stands for the mutual inductance and k is the coupling
coefficient. The resonance can be obtained in many ways. The useful conditions are
obtained when all the diagonal elements are real and no imaginary part is present. Thus,
the following resonant conditions can be derived:

ω2L f 1C f 1 = ω2L f 2C f 2 = 1

ω2
(

L1 − L f 1

)
C1 = ω2

(
L2 − L f 2

)
C2 = 1

(3)

Clearly, the resonant frequency ω should be controlled under the condition of

ω = 1√
L f 1C f 1

= 1√
L f 2C f 2

= 1√
(L1−L f 1)C1

= 1√
(L2−L f 2)C2

.
(4)

Accordingly, in order to obtain all the diagonal elements being real, with no imaginary
parts, the following assumption is imposed in the sequel:

Hypothesis 1. Assume that L f 1C f 1 = L f 2C f 2 =
(

L1 − L f 1

)
C1 =

(
L2 − L f 2

)
C2 < 0.

2. Problem Formulations

In this study, we consider a stochastic model
(
V1(t), IL1(t), IL2(t), I2(t)

)
of the wireless

power transfer as follows:
dI1(t) = σdB(t)− ρI1(t)dt, (5)

V1(t)
0
0
0

 =


a e 0 0
e b f 0
0 f c g
0 0 g d




I1(t)
IL1(t)
IL2(t)
I2(t)

, (6)

where {B(t)}t≥0 is a one dimensional Brownian motion, and σ > 0, ρ > 0, e = −1
jωC f 1

,

f = jωLM, g = −1
jωC f 2

. σ, ρ, LM, and RL are given parameters; and

ω =
j√

−L f 1C f 1

=
j√

−
(

L1 − L f 1

)
C1

,

L1, L2, L f 1, L f 2, C1, C2, C f 1, and C f 2 are parameters that need to be estimated. For sim-

plicity, we denote that θ = (θ1, θ2, · · · , θ8) =
(

L1, L2, L f 1, L f 2, C1, C2, C f 1, C f 2

)
hereafter.

From Formula (6), we have

V1 = aI1 + eIL1 ,

0 = eI1 + bIL1 + f IL2 ,

0 = f IL1 + cIL2 + gI2,

0 = gIL2 + dI2.

This gives

I2 =
e f g

bg2 − bcd + d f 2 I1, IL2 = − d
g

I2 = − de f g
bg3 − bcdg + d f 2g

I1,

IL1 =

(
cd
f g
− g

f

)
I2 =

cde f g− e f g3

b f g3 − bcd f g + d f 3g
I1,
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V1 = aI1 + eIL1 =
(

a + cde2 f g−e2 f g3

b f g3−bcd f g+d f 3g

)
I1

= ab f g3−abcd f g+ad f 3g+cde2 f g−e2 f g3

b f g3−bcd f g+d f 3g I1.

For simplicity, denote

α1 =
ab f g3 − abcd f g + ad f 3g + cde2 f g− e2 f g3

b f g3 − bcd f g + d f 3g

α2 =
cde f g− e f g3

b f g3 − bcd f g + d f 3g
, α3 = − de f g

bg3 − bcdg + d f 2g
, α4 =

e f g
bg2 − bcd + d f 2 .

We obtain V1(t) = α1 I1(t), IL1(t) = α2 I1(t), IL2(t) = α3 I1(t), I2(t) = α4 I1(t).

3. Steady Behavior of Primary Current I1(t)

In order to clarify the asymptotic behavior of {I1(t)}t≥0, we propose the following
definition at first:

Definition 1. {I1(t)}t≥0 is said to have the invariant measure µ(·) if, and only if, there exists the
probability measure µ(·), such that∫ ∞

−∞
P(I1(t) ∈ A|I1(0) = x)µ(x)dx = µ(A) (7)

for any Borel set A and each fixed t > 0. From Formula (5), we obtain

I1(t) = e−ρt I1(0) + σ
∫ t

0
e−ρ(t−s)dB(s).

