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Abstract: Aiming at the characteristics of dynamic correlation, periodic oscillation, and weak dis-
turbance symptom of power transmission system data, this paper proposes an enhanced canonical
variate analysis (CVA) method, called SLCVAkNN, for monitoring the disturbances of power trans-
mission systems. In the proposed method, CVA is first used to extract the dynamic features by
analyzing the data correlation and establish a statistical model with two monitoring statistics T2 and
Q. Then, in order to handling the periodic oscillation of power data, the two statistics are recon-
structed in phase space, and the k-nearest neighbor (kNN) technique is applied to design the statistics
nearest neighbor distance DT2 and DQ as the enhanced monitoring indices. Further considering the
detection difficulty of weak disturbances with the insignificant symptoms, statistical local analysis
(SLA) is integrated to construct the primary and improved residual vectors of the CVA dynamic
features, which are capable to prompt the disturbance detection sensitivity. The verification results
on the real industrial data show that the SLCVAkNN method can detect the occurrence of power
system disturbance more effectively than the traditional data-driven monitoring methods.

Keywords: canonical variate analysis; disturbance detection; power transmission system; k-nearest
neighbor analysis; statistical local analysis

1. Introduction

With the increasing demand on the power energy in the modern industry, power
transmission systems are becoming more and more large-scale and complicated [1,2]. Due
to the system complexity, anomalies and disturbances are often unavoidable in real power
systems. If these unexpected events are not handled timely, they may cause huge accident
risks and even the widespread power outages, which are companied by the huge economic
loss and severe life inconvenience. Therefore, it is of great value to detect the abnormal
events quickly and maintain the safe running of power systems [3]. In recent years,
the wide area measurement system (WAMS) based on synchronous phaser technology
has been successfully applied in the power industry. The phasor measurement units in
WAMS provide the basic data support for the real-time dynamic monitoring of the power
system [4]. Accordingly, safety monitoring and disturbance detection of power systems
based on the measurement data analysis has been a hot topic in academic and engineering
fields [5–7].

Aiming at the power system disturbance detection task, researchers have conducted a
lot of studies, which can be roughly divided into two categories: time/frequency domain
analysis and multivariate statistical analysis. The time/frequency domain analysis inves-
tigates the power system changes from the perspective of the signal processing, which
involves the time domain, frequency domain, or time-frequency domain. In consideration
of the good time-frequency localization property, Huang et al. [8] discussed the application
of the Morelet wavelets method in power system disturbance detection. The Hilbert Huang
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Transform is another time-frequency signal analysis tool. Manglik et al. [9] applied it to
the disturbance detection for the electric power system. Ghaderi et al. [10] proposed the
time-frequency analysis method assisted by current waveform energy and normalized
joint time-frequency moment and demonstrated its performance in the high-impedance
ground fault detection. Salehi et al. [11] designed a morphological edge detection filter to
obtain the transient features of fault signals. Liu et al. [12] used the wavelet packet Tsallis
singularity entropy algorithm for disturbance detection. In general, the time/frequency
domain analysis methods mainly analyze the single signal and fail to fully consider the
correlation between different parameters. In response to this shortcoming, some scholars
started their work by applying multivariate statistical analysis. Multivariate statistical anal-
ysis (MSA) methods can realize the simultaneous detection of multiple parameter changes
and have outstanding advantages in the complex industrial systems. However, most of
the present MSA studies focus on the system modeling and disturbance detection in the
chemical process, steel industry, and high-train system [13–17], but MSA’s application to
power system monitoring is very rare. Barocio et al. [18] first introduced the principal com-
ponent analysis (PCA) method into the field of power system monitoring and discussed the
detection and visualization of power system disturbances based on PCA. Guo et al. [19]
built a transmission line fault detection method by combining PCA and support vector
machine. Considering the masking influence caused by the oscillation trend and strong
noise of power system data, Cai et al. [20] further proposed a PCAkNN method, which
is superior to the basic PCA method in the numerical model testing and New England
power system model data. These research articles point out that the multivariate statistical
analysis has great application potential in the field of power system monitoring.

