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Abstract: This paper investigates a sliding mode controller based on quantum particle swarm
optimization algorithm (QPSO) to solve the nonlinearity of electro-hydraulic servo systems, external
disturbance problems, and jitter of sliding mode controller. The electro-hydraulic servo system
state space equations are established, constructing the sliding surface according to the tracking error
and obtaining the output of the sliding mode controller. The ITAE metric is used as an adaptation
function of the QPSO algorithm to evaluate the parameters in the sliding mode controller, which
has good engineering utility and parameter selectivity. The QPSO algorithm is used to increase
the randomicity of the search and to expand the search space, which can effectively prevent falling
into a local optimum solution. Finally, a comparative simulation is presented to illustrate global
search performance of QPSO algorithm and the effectiveness and applicability of the proposed
control method.

Keywords: electro-hydraulic servo system; sliding mode controller; ITAE metric; quantum particle
swarm optimization algorithm

1. Introduction

Electro-hydraulic servo systems are widely used in hydraulic robots [1], vehicle
suspension systems [2], machine tool tables [3], ship’s rudders, aerospace [4], and various
other applications [5] due to their high control accuracy, fast response time, high output
power, and other characteristics. The electro-hydraulic servo system is a typical nonlinear
system, which contains many nonlinear characteristics and modeling uncertainties. There
is room to improve the control accuracy of PID controller [6,7] for nonlinear systems and
the parameters are complicated to adjust. With the continuous development of the control
discipline, many methods have emerged that can provide effective control of nonlinear
systems, such as H∞ control [8], adaptive control [9], and adaptive robust control [10].

In recent years, many studies have been proposed to address the problems of poor
tracking effect, low control accuracy, and influence of nonlinear terms in electro-hydraulic
servo systems. An adaptive error symbolic integral robust control method [11] was pro-
posed to eliminate the effect of model uncertainty on the system. The value of the integral
robust gain can be adjusted online, and thus the system can achieve asymptotic stabi-
lization of the method without requiring an exact bound on the model uncertainty. A
self-turbulent adaptive control scheme based on full-state feedback was proposed in [12] to
solve the motion control problem of a hydraulic servo system with parameter uncertainty
and uncertain nonlinearity. The control method combines adaptive and extended state
observer, the adaptive control deals with the parameter uncertainty problem, and the
extended observer estimates the remaining uncertainty. In [13], the adaptive inverse sliding
mode controller has been investigated for interference immunity and control accuracy
in electro-hydraulic servo systems. Adaptive control method is used to estimate the un-
certainties of the system, such as modeling errors and applied disturbances. The inverse
sliding mode controller improves the accuracy of system. In [14], RBF-based (Radial Basis
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Function) radial basis control model and adaptive sliding mode algorithm are proposed to
improve the robustness. This design can resolve the uncertainty of model parameters and
external disturbances due to nonlinearity.

Sliding mode control is a nonlinear variable structure control strategy, so this controller
is often used to solve the nonlinearity of a electro-hydraulic servo system. In [15], the sliding
mode controller was proposed to solve the nonlinearities with a friction model in electro-
hydraulic servo system. An adaptive fuzzy sliding mode control method was proposed
in [16] to ensure asymptotic reference signal tracking of bounded system signals. A fuzzy
self-tuning mechanism is introduced to adapt the parameters of the sliding controller,
which reduces the chattering problem. The slipform observer has been investigated in [17]
for the matching and mismatching model uncertainty of electro-hydraulic position servo
systems. This design has a strong robustness and good tracking effect.

It is worth noting that the above-mentioned studies mainly focus on the optimization
of the jitter problem of the sliding mode controller. However, the parameters in the
controller are also an important factor in determining whether the controller will have good
control accuracy. The Particle Swarm Optimization algorithm (PSO) is proposed in [18]
to solve the problem of complex parameter adjustment of sliding mode controller. The
tracking error is selected as the fitness function, and the algorithm is optimized to effectively
shorten the time to reach the sliding surface, which improves the dynamic characteristics of
the sliding phase. In [19], the improved algorithm based on the Corsi variance and adaptive
speed update strategy is used to optimize the parameters of the sliding mode controller.
However, optimization algorithms such as PSO algorithm and genetic algorithm can
theoretically optimize the parameters and improve the system operation results, but they
usually fall into local optimal solutions, thus making the optimization effect useless to reach
the best. The QPSO algorithm is a new algorithm proposed based on the improvement of
the PSO algorithm [20]. Compared with the PSO algorithm and other algorithms that have
been improved, QPSO algorithm requires only the shrinkage—expansion factor. QPSO
algorithm improves the update formula of the algorithm so that the search area of the
particle increases.