As a matter of fact, it is well known that {I1(t)}t≥0 is the Ornstein–Uhlenbeck process.
Thus, we point out that Bhattacharya and Waymire’s study [17] is a readable literature
devoted to the proof.

Result 3.1. {I1(t)}t≥0 has the following probability density function:

P(I1(t) = y|I1(0) = x) =
1√
2π

{
σ2

2ρ

(
1− e−2ρt

)}−0.5

exp

{
−

ρ
(
y− xe−ρt)2

σ2
(
1− e−2ρt

) }.

Result 3.2. {I1(t)}t≥0 has the following invariant measure:

µ(x)dx =

√
2ρ

√
2πσ2

exp
{
−ρx2

σ2

}
dx

Proof. By Result 3.1, if we take lim
t→∞

on both sides of Formula (7), we obtain the following:

∫ ∞

−∞

∫
A

√
2ρ

√
2πσ2

exp
{
−ρy2

σ2

}
dyµ(x)dx =

∫
A

√
2ρ

√
2πσ2

exp
{
−ρy2

σ2

}
dy.

This yields that

µ(x)dx =

√
2ρ

√
2πσ2

exp
{
−ρx2

σ2

}
dx

is the invariant measure of {I1(t)}t≥0. This completes the proof. �
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Accordingly, the random variable I1(∞) has the probability density function√
2ρ√

2πσ2 exp
{
− ρy2

σ2

}
.

4. Synthesis Process
4.1. Probability Density Function

Let
Pθ(x1) = Pθ(V1(∞) = x1), Pθ(x2) = Pθ

(
IL1(∞) = x2

)
,

Pθ(x3) = Pθ

(
IL2(∞) = x3

)
, Pθ(x4) = Pθ(I2(∞) = x4).

Clearly, for any x1, x2, x3, x4 ∈ R, we have

Pθ(x1) = Pθ(α1 I1(∞) = x1) = P
(

I1(∞) = x1
α1

)
,

Pθ(x2) = Pθ(α2 I1(∞) = x2) = P
(

I1(∞) = x2
α2

)
,

Pθ(x3) = Pθ(α3 I1(∞) = x3) = P
(

I1(∞) = x3
α3

)
,

Pθ(x4) = Pθ(α4 I1(∞) = x4) = P
(

I1(∞) = x4
α4

)
.

Since α1 and αi, i = 2, 3, 4 are dependent on (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) and

(θ1, θ2, θ4, θ5, θ6, θ7, θ8), respectively, thevalues P
(

I1(∞) = x1
α1

)
and P

(
I1(∞) = xi

αi

)
, i = 2, 3, 4

are also dependent on (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8) and (θ1, θ2, θ4, θ5, θ6, θ7, θ8), respectively.

Result 4.1. Under Hypothesis 1, for any x1, x2, x3, x4 ∈ R, we obtain the following:

Pθ(x1) = P
(

I1(∞) = x1
α1

)
, Pθ(x2) = P

(
I1(∞) = x2

α2

)
,

Pθ(x3) = P
(

I1(∞) = x3
α3

)
, Pθ(x4) = P

(
I1(∞) = x4

α4

)
.

Proof. It is trivial from the statement of this section above. This completes the proof. �

4.2. Homogeneous Markov Chain

In this section, we assume ρ = 0.5, σ = 1, and RL = 0. Therefore, by Result 3.1, we
have the following:

P(I1(∞) = x) =
1√
2π

exp
{
− x2

2

}
.

Let θi ∈ (ci, di) for i = 1, 2, · · · , 8, and

h(θ|x1) =
P
(

I1(∞) = x1
α1

)
∫

V P
(

I1(∞) = x1
α1

)
dθ1dθ2 · · · dθ8

=

exp
(
− x2

1
2α2

1

)
∫

V exp
(
− x2

1
2α2

1

)
dθ1dθ2 · · · dθ8

,

where V = (c1, d1)× (c2, d2)× · · · × (c8, d8).
Take a proposal density function q : V ×V → R+ by

q
(
θ′, θ

)
=

1
8

∏
i=1

(di − ci)