Although PCA and PCAkNN methods have achieved significant success in the power
system monitoring field, they have some shortcomings deserving further studies. On the
one hand, these methods do not take into account the dynamic characteristics of power
system data, which easily leads to a high missing detection rate. Different from the other
industrial process data with the steady operation mode, the power system data, such as
the voltage and current, are with obvious dynamic trends. On the other hand, the present
methods do not consider how to enhance the detection of weak disturbances. In real
applications, some disturbances may be with small amplitudes, slow changes, unclear
disturbance characteristics, and are easy to be covered by noises [21,22]. How to enhance
the detection capability on these weak disturbances is one challenging task.

Aiming at the aforementioned problems, this paper proposes a SLCVAkNN-based
disturbance detection method for power transmission system monitoring by combining
canonical variate analysis (CVA), kNN, and statistical local analysis (SLA). Compared with
the traditional PCA-based power system monitoring methods, CVA has a stronger dynamic
feature extraction ability [23–25], which provides a new and powerful tool for power system
data analysis. Referring to the present PCAkNN method, the CVAkNN statistical model is
developed to deal with the dynamic periodic oscillation signals. Furthermore, in order to
enhance the detection of weak faults, SLA is integrated for SLCVAkNN modeling, which
mines the local statistical information for better weak disturbance monitoring.

The rest of the paper’s content is arranged as follows. The principle of the proposed
SLCVAkNN methodology is given in the Section 2, while the corresponding disturbance
detection procedure is detailed in Section 3. One case study on the actual industrial data is
used to verify the effectiveness of the proposed method.

2. The Proposed Methodology

This section clarifies the proposed SLCVAkNN-based power system disturbance
detection method. The whole methodology involves three parts: dynamic system modeling
using canonical variate analysis, monitoring index construction based on kNN, and weak
disturbance detection by statistical local analysis.
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2.1. CVA Monitoring Model

A power system is a classical dynamic process [26,27], where the measurement data
demonstrate the clear trend along the sampling time. The measured three-phase electric
field and current waveform change with time, and the current data point has a certain
correlation with the historical samples. Therefore, it is more reasonable to apply the
dynamic data analysis tool to extract the process features.

Canonical variate analysis (CVA) is an effective dynamic data analysis tool, which
has been applied to the model identification and control in the multivariate dynamic
system [28,29]. This paper introduces it to deal with power system data. For a certain
power transmission line, the data points under normal system operation have a fixed
correlation along the time dimension. When a disturbance occurs, this correlation may
be destroyed. By monitoring the correlation among the time series data, CVA can find
the system disturbance effectively. When CVA is applied to data modeling, the training
data are firstly divided into the historical data set and the future data set, and the CVA
optimization problem is designed to find the maximum correlation between these two data
sets for describing the data dynamic features. The algorithm details are clarified as follows.

For the power system measurement data vector xh ∈ Rm at the h-th sampling instant,
its corresponding historical data vector ph and future data vector fh are constructed as

ph = [xT
h , xT

h−1, · · · , xT
h−l+1]

T ∈ RM (1)

fh = [xT
h+1, xT

h+2, · · · , xT
h+l ]

T ∈ RM (2)

where M = m× l, and l represents the time lag order.
Given the projection vectors a and b, they are used to transform the historical and

future vectors into their respective projections d = aT ph and v = bT fh. CVA is to optimize
the vector pair a and b so that the correlation between d and v is maximized, which are
also called canonical variates. This can be described by the mathematical expression as

max
a,b

ρ(d, v) = aTΣp f b

s.t. var(d) = aTΣppa = 1

var(v) = bTΣ f f b = 1

(3)

where Σp f represents the cross-covariance matrix of the historical and future data vectors, and
Σpp, Σ f f denote the covariance matrix of the historical and future data vectors, respectively.