Based on the above discussion, in this paper we propose a control strategy based on
the QPSO algorithm to optimize the parameters of the sliding mode controller. Compared
with the PSO algorithm, the QPSO algorithm requires only one parameter and improves
the position update formula. The improvement is to cancel the relationship between the
position update and the current position. Thus, particles can appear anywhere in the
search area, which effectively extends the search range and prevents the algorithm from
falling into a local optimum, increasing the global search performance of the algorithm.
The QPSO algorithm combined with the ITAE metrics of high engineering practicality
can effectively obtain the appropriate system parameters. The use of QPSO algorithm in
the control of electro-hydraulic servo system by sliding mode controller can effectively
improve the accuracy and performance of the system. Finally, a simulation example is
performed to illustrate effective design of this paper.

2. Mathematical Model and Problem Description

The system model of the valve-controlled motor is built according to the actual needs.
The flow into and out of the motor is controlled by electro-hydraulic servo valves, and the
motor can track the given signal. The model is shown in Figure 1.

The structure of the electro-hydraulic position servo system is shown in Figure 1. Ac-
cording to Newton’s second law, the force balance equation of the load can be obtained as:

DmPL = J
..
θ + B

.
θ + F (1)

where J is the rotational inertia of the motor, Dm is the displacement of the hydraulic motor,
θ is the angle of rotation of the valve motor, PL = P1 − P2 is the hydraulic motor load
pressure, P1 and P2 are the hydraulic motor two cavity pressure, B is the coefficient of
viscous friction, and F is the load force.
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The hydrodynamic model of the servo valve is nonlinear. There is a mathematical
relationship between the output of the load flow and the spool displacement can be
expressed as [21]

QL = Cdωxv

√
PS − PLsign(xv)

ρ
(2)

where QL is the output fluid, Cd is the servo valve orifice flow coefficient, ω is the servo
valve throttle area gradient, xv is the displacement of the servo valve spool, PS is the
pressure of the fluid, and ρ is the density of the fluid.

The continuity equation between the load flow and the hydraulic oscillating motor
flow is

QL = Dm
.
θ + CtPL +

V
4βe

.
PL −Q(t) (3)

where Ct is the total leakage coefficient of the hydraulic motor, V is the total volume of the
two chambers connected to the main pipe, βe is the effective volume elastic modulus, and
Q(t) is the time-varying uncertain flow in the servo system.

The servo valve in this paper operates at a much higher frequency than the hydraulic
oscillating motor. To simplify the connection between the motor and the servo valve, the
dynamics of the servo valve can be simplified to a proportional relationship [22].

xv = kiut (4)

where ki is dynamic proportional coefficient of the servo valve, ut is the control voltage.
Then Equation (2) can be expressed as

QL = Ktut

√
PS − PLsign(ut) (5)

where Kt = Cdωki
√

1/ρ.
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To simplify controller design, the system state variable is chosen as: X =
[

x1 x2 x3
]T .

According to Equations (1)–(5), the state space expression of the electro-hydraulic servo
system is

.
X =

 .
x1.
x2.
x3

 =

 x2
f1(x3) + f2(x2) + d(t)

f3(ut, x3)ut + f4(x2, x3) + q(t)

 (6)

y = [1 0 0]x (7)

where f1(x3) = Dm
J x3, f2(x2) = − B

J x2, d(t) = − F
J , f3(ut, x3) = 4βeKt

V

√
Ps − x3sign(ut),

f4(x2, x3) = − 4βe
V (Dmx2 + Ctx3), q(t) = 4βeQ(t)

V .

In order to make the derivation and design of the system convenient, the following
assumptions are made:

1. The pressure in each chamber of the hydraulic rotary motor is equal everywhere.
2. The total amount of liquid leakage is negligible that is Q(t) = 0.
3. Ignoring the non-linear interference such as friction and the influence of fluid quality.