,

for each θ′, θ ∈ V and define

p
(
θ′, θ

)
= min

{
1,

h(θ|x)q(θ′, θ)

h(θ′|x)q(θ, θ′)

}
.
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In terms of Result 3.2, we have

p
(
θ′, θ

)
= min

{
1, exp

(
−1

2

(
x1

α1

)2
+

1
2

(
x1

α′1

)2
)}

,

where α′1 is determined by θ′. Now, define the time homogeneous Markov chains {Θn}∞
n=0

on V by the following transition probability: for any Borel, set A, A ⊂ V,

P
(
Θ1 ∈ A

∣∣Θ0 = θ′
)
=
∫

A
p
(
θ′, θ

)
q
(
θ′, θ

)
dθ + δθ′(A)

(
1−

∫
V

p
(
θ′, θ

)
q
(
θ′, θ

)
dθ

)
,

where the dirac measure δθ′ is defined by

δθ′ =

{
1, if θ′ ∈ A,
0, if θ′ /∈ A.

Result 4.2. Under Hypothesis 1 and ρ = 0.5, σ = 1, RL = 0, {Θn}∞
n=0 has the invariant measure

µ(·) with density function

µ(θ) =

exp
(
− x2

1
2α2

1

)
∫

V exp
(
− x2

1
2α2

1

)
dθ1dθ2 · · · dθ8

.

Proof. By the definition of p(θ′, θ), for θ′, θ ∈ V satisfying

exp

(
−1

2

(
x1

α1

)2
+

1
2

(
x1

α′1

)2
)
≤ 1,

we see

p
(
θ′, θ

)
= exp

(
−1

2

(
x1

α1

)2
+

1
2

(
x1

α′1

)2
)

,p
(
θ, θ′

)
= 1,

which implies

µ(θ′)p(θ′, θ)q(θ′, θ) =
exp

(
− x2

1
2α2

1

)
8
∏

i=1
(di−ci)

∫
V exp

(
−

x2
1

2α2
1

)
dθ1dθ2···dθ8

= µ(θ)p(θ, θ′)q(θ, θ′)

On the other hand, for θ′, θ ∈ V, satisfying

exp

(
−1

2

(
x1

α1

)2
+

1
2

(
x1

α′1

)2
)

> 1,

we see

p
(
θ′, θ

)
= 1, p

(
θ, θ′

)
= exp

(
−1

2

(
x1

α1

)2
+

1
2

(
x1

α′1

)2
)

,

which also implies

µ(θ′)p(θ′, θ)q(θ′, θ) =
exp

(
− x2

1
2α2

1

)
(d−c)8∫

V exp
(
−

x2
1

2α2
1

)
dθ1dθ2···dθ8

= µ(θ)p(θ, θ′)q(θ, θ′)
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Combining the above arguments, we obtain

µ
(
θ′
)

p
(
θ′, θ

)
q
(
θ′, θ

)
= µ(θ)p

(
θ, θ′

)
q
(
θ, θ′

)
, (8)

for any θ′, θ ∈ V. Now, from definition 1 and (8), for any Borel, set A, A ⊂ V, we integrate
the following with respect to θ′ ∈ V,

This establishes ∫
V

P(Θ1 ∈ A|Θ0 = x)µ(x)dx = µ(A)

Moreover, since

P(Θ2 ∈ A|Θ0 = x) =
∫

V
P(Θ1 ∈ A|Θ0 = y)P(Θ1 ∈ dy|Θ0 = x),

we have ∫
V

P(Θ2 ∈ A|Θ0 = x)µ(x)dx = µ(A).

By induction, we obtain∫
V

P(Θn ∈ A|Θ0 = x)µ(x)dx = µ(A),

for any Borel set A, A ⊂ V and each fixed positive number n. Hence, µ(·) is the invariant
measure of {Θn}∞

n=0. This completes the proof. �

4.3. Estimation Algorithm

For sake of estimating (θ1, θ2, · · · , θ8) ∈ V, we refer to the assumptions of Result 3.1
and [18] via Metropolis–Hastings algorithm as follows. Result 4.2 ensures the convergence
of the following estimation algorithm.