Suppose that the training data set includes n samples as X = [xT
1 , xT

2 , · · · , xT
n ]

T ∈
Rn×m, then the historical and future data matrix can be expressed by

P = [pT
l , pT

l+1, · · · , pT
n−l ]

T ∈ RN×M (4)

F = [ f T
l , f T

l+1, · · · , f T
n−l ]

T ∈ RN×M (5)

where N = n− 2l + 1 is the sample number of the historical and future data matrix. Then
the covariance matrices defined in Equation (3) can be calculated by

Σp f =
1

N − 1
PT F (6)

Σpp =
1

N − 1
PTP (7)

Σ f f =
1

N − 1
FT F (8)
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Solving the optimization problem described by Equation (3) leads to a singular value
decomposition on the matrix Ξ = Σ−1/2

pp Σp f Σ−1/2
f f , which is expressed by

Ξ = UΛV T (9)

The solution of Equation (9) is further used to build the a series of the projection
vectors ai and bi(1 ≤ i ≤ M), which are computed by

ai = Σ−1/2
pp U(:, i), bi = Σ−1/2

f f V(:, i), (10)

where (:, i) represents the i-th column of the matrix. The vectors ai and bi are ordered by the
corresponding correlation degree, which is given in the diagonal elements of matrix Λ, also
meaning the correlation coefficients. The first s pairs of projection vectors {ai, bi, 1 ≤ i ≤ s}
describe the stronger correlation and indicate the close relationship between the historical
data and the future data. Therefore, a projection matrix As = [a1a2 · · · as] is defined to
extract the canonical variate vector dh as

dh = AT
s ph. (11)

which describes the main dynamic features of process data. Here, s is determined so that
the corresponding canonical variate vectors describe a cumulative percentage of 90% of
correlation coefficients.

As As only involves the first s projection directions, it cannot cover all the data
information. The rest information in the CVA model can be described by the CVA residual
vector eh as

eh = (I − As AT
s )ph (12)

Based on the canonical variate vector and CVA residual vector, two monitoring
statistics T2 and Q are often used to judge the process state. The T2 statistic describes
the changes of principal dynamic states, while the Q statistic monitors the changes of the
residual information. For the h-th sample, the statistics are written by

T2
h = dT

h dh (13)

Qh = eT
h eh (14)

In the normal operation, these two statistics should satisfy T2
h ≤ T2

h,lim and Qh ≤ Qh,lim,
where T2

h,lim and Qh,lim are the corresponding confidence limits. In some literature, the con-
fidence limits of these two statistics can be obtained by assuming the prior distribution [30].
However, these distribution assumptions are often difficult to satisfy. Therefore, this paper
applies the data-driven kernel density estimation to determine the confidence limit [31,32].

2.2. CVAkNN Model Based on kNN Monitoring Index

As the measurement data of power transmission systems have the periodic fluctua-
tion characteristic, the traditional CVA monitoring statistics T2 and Q behave unsteadily
with the periodic changes. In this case, disturbance detection by directly monitoring the
amplitudes of monitoring statistics cannot discover the disturbance signals effectively and
may lead to a high disturbance missing rate.

In order to overcome this defect, this paper introduces the k-nearest neighbor analysis
(kNN) to enhance the basic monitoring statistics. kNN is one effective multimodal data
analysis tool and does not depend on the amplitude changes before and after the distur-
bance. In the literature [33,34], kNN was introduced and adapted for real-time detection
of system disturbances. By combining the CVA model and the kNN-based monitoring
statistics, the improved method, which is called CVAkNN, has a stronger capability of
dealing with the periodic oscillation data property. The main idea of CVAkNN is to first
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reconstruct the monitoring statistic in the phase space and then build the monitoring index
based on the distance between the reconstructed statistic vector and its k-nearest neighbor.

Phase space reconstruction is a good method to deal with time series analysis. This
method regards one-dimensional time series as the result of nonlinear dynamic system
motion and constructs the phase vectors by re-arranging the time series. This theory has
been successfully applied in the fields of chaotic time series prediction and equipment
failure data analysis [35,36]. Here it is introduced to deal with the CVA monitoring statistics
for the further kNN analysis.

For the training data set with n samples x1, x2, . . . , xn, the corresponding statistics
vectors are obtained by the CVA modeling as

T2 = [T2
l T2

l+1 · · · T2
n ] (15)

Q = [Ql Ql+1 · · · Qn] (16)

Further, the phase reconstruction statistics matrix can be formulated as follows:

MT2 =


T2

l · · · T2
l+L−2 T2

l+L−1
T2

l+1 · · · T2
l+L−1 T2

l+L
...