3. Sliding Mode Controller Design

The design of the slide controller can be divided into two steps, including the design
of the slide surface and the design of the control law.

3.1. Design of Slide Surface

Defining the electro-hydraulic position servo system position tracking error e, velocity
tracking error

.
e, acceleration tracking error

..
e, acceleration derivative tracking error

...
e , θd is

the given signal, according to the Equations (6) and (7) can be expanded as

e = θ − θd = x1 − θd (8)

.
e =

.
θ −

.
θd = x2 −

.
θd (9)

..
e =

..
θ −

..
θd =

1
J
[Dmx3 − Bx2 − F]−

..
θd (10)

...
e =

...
θ −

...
θd (11)

...
e =

1
J

[
4Dmβektut

V

√
PS − x3sign(ut) +

(
B2 − D2

mβe

V

)
x2 −

(
4Dmβect

V
+ BDm

)
x3 +

B
J

F
]
−

...
θd (12)

Designing the sliding mode surface of the controller is s:

s = c1e + c2
.
e +

..
e (13)

where c1 > 0, c2 > 0, and the derivative of Equation (13) can be obtained:

.
s = c1

.
e + c2

..
e +

...
e (14)

Simplifying and combining Equations (8)–(14) will obtain:

.
s = A1x2 + A2x3 − c1

.
θd − c2

..
θd −

...
θd + A3

√
PS − x3sign(ut)ut + (

B
J2 −

c2

J
)F (15)

where A1 =
(

c1 − c2B
J −

4βeDm
2

JV + B2

J2

)
, A2 =

(
c2Dm

J − 4βeDmCt
JV − BDm

J2

)
, A3 = 4βeDmKt

JV .
The exponential convergence law [23] is used as the convergence law for designing

the sliding mode controller as:

.
s = −βs− ηsign(s) (16)

where β and η are the controller discontinuity term gain, and β > 0, η > 0.
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According to Equations (15) and (16), the controller output ut can be designed as:

ut =
A4[−βs− ηsign(s) + c1

.
θd + c2

..
θd +

...
θd + ( c2

J −
B
J2 )F + A5x2 + A6x3]√

PS − x3sign(ut)
(17)

where A4 = JV
4βeDmKt

, A5 =
(
−c1 +

c2B
J + 4βeDm

2

JV − B2

J2

)
, A6 =

(
− c2Dm

J + 4βeDmCt
JV + BDm

J2

)
.

Based on this controller, the sliding surface of the system can be made to converge to
0, which is the steady state.

3.2. System Stability Analysis of Sliding Mode Control

According to the stability analysis of the system in control theory, the Lyapunov
function is defined as:

L =
1
2

s2 (18)

Derivation of Equation (18) and substitution of Equation (15) can be obtained:

.
L = s,

.
s = s(−βs− ηsign(s)) = −βs2 − η|s| ≤ 0 (19)

The above equations show that the Lyapunov function L is positive definite and its
derivative is negative definite, thus the system will reach a steady state. This means that
the sliding mode surface s will be stable in finite time, and thus the system can be proved
to be asymptotically stable.

4. Quantum Particle Swarm Algorithm to Optimize Parameters

Although the sliding mode controller has good control performance for electro-
hydraulic servo system, if the selected parameters are not suitable it will lead to failure to
track, large tracking error, jitter, etc. Therefore, in this paper the optimization algorithm is
chosen to optimize the parameters of the controller.

The QPSO algorithm removes the relationship between the update of the particle
position and the previous position of the particle. This relationship will lead to a limited
search space and trap in a locally optimal solution. Removing these restrictions will
increase the particle search space and improve randomness, as the particle can appear at
any position in the search interval as far as possible. The adaptation value of this random
point will be compared with the current best adaptation value to make a choice, and finally
the algorithm gets the global optimal solution through continuous iterations. There is only
one parameter to choose in the algorithm which also makes it easier to implement.

The QPSO algorithm has the above effect, so QPSO algorithm is used in this paper to
optimize the parameters of the system.

4.1. Evolution Equation of Particle Swarm Algorithm

The PSO algorithm performs a parameter search mainly by updating its own velocity
and position. The particle searches for the local optimal solution and continuously updates
the global optimal solution to obtain the optimal fitness value in each iteration.