Step 1: Given any initial state
(

θ
(1)
1 , θ

(1)
2 , · · · , θ

(1)
8

)
on V.

Step 2: Generate a candidate state
(

θ
(2)
1 , θ

(2)
2 , · · · , θ

(2)
8

)
from a uniform distribution

on V and a acceptance value λ from a uniform distribution on [0, 1].
Step 3: Calculate

p
((

θ
(1)
1 , θ

(1)
2 , · · · , θ

(1)
8

)
,
(

θ
(2)
1 , θ

(2)
2 , · · · , θ

(2)
8

))
= min

{
1, exp

(
−1

2

(
x1

α1

)2
+

1
2

(
x1

α′1

)2
)}

,

where α1 is determined by
(

θ
(2)
1 , θ

(2)
2 , · · · , θ

(2)
8

)
and α′1 is determined by

(
θ
(1)
1 , θ

(1)
2 , · · · , θ

(1)
8

)
.

Step 4: If λ ≤ p(θ′, θ), then we accept
(

θ
(2)
1 , θ

(2)
2 , · · · , θ

(2)
8

)
, otherwise, take(

θ
(2)
1 , θ

(2)
2 , · · · , θ

(2)
8

)
=
(

θ
(1)
1 , θ

(1)
2 , · · · , θ

(1)
8

)
,

and go back to Step 2.
Step 5: Repeat the previous steps until we obtain a convergent chain.

5. Simulations and Experiments

Under Hypothesis 1 and ρ = 0.5, σ = 1, RL = 0, for the sake of simplifying a
simulation, we set x1 = 1, LM = 0.3

√
L1L2, and θ

(i)
1 = θ

(i)
2 , θ

(i)
3 = θ

(i)
4 , θ

(i)
5 = θ

(i)
6 ,

θ
(i)
7 = θ

(i)
8 , θ

(i)
1 = 6θ

(i)
3 , and 5θ

(i)
5 = θ

(i)
7 for each i to guarantee that Hypothesis 1 holds.

Additionally, we take c1 = c2 = 354, d1 = d2 = 432, c3 = c4 = 59, d3 = d4 = 72,
c5 = c6 = 10, d5 = d6 = 12, c7 = c8 = 60, d7 = d8 = 72, and an initial state(

θ
(1)
1 , θ

(1)
2 , · · · , θ

(1)
8

)
= (396, 396, 66, 66, 12, 12, 60, 60). Then, proceed the estimation algo-

rithm as mentioned in Section 4.3. For i from 1 to 10,000, the synthesized values were
revealed in Figure 2. In Figure 2, all tests are done by 10,000 iterations. As can be seen in
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this figure, the sample path is reasonably well converged, which satisfies the conditions
that an asymptotic stable circuit should have. Under the condition of Hypothesis 1, the
convergent value of capacitance reaches its steady state quickly. However, the inductance
has a slower convergent rate. The convergent speed of steady value is different between
inductor and capacitor because of the dynamical behavior of LCC topology. Note that only
static WPT fits this conclusion.
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(

L1, L2, L f 1, L f 2, C1, C2, C f 1, C f 2

)
.

Misalignment in static WPT can be applied to simulate the approaching or leaving sta-
tuses (or both) of dynamic WPT. In dynamic WPT, parameter drift affects the transmission
power and efficiency, respectively. Basically, the whole process of “approaching–central–
leaving” of the dynamic WPT can be treated as a series of parameter varying, which can
be modeled by stochastic process. Hence, using the stochastic model to probe the system
performance is an appropriate solution. Via simulation, engineers can use the stochastic
model to preview the system performance before the activation of dynamic WPT process.
For further demonstrating the LCC-compensated performance in dynamic charging, a
small scale of experiment was employed to show its feasibility. The verification exper-
iments are carried out on the test bench, as shown in Figure 3. Table 1 illustrates the
relevant specifications of test bench. Its rated DC voltage is 10V, which is a small scale
of WPT for demonstration. Figure 4 is the measurement data for coupling coefficient.
Figure 5 shows the resonant conditions. Clearly, the resonant frequency exactly falls on
85 kHz, which satisfies the requirement from WPT. To test the affections of misalignment,
as shown in Figure 6, a scenario of dynamic movement of receiving coils are scheduled.
The experimental result is revealed in Figure 7. Clearly, the received energy is sensitive to
the misalignment, which is relevant to the coupling coefficient, as shown in Figure 4.
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Table 1. Specifications of the test bench.