...
...

...
T2

n−L+1 · · · T2
n−1 T2

n

 (17)

MQ =


Ql · · · Ql+L−2 Ql+L−1

Ql+1 · · · Ql+L−1 Ql+L
...

...
...

...
Qn−L+1 · · · Qn−1 Qn

 (18)

where L is the embedding dimension defining the length of the reconstructed phase vector.
Based on the results of the phase space reconstruction, the dynamic behavior of the statistics
can be better described, which is conducive to the detection of power system disturbances.

In the online monitoring stage, a new testing sample xt is collected at the t-th sampling
instant. Then the monitoring statistics can be computed by applying Equations (13) and (14),
and the reconstructed phase vectors are described as

NT2
t =

[
T2

t−L+1 · · · T2
t−1 T2

t

]
(19)

NQt = [Qt−L+1 · · · Qt−1 Qt] (20)

To determine whether the test data xt is normal, it is necessary to compare the similar-
ity between NT2

t , NQ2
t , and the reconstructed statistics matrix in Equations (17) and (18).

If the reconstructed statistics NT2
t , NQ2

t are strongly similar to one column of the training
statistics vectors in Equations (17) and (18), then the test data xt describe the normal work-
ing condition. Otherwise, it means that some faults occur in the power transmission system.
Therefore, the key is how to perform this similarity comparison. This paper introduces
the k-nearest neighbor (kNN) analysis to construct a kNN-based distance measurement
indicator: statistical nearest neighbor distance (SNND).

The idea of SNND is to find the first k-th nearest neighbors of the test vector in the
given matrix data and compute the distance between the test vector and the k-th nearest
neighbors as a disturbance detection criterion. The SNND index for NT2

t is defined as

DT2
t =

∣∣∣∣∣∣NT2
t −MT2(jk, :)

∣∣∣∣∣∣, (21)
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where MT2(jk, :) represents the jk-th row in the MT2 matrix, which corresponds to the
k-th nearest neighbor of NT2

t , and ||.|| represents the L2 norm calculation. By analogy, the
SNND indicator of NQt can be established as

DQt = ||NQt −MQ(jk, :)||. (22)

Under normal operating conditions, the above two indicators should fluctuate within
a relatively small range. That means DT2

t ≤ DT2
lim and DQt ≤ DQlim for the normal

running status. Once the threshold is exceeded, it means that there is a system disturbance.
The threshold can be obtained by the kernel density estimation method.

2.3. SLCVAkNN Model Assisted by Statistical Local Analysis

In the power transmission system, some weak disturbances are often difficult to detect,
such as the high-impendence single-phase ground fault. When this kind of disturbance
occurs, the changes reflected by the measure voltage and current variables are very small.
Further, considering the influence of modeling error and process noise, this kind of distur-
bance may be concealed and viewed as the normal process changes. Therefore, enhacning
the weak disturbance detection is of great value to ensure the safety of power transmission
systems. In this paper, we integrate the statistical local analysis (SLA) with CVAkNN
and propose an improved SLCVAkNN monitoring model for better weak disturbance
monitoring performance.

SLA was originally proposed by Basseville [37] for inspecting the process parameter
changes. In recent years, some researchers have introduced it into the chemical process
fault detection and demonstrated its effectiveness [38–40]. In this paper, we will perform
the statistical local analysis on the CVA model. To look back into the CVA monitoring
statistics in Equations (13) and (14), it is found that the monitoring statistics used to indicate
the process status are composed of the canonical variate vector dh and the CVA residual
vector eh. Therefore, if we attempt to improve the weak disturbance monitoring of CVA
statistics, the vectors dh and eh must be improved with stronger disturbance sensitivity.