Velocity update formula:

veln = veln + r1 × rand()× (pbestn − xn) + r2 × rand()× (gbestn − xn) (20)

Position update formula:
xn = xn + veln (21)

where veln is the velocity of the particle, rand() is a random number between (0, 1), xn is
the position of the particle, pbest and gbest are the best position of individual and the best
position of the group respectively, and r1 and r2 are the learning coefficient; usually taking
two can obtain better results.
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4.2. Flow of Quantum Particle Swarm Algorithm

Supposing a particle swarm containing M particles is searched in an N-dimensional
target space, and M potential problems form the population:

X(t) = [X1(t), X2(t), . . . XM(t)] (22)

Then the position of the i-th particle is Xi(t) = [Xi,1(t), Xi,2(t), · · · , Xi,N(t)], i = 1, 2, · · · M
at time t.

Using Pi(t) = [Pi,1(t), Pi,2(t), · · · , Pi,N(t)] to indicate the best position of individual,
Gi(t) = [Gi,1(t), Gi,2(t), · · · , Gi,N(t)] indicates the best position of the group.

The individual best position of particle i depends on the objective function. The
individual best position of particle i:

Pi(t) =
{

Xi(t) i f f [Xi(t)] < f [Pi(t− 1)]
Pi(t− 1) i f f [Xi(t)]≥ f [Pi(t− 1)]

(23)

The global best position of the population is determined by Equations (22) and (23):

g = arg min
1≤i≤M

{ f [Pi(t)]} (24)

G(t) = Pg(t) (25)

Evolutionary equations for the quantum particle swarm algorithm:

Xj(t + 1) = Pj(t) + α
∣∣Cj(t)− Xj(t)

∣∣ ln
1
u

(26)

Pi,j = gPi,j + (1− g)Gj (27)

Cj(t) =
1
M

M

∑
i=1

Pi,j(t) (28)

where g and u are random numbers within [0,1], which are used to represent the average
distribution law.

From Equations (26)–(28), we can get a randomness in the position update of the
QPSO algorithm, which can make the particles perform global search in the whole search
range. Compared with the evolutionary equations of PSO algorithm, QPSO algorithm can
perform a better global search to avoid getting trapped in local optimal solutions.

The steps of the quantum particle swarm algorithm are as follows:

1. Setting the initial data, including population size, maximum number of iterations,
dimension, parameter search range, range of scaling factors, etc.

2. Calculating the average best position of the particle population according to Equation (28).
3. Performing steps 4–7 for each particle.
4. Calculating the adaptation value of the current position of particle i and update the

individual best position of the particle according to Equation (23).
5. Comparing the individual best position of particle i Pi(t) with the adaptation value

of the global best position G(t−1). If f [Pi(t)] < f [G(t− 1)], it is set G(t) = Pi(t),
otherwise G(t) = G(t− 1).

6. Calculating the position of a random point according to Equation (27) for each dimen-
sion of particle i.

7. Updating the new position of the particle according to Equation (26).
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The only parameter that needs to be set during the search of the quantum particle
swarm algorithm is the contraction-expansion factor in Equation (26), which is taken as

α = αmin + (αmax − αmin)
imax − i

imax
(29)

where αmax = 1, αmin = 0.
The shrink-expansion coefficient α can affects the speed of search. At the beginning

of the algorithm, a faster searching speed is needed to approach the global optimum, so a
larger value of α is needed at this time. After the algorithm obtains the global optimum, it
is necessary to strengthen the local search ability so that it can further improve the effect of
the parameters, so the searching speed can be reduced at this time. In choosing the method
of linear decrease of Equation (29) to search, the value of α from large to small is suitable
for the search of the algorithm.

The QPSO algorithm performs a global search in the initial stage and local search in
the later stage under the influence of the contraction-expansion factor. This ensures that
the algorithm has the advantage of searching both the global and local search.

4.3. Fitness Function

The fitness function is an important indicator for the algorithm to evaluate the superi-
ority of the parameters, so a suitable function should be selected for evaluation. The fitness
function chosen in this paper is the ITAE indicator:

The fitness function Z chosen in this paper is the ITAE indicator:

Z =
∫

t|e(t)dt| (30)

where e(t) is the tracking error of the system.
This indicator can reflects the overall error accumulation of the system in operation,

and effectively screens out parameters in the experiment. The cumulative error in the
whole period of time and the error of each time are significantly reduced when fitness
value is smaller, so the system can get better tracking performance. The index is effective in
considering the system stability and performance, it is a kind of control system performance
evaluation index with good engineering practicality and selectivity. The transient response
oscillations of the system evaluated by this index will be reduced, and the indicator has
good selectivity for parameters.