Specification Value

DC Source 10 V/1 A
Frequency ( f ) 85 kHz
Compensation Inductance

(
L f 1

)
24.24 uH

Compensation Capacitance
(

C f 1

)
144.5 nF

Detection Inductance (L1) 231.5 uH
Detection Capacitance (C1) 15.36 nF
Receive Compensation Inductance

(
L f 2

)
50.12 uH

Receive Compensation Capacitance
(

C f 2

)
67.27 nF

Receive Inductance (L2) 229.6 uH
Receive Capacitance (C2) 19.64 nF
Load Impedance (RL) 5 Ω
Air Gap 15 cm
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6. Conclusions

Considering the misalignment in the WPT process, this study investigated the statistic
model for double-sided, LCC-compensated, wireless power transfer system. The main
contributions are considered as:

For the initial value I1(0) = x, {I1(t)}t≥0 has the following probability density function:

P(I1(t) = y) =
1√
2π

{
σ2

2ρ

(
1− e−2ρt

)}−0.5

exp

{
−

ρ
(
y− xe−ρt)2

σ2
(
1− e−2ρt

) }.

In addition, {I1(t)}t≥0 has the following invariant measure:

µ((−∞, x]) =
∫ x

−∞

√
2ρ

√
2πσ2

exp
{
−ρy2

σ2

}
du.

Under Hypothesis 1, for any x1, x2, x3, x4 ∈ R, we obtain

Pθ(x1) = Pθ(V1(∞) = x1) = P
(

I1(∞) = x1
α1

)
=

√
2ρ√

2πσ2 exp
{
− ρx2

1
σ2α2

1

}
,

Pθ(x2) = Pθ

(
IL1(∞) = x2

)
= P

(
I1(∞) = x2

α2

)
=

√
2ρ√

2πσ2 exp
{
− ρx2

1
σ2α2

2

}
,

Pθ(x3) = Pθ

(
IL2(∞) = x3

)
= P

(
I1(∞) = x3

α3

)
=

√
2ρ√

2πσ2 exp
{
− ρx2

3
σ2α2

3

}
,

Pθ(x4) = Pθ(I2(∞) = x4) = P
(

I1(∞) = x4
α4

)
=

√
2ρ√

2πσ2 exp
{
− ρx2

4
σ2α2

4

}
.

Additionally, if ρ = 0.5, σ = 1, and RL = 0, then the Markov chains {Θn}∞
n=0 with the

state space V = (c1, d1)× (c2, d2)× · · · × (c8, d8) have the following invariant measure:

µ(A) =

∫
A exp

(
− x2

1
2α2

1

)
dθ1dθ2 · · · dθ8∫

V exp
(
− x2

1
2α2

1

)
dθ1dθ2 · · · dθ8

,

for any Borel set A.
The statistic mode of the wireless charging system constructed in this paper is suitable

for dynamic wireless power transfer, based on the LCC topology. The stochastic model can
be applied to simulate the deteriorations from misalignment of the static WPT. Therefore, it
can be employed to evaluate the system’s features, such as efficiency in advance. After the
simulation, engineers can apply the stochastic model to preview the power or the efficiency
(or both) before the activation of the dynamic WPT process. This study analyzed eight key
components on the circuit. When it is used for dynamic wireless charging scenarios, there
will be complex parameter drift problems, which lead to the deterioration of the power
systems. In consequence, from the perspective of statistic model, this paper discussed
the performance deteriorations and put them into practice in WPT applications of electric
vehicles. Additionally, for further evaluations, simulations and experiments were given to
show the noted factors of the proposed study.
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