According to the statistical local analysis theory, given the system observation zj and
the system parameter ϑ, a primary residual vector ϕ(zj, ϑ) can be defined for disturbance
detection if it meets the following conditions: [37,38]

• E{ϕ(zj, ϑ)} = 0, if ϑ = ϑ0;
• E{ϕ(zj, ϑ)} 6= 0, if ϑ is in the neighborhood of ϑ0, but ϑ 6= ϑ0;
• ϕ(zj, ϑ) is differentiable with ϑ;
• ϕ(zj, ϑ) exists for ϑ in the neighborhood of ϑ0.

Here ϑ0 represents the parameters under the normal condition.
By investigating the i-th element in the vector dh, which is denoted as dh,i, it is easily

derived by Equation (11) that dh,i = aT
i ph. Naturally, the variance of dh,i can be computed as

E{d2
h,i} = aT

i E{ph pT
h }ai (23)

For the statistical samples, E{ph pT
h } is factually equal to the covariance matrix Σpp.

Further combining the first constraint on the vector a in Equation (3), it is known that
aT

i E{ph pT
h }ai = 1. Therefore, we build the SLA primary residual of the canonical variate as

ϕdh,i
= d2

h,i − 1. (24)

which meets the condition E{ϕdh,i
} = 0 in the normal condition.

Similarly, we analyze the variance of eh,i to obtain

E{e2
h,i} = Ar(i, :)E{ph pT

h }Ar(i, :)T (25)
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As Ar can be obtained in the model training procedure, the above expression must be
equal to a fixed value, which is denoted as σi = Ar(i, :)E{ph pT

h }Ar(i, :)T . Therefore, the
SLA primary residual of the CVA residual can be built as

ϕeh,i = e2
h,i − σi. (26)

which meets the condition E{ϕeh,i} = 0 for the normal data.
For a more sensitive disturbance detection, the SLA improved residual is applied in a

moving window with the width of w, which is expressed by

ψdh,i
=


1√
h

h
∑

j=1
ϕd−j,i, h < w

1√
w

h
∑

j=h−w+1
ϕdj,i

, h ≥ w
(27)

ψeh,i =


1√
h

h
∑

j=1
ϕej,i , h < w

1√
w

h
∑

j=h−w+1
ϕej,i , h ≥ w

(28)

Up to now, we can obtain the SLA improved residual vectors ψd,h = [ψdh,1
ψdh,2

· · · ψdh,s
]T

and ψe,h = [ψeh,1 ψeh,2 · · · ψeh,M ]T . These residual vectors are used to replace the original
CVA features dh and eh so that the monitoring model is modified to the SLCVAkNN model.

With the SLA improved residual vectors, the monitoring statistics are constructed
as follows:

T2
h = ψT

d,hψd,h (29)

Qh = ψT
e,hψe,h (30)

3. Disturbance Detection Procedure Based on SLCVAkNN

Power transmission system disturbance detection based on SLCVAkNN method is di-
vided into two stages: offline modeling stage and online detection stage. The corresponding
flowchart is shown in Figure 1.

Stage 1: offline modeling stage

1. Acquire the normal condition data to constitute the training data set X =

[xT
1 , xT

2 , · · · , xT
n ]

T ∈ Rn×m and perform data normalization processing. Here,
the mentioned normal condition data mean the data from a section of transmis-
sion line between two adjacent nodes. For different lines, the corresponding
modelings are needed separately.

2. Construct historical data sets P and future data sets F according to Equations (4)
and (5), calculate the covariance matrices by Equations (6)–(8), and solve the
CVA optimization by the SVD as Equation (9).

3. Extract the canonical variate vector dh and the CVA residual vector eh, as shown
in Equations (11) and (12).

4. Perform Equations (24) and (26) to obtain the SLA primary residual vectors and
further calculate the SLA improved residual vectors by Equations (27) and (28).

5. Compute the monitoring statistics T2
h and Qh for all the training samples accord-

ing to Equations (29) and (30).
6. Construct the statistics matrix in the phase space according to Equations (17)

and (18).
7. Calculate the SNND monitoring indices DT2 and DQ for all the training samples and

determine the 95% confidence limits DT2
lim and DQlim by kernel density estimation.
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Stage 2: online detection stage

1. Obtain online new data xt and normalize it with the training data.
2. Construct the corresponding historical vector pt and project the pt to the CVA

model and obtain the canonical variate vector dt and et according to Equations (11)
and (12).