5. Simulation Analysis

To verify the proposed control strategy, the system simulation model is built in
Matlab/Simulink, the simulation step is set to 0.001 s, and the load force F is set to 10 N.
Due to the actual engineering of the electro-hydraulic servo system structures are easy to
damage when subjected to excessive voltage and current, control torque, so the output
of controller in the simulation is limited to between (−10,+10). The data for the electro-
hydraulic servo system parameters are shown in Table 1.

Table 1. System Parameters.

System Parameters Value

Dm 8.7× 10−5 m3/rad
J 0.25 kg·m2

B 40 (N ·m·s)/rad
Vt 1.4× 10−4 m3

Kt 2.16× 10−8 m3/
(

s·V·Pa1/2
)

βe 7× 108 Pa
Ct 1× 10−2 (m3/s

)
/Pa

The parameters of the hydraulic system are as follows:
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In order to verify the effectiveness of the design for the electro-hydraulic servo sys-
tem, three working conditions are investigated for comparative simulation experiments.
Selecting the given signal as θd = sin(t), the amplitude is ±3 rad/s.

5.1. Working Condition I

Selecting the controller parameters as c1 = 100, c2 = 10, β = 10, η = 10.
Figure 2 shows the inability to track a given signal when the parameters are not

properly selected, the error between the amplitude of the output curve, and the given
signal is large. The sliding mode controller is unable to control the system, and the
maximum error reaches 3.62 rad/s.
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Selecting the controller parameters as c1 = 15,000, c2 = 10, β = 10, η = 10.
From Figure 3, it can be observed that the tracking accuracy may not be accurate

enough when the parameters are not selected properly, and the phase of the tracking curve
lags behind the given curve. The tracking error is between ±0.21 rad/s, which is poor
tracking for systems that require high precision control.
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Selecting the controller parameters as c1 = 13,000, c2 = 400, β = 2600, η = 20,000.
From Figure 4, it can be obtained that the jitter may occur when the parameters are

not selected properly. The output curve has obvious jitter phenomenon, which may make
the system unstable and lead to damage of the machine. The tracking error is between
±0.128 rad/s, and the curve has a jitter amplitude of 0.1 rad/s.
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From the above situation, it can be deduced that the sliding mode controller may
produce several situations before the parameters are properly selected: it cannot track
the upper signal, the tracking error is large, and the tracking curve and the jitter of the
controller output are problems. It shows that the selection of parameters has a large impact
on the control performance.

5.2. Working Condition II

It can be seen from Working condition I that the control effect of the sliding mode
controller without parameter optimization is not satisfactory. Thus, the PSO algorithm is
added to optimize the parameters of the sliding mode controller in this case.

Taking a population size of 20, a maximum number of iterations of 50, and a dimension
of 4, the upper and lower limits of [c1, c2, β, η] are taken as [50, 000, 10, 000, 20, 000, 10, 000]
and [100, 100, 100, 100].

From Figure 5, it can be obtained that the controller parameters take the values
c1 = 50,000, c2 = 100, β = 1827.8, η = 100 after the optimization of the PSO algorithm. It can
be seen that the parameters fall into the local optimal solution after the tenth iteration and
it is difficult to jump out of the local optimal solution resulting in the optimal parameters
not being updated.

From Figure 6, it can be seen that the fitness value curve gradually falls into the local
optimal solution after the 10th iteration. The optimal fitness value is not effectively reduced
due to the fact that the subsequent local search capability is not strong, which is detrimental
to the search for parameters.

From Figures 6–8, it can be found that the sliding mode controller can track the given
signal after optimizing the parameters by PSO algorithm. The problems of not being able
to track the upper signal, large tracking error, tracking curve, and jitter of the controller
output that appear in working condition I have been greatly improved. However, there are
still problems in the details of optimization. After the 10th iteration of the PSO algorithm,
the algorithm falls into a local optimum solution and the fitness value hardly improves.
This problem indicates that the particle finds a locally optimal solution and then starts a
region search near that solution, thus the particle misses other better solutions.
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5.3. Working Condition III

From Case 2, it can be seen that the sliding mode controller can better achieve the
position tracking of the given signal after the optimization of the parameters by the PSO
algorithm. However, the PSO algorithm is easy to fall into the local optimal solution control
and the control accuracy needs to be further improved, so the QPSO algorithm is used to
optimize the parameters of the sliding mode controller in Case 3.