3. Apply Equations (24), (26)–(28) to compute the SLA primary residual vector and
the improved residual vector orderly.

4. Compute the monitoring statistics T2
t and Qt for the online new sample xt

according to Equations (29) and (30).
5. Construct the phase space statistics vector NT2

t and NQ2
t , and calculate the

SNND index DT2
t and DQ2

t by Equations (21) and (22).
6. Compare the SNND indices with the corresponding confidence limits DT2

lim and
DQlim. If any one exceeds the confidence limit, a disturbance sample is indicated.

Here, it is pointed out that the local neighborhood standardization (LNS) [41] may be
used to enhance the traditional z-score standardization. Compared with the traditional
z-score method, LNS has better capability to deal with the non-steady data with the
periodic oscillations.

Figure 1. Flow chart of disturbance detection by SLCVAkNN.

4. Case Analysis

In order to verify the advantages of the SLCVAkNN method in the power transmission
system disturbance detection, this section gives the case study on the real industrial
data collected from the actual power transmission system. For method comparison, four
methods, including the proposed SLCVAkNN method and three other methods of PCA,
PCAkNN, and CVAkNN, are all applied to build the monitoring models for disturbance
detection. The PCA method has two monitoring statistics T2 and Q, while the other three
methods are with the kNN-based statistics DT2 and DQ. When these methods are used,
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they indicate the system status by the monitoring charts, where the monitoring indices of
normal and faulty samples are given by black and blue solid lines, respectively, while the
detection threshold, that is the 95% confidence limit of the monitoring index, is plotted by
the red dashed line. One evaluation index, called the disturbance detection rate (DDR), is
used to evaluate the different monitoring methods. DDR is the percentage of the abnormal
samples exceeding the detection threshold over all the abnormal samples.

The used real industrial data are collected from the seven transmission lines in a power
supply station in August 2018. These lines are radially connected. Their data are collected
because all of them involve the ground fault. The data acquisition units, designed by
Qingdao Topscomm Communication CO. LTD, are used to collect the electric field intensity
and current. Here, the real line voltage is up to 110 KV so that the existing equipment can
not directly measure it. Therefore, the electric field intensity is applied to reflect the voltage
trend. For each transmission line, one corresponding data set is recorded that involves the
normal state and the abnormal state. The data set has the length of about 1300 samples,
where the disturbance starting time (DST) is different in different transmission lines. The
detailed information about the acquired data sets are listed in Table 1, where DST data
record the sample number corresponding to the disturbance starting time. A demonstration
of the collected data for the DATA-A is given in Figure 2, where six measured variables,
including the electric field intensities of phase A, B, and C, and the currents of phase A,
B, and C, are involved. Due to the existence of the harmonic load, the current sine wave
distortion can be seen in these curves.

Table 1. The collected industrial data sets.

No. Description DST

DATA-1 Data set collected from line 904 exit 446
DATA-2 Data set collected from line 906, pole 116-3 456
DATA-3 Data set collected from line 906, pole 90-2 445
DATA-4 Data set collected from line 906, pole 151-5 458
DATA-5 Data set collected from line 906, pole 97-1 452
DATA-6 Data set collected from line 906 exit 493
DATA-7 Data set collected from line 907 exit 420
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Figure 2. Data waveform collected from 904 line exit. (a) Three-phase electric field intensity; (b) Three-phase current.