Taking a population size of 20, a maximum number of iterations of 50, and a dimension
of 4, the upper and lower limits of [c1, c2, β, η] are taken as [50, 000, 10, 000, 20, 000, 10, 000]
and [100, 100, 100, 100].

From Figure 9, it can be obtained that the controller parameters take the values of
c1 = 9590.215, c2 = 100.04, β = 1653.069, η = 9950.2 after the optimization of the QPSO
algorithm. It can be seen that after the global search in the first stage, the QPSO algorithm
has better performance in the later stages of the search.
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Figure 9. The parameter iteration diagram.

The algorithm continuously performs a global search and updates the global optimal
solution several times in the first stage of the search, while the QPSO algorithm finds
the parameters that better fit the system near the optimal solution at a later stage of the
algorithm. Comparing with Figure 6, the optimal adaptation degree is improved by 25%,
which illustrates that the PSO algorithm falls into the local optimal solution.

From Figures 10–12,compared with the traditional sliding mode control, the complex
operation of manually adjusting the system parameters can be omitted and the jitter
problem of the system and controller output can be effectively eliminated. Compared with
the parameters optimized by the particle swarm algorithm, the QPSO algorithm can go
beyond the local optimal solution to obtain the global optimal solution, and the optimized
parameters can achieve better performance of the system.

Because the electro-hydraulic servo system is a high-precision system, the evaluation
function selected in this paper is the ITAE metric, so the selection for the parameters is
based on the magnitude of the error and the accumulated value of the error. The final
results show that the accuracy of the system has been greatly improved and the jitter of the
system based on the QPSO algorithm still exists, but it has been improved compared to the
jitter in Figure 4.

In Figure 13, the tracking error after the system is controlled by the PID controller is
added for comparison. The values of the PID controller parameters are P = 800, I = 100, D = 0.
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From Figure 13 and Table 2, it can be concluded that the error range of the system after
being controlled by the PID controller is −9.5× 10−3 ∼ 9.5× 10−3, and the tracking error
range of the system after the optimization of the PSO algorithm is −1.14× 10−3 ∼ 1.05× 10−3.
The tracking error range of the system after optimization by the QPSO algorithm is
−9.22× 10−4 ∼ 6.63× 10−4 and the margin of error is reduced 36.8% compared to PSO
algorithm. The fitness value reduced by 25% reflects a reduction in the overall error accu-
mulation, a more stable system, a faster rate of reaching stability, and a significant increase
in tracking accuracy.

Table 2. Data Analysis.

Fitness Value Average Value Standard Deviation Optimum Value

PSO algorithm 0.0548 0.0445 0.0353
QPSO algorithm 0.0271 0.0017 0.0263

According to the above three working conditions, it can be observed that compared
with the traditional sliding mode control and PSO algorithm optimized sliding mode con-
trol, the sliding mode controller optimized by QPSO algorithm has a greater improvement
in all aspects of control performance, which reflects that the method has a better control
effect for the system under the operation with load force.

6. Conclusions

In this paper, the sliding mode controller based on QPSO algorithm for parameter
optimization was proposed to address the nonlinear problem of electro-hydraulic servo
systems, external disturbance, and the problem of controller parameter selection. The
sliding mode controller with strong robustness can track a given signal, and then QPSO
algorithm based on ITAE metric is used to optimize the parameters of the sliding mode
controller. This design expands the search space of parameters, diminishes the effect of jitter,
and achieves the global optimal solution; thus, the control performance of electro-hydraulic
servo system is improved. The experiments show that compared with the PSO algorithm,
the fitness value is reduced by 25% and the tracking accuracy of the system is improved
by 36.8% after optimization by QPSO algorithm. The algorithm not only eliminates the
complexity of manually adjusting parameters but also effectively performs a global search;
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finally the electro-hydraulic servo system achieves improved tracking performance under
load forces.
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