Taking the data set DATA-2 as one example, it is collected from the pole 116-3 of the line
906. This data set includes 1312 samples. To investigate it with the help of on-site engineers,
it is known that the disturbance occurs from the 456th sample. Although engineers can
find this disturbance by careful analysis, this manual way is very time-consuming and
inefficient, so it is difficult to implement in large-scale transmission system monitoring.
Therefore, building an automatic multivariate data analysis tool is very necessary. In
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this section, we apply four MSA methods, which are PCA, PCAkNN, CVAkNN, and
SLCVAkNN, to perform the automatic fault detection. When the statistical models are
developed, the model parameters are set as follows: k = 3, L = 10, l = 2, w = 20. For the
data set DATA-2, the first 320 sampling point are considered to be in a normal operating
state, they can be utilized as the training data set for model development, while monitoring
charts of PCA, PCAkNN, CVAkNN, and SLCVAkNN are demonstrated in the Figures 3–6,
respectively. By the PCA monitoring results shown in Figure 3, it can be seen that the
disturbance cannot be detected very effectively. The DDR of PCA T2 is 4.43%, while the Q
is a little better with the DDR of 29.52%. When PCAkNN is used, the DT2 has a similarly
poor detection rate, but the DQ statistic achieves clear improvement with the DDR of
57.76%. These results demonstrate that the PCAkNN method proposed by Cai et al. [20]
can deal with the power system data with oscillation characteristic effectively. However,
from these figures, the monitoring statistics do not exceed the confidence limits significantly.
This may lead to the uncertain judgement on the occurrence of disturbance. When the
CVAkNN is applied in Figure 5, the DQ statistic performs a little better with the DDR of
49.71%. However, its DT2 indicator clearly improves the DDR to 92.51%, which means a
significant detection rate improvement of about 70% in contrast with the PCAkNN’s DQ
index. The best monitoring results on this data set is provided by SLCVAkNN, which
are shown in Figure 6. By this figure, it is observed that the disturbance is detected very
clearly with the DDRs of 97.25% and 96.80% for DT2 and DQ, respectively. This case
gives a comprehensive comparison on the four methods of PCA, PCAkNN, CVAkNN, and
SLCVAkNN. The applications show that PCAkNN does better than PCA due to the use of
kNN, while SLCVAkNN further prompts the disturbance detection performance with the
integration of CVA and SLA.
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Figure 3. PCA monitoring results on the DATA-2 case.
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Figure 4. PCAkNN monitoring results on the DATA-2 case.
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Figure 5. CVAkNN monitoring results on the DATA-2 case.

200 400 600 800 1000 1200

Sample number

100

105

D
T

2

200 400 600 800 1000 1200

Sample number

100

105

D
Q

Figure 6. SLCVAkNN monitoring results on the DATA-2 case.

Another example on the data set DATA-6 is illustrated, which corresponds to the
line 906 exit. The modeling procedure is similar to the above case. Here we only give the
monitoring charts of CVAkNN and SLCVAkNN, as shown in the Figures 7 and 8. With the
consideration of system dynamics, the CVAkNN DT2 monitoring chart gives a higher DDR
of 88.51%. Compared with the CVAkNN method, which has only one effective monitoring
statistic, SLCVAkNN has two well-behaved monitoring statistics. The DT2 and DQ have
the DDRs of 97.37% and 97.25%, respectively. The testing results on DATA-6 further verify
the advantage of the proposed method over the CVAkNN method.
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Figure 7. CVAkNN monitoring results on the DATA-6 case.

The summary of disturbance detection rates for all seven data sets are shown in Table 2.
From this table, it is shown that the faults in DATA-2 and DATA-4 are difficult to detect
by PCA, whose DDRs are all lower than 30%. By the use of PCAkNN, these two faults
are detected with higher DDRs, which are 57.76% and 26.78%, respectively. By contrast,
CVAkNN does better on the two faults. In particular, its DT2 statistic gives the DDR higher
than 90%. When SLCVAkNN is used, its two monitoring statistics have the higher DDRs
than 95%. For the sets of DATA-1, DATA-3, DATA-6, and DATA-7, PCA can detect these
faults with about 70-80% DDR on one statistic. That means PCA can alarm these faults, but
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the alarm degree is not very sufficient. The PCAkNN and CVAkNN improve the DDR to
about 90%. Further combining the SLA technique, SLCVAkNN achieves higher DDR than
CVAkNN on these four sets. As to DATA-5, all these four methods give a similarly good
performance with the DDRs higher than 95%. Considering all seven of these data sets, we
observe that the average detection rates of CVAkNN outperforms the PCA and PCAkNN
method, while the ones of SLCVAkNN statistics can reach 97.46% and 96.29%, which are
the highest among these four methods.

200 400 600 800 1000 1200

Sample number

100

105

D
T

2

200 400 600 800 1000 1200

Sample number

100

105

D
Q

Figure 8. SLCVAkNN monitoring results on the DATA-6 case.

Table 2. The disturbance detection rate of PCA, PCAkNN, CVAkNN, and SLCVAkNN for the tested
data sets.

NO.
PCA PCAkNN CVAkNN SLCVAkNN

T2 Q DT2 DQ DT2 DQ DT2 DQ

DATA-1 7.50% 70.47% 26.18% 90.89% 96.76% 64.39% 96.83% 89.48%
DATA-2 4.43% 29.52% 3.85% 57.76% 92.51% 49.71% 97.25% 96.80%
DATA-3 5.99% 83.06% 19.93% 97.81% 100.00% 100.00% 97.85% 97.97%
DATA-4 5.15% 10.18% 8.54% 26.78% 96.60% 51.93% 97.36% 96.79%
DATA-5 48.78% 96.05% 82.81% 99.54% 100.00% 100.00% 98.06% 98.29%
DATA-6 4.39% 77.44% 5.49% 92.20% 88.51% 41.20% 97.37% 97.25%
DATA-7 7.95% 84.99% 11.09% 95.97% 93.49% 55.33% 97.47% 97.47%
Average 12.03% 64.53% 22.56% 80.13% 95.41% 66.08% 97.46% 96.29%

To sum up, the applications on real industrial data verify the effectiveness of the
proposed SLCVAkNN in the power transmission system monitoring. All the tested faults
are about the ground faults. Although this paper does not provide the results on the other
disturbances such as 1,3-phase short circuits, overvoltages, the presented algorithm is also
suitable for these cases because they similarly lead to the changes of voltage and current.
However, one related issue should be noted. In this article, this method detects all the
occurred disturbances, including normal disturbances such as load power variations. To
judge whether the disturbance is a fault or a normal disturbance is a further job. In fact, as
to this issue, one solution is to enrich the modeling data with different normal changes. As
the kNN used in this method can deal with the multimodal data case, the trained model
can distinguish the faults and normal disturbances effectively when the normal changing
data are considered in the model training procedure.

5. Conclusions

This paper proposes a power transmission system disturbance detection method
based on SLCVAkNN. The real industrial data collected from the field transformer station
are applied to verify the proposed method. By investigating the application results, we can
draw the following conclusions.
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• CVA-based monitoring method can provide better dynamic information mining.
The dynamic data analysis tool CVA is introduced to deal with the power transmission
system data. By observing the application results, we find that CVAkNN has a higher
detection rate than PCAkNN.

• The statistical local analysis can further enhance the disturbance monitoring. Con-
sidering that many high-impendence ground faults in the real power systems are with
insignificant symptoms, the weak disturbance detection methods are very important
in improving the disturbance detection sensitivity. By focusing on the statistical local
information of CVA features, the proposed SLCVAkNN method outperforms the
CVAkNN method.
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Nomenclature

CVA canonical variate analysis
MSA multivariate statistical analysis
SLA statistical local analysis
WAMS wide area measurement system
As projection matrix
dh canonical variate vector
DQt SNND monitoring index
fh future data vector at the h-th sample instant
MT2 phase reconstruction statistics matrix
NT2

t reconstructed statistics vector
ph historical data vector at the h-th sample instant
Qh monitoring statistic at the h-th sample instant
xh data vector at the h-th sample instant
φdh,i

SLA primary residual of canonical variate
ψdh,i

SLA improved residual of canonical variate
Σ Covariance matrix
kNN k-nearest neighbor
PCA principal component analysis
SNND statistical nearest neighbor distance
a projection vector
b projection vector
DT2

t SNND monitoring index
eh residual vector at the h-th sample instant
F future data matrix
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MQ phase reconstruction statistics matrix
NQt reconstructed statistics vector
P historical data matrix
T2

h monitoring statistic at the h-th sample instant
X data matrix
φeh,i SLA primary residual of CVA residual
ψeh,i SLA improved residual of CVA residual
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