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Abstract: Condition monitoring of the cutting process is a core function of autonomous machining
and its success strongly relies on sensed data. Despite the enormous amount of research conducted
so far into condition monitoring of the cutting process, there are still limitations given the complexity
underlining tool wear; hence, a clearer understanding of sensed data and its dynamical behavior
is fundamental to sustain the development of more robust condition monitoring systems. The
dependence of these systems on acquired data is critical and determines the success of such systems.
In this study, data is acquired from an experimental setup using some of the commonly used sensors
for condition monitoring, reproducing realistic cutting operations, and then analyzed upon their
deterministic nature using different techniques, such as the Lyapunov exponent, mutual information,
attractor dimension, and recurrence plots. The overall results demonstrate the existence of low
dimensional chaos in both new and worn tools, defining a deterministic nature of cutting dynamics
and, hence, broadening the available approaches to tool wear monitoring based on the theory of chaos.
In addition, recurrence plots depict a clear relationship to tool condition and may be quantified
considering a two-dimensional structural measure, such as the semivariance. This exploratory
study unveils the potential of non-linear dynamics indicators in validating information strength
potentiating other uses and applications.
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1. Introduction

Since the late 1990s, we have witnessed a change from the old practice of chang-
ing tools automatically to the feasibility of instituting tool change procedures based on
monitoring the amount of wear on the cutting tool-edges through the implementation of
adaptive tool inspection mechanisms [1,2]. Literature reports numerous proposals for the
architecture of condition monitoring systems for online supervision and control. Never-
theless, few of the architectures have gained sufficient acceptance or otherwise proved to
be feasible for most machining processes/conditions. One important strategy to support
this goal is sensor-based and real-time control of key characteristics of both machines and
products, throughout the manufacturing process [3–5]. The development of such systems
considers the traditional ability of the operator to determine the condition of the tool based
on his/her experience and senses, e.g., vision and hearing. Sensor-based information and
its deterministic nature is, hence, of vital importance towards the development of reliable
condition monitoring systems.

The literature reports numerous examples pertaining to the study of sensor feasibility
regarding tool condition monitoring [6–10], and, from this research, a large variety of
sensors/attributes have been proposed. Previous work on the relationship between audible
emissions and tool wear has established that audible emissions are capable of indicating
the extent of the cutting edge wear, as in Weller et al. [11]. McNulty et al. [12] have also
highlighted the use of noise spectra for tool life evaluation applied to several cutting
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processes and have found significant changes in power in certain frequency bands that
appear to be characteristic of wear in certain cutting processes. Lee [13] found that,
during turning, the machine noise exhibited a wear-related change of sound pressure
level (SPL) at certain frequencies (4–6 kHz) for several materials. A drop in the SPL
before the tertiary zone (third and last stage of wear) was suggested as an end of tool-
life predictor. Experiments carried out by Ya et al. [14], using two different types of
turning tools, showed that both the tool angle and the cutting speed exerted no great
influence on the average cutting noise. Vibration has also been used to recognize the
wear state of a tool whilst turning [15], and the main advantage of this method is that
it is easily applied. Wear monitoring of cutting tools has been performed using many
different sensing techniques, including; temperature, motor current, acoustic emission
(AE), audible emissions, vibration, and force [7,9,16,17], to name a few. Some of these have
been successfully applied under laboratory conditions, but their success was limited in
industrial applications. An understanding of the underlying mechanisms and models are
essential for an effective fault and monitoring system’s development [18].

Despite the enormous amount of work developed so far, it is recognized that forecast-
ing in complex systems that are poorly understood, noisy, and often non-linear can be prac-
tically impossible when based on traditional model predictive algorithms, Parlos et al. [19]
and Li [20]. The complexity inherent to these systems led scientists to model processes
through system identification techniques. Clearly, the quality of sensor information leads
to promising results concerning the detection of the state of wear in idealized conditions
but much research has to be conducted in information processing, modeling and decision
making in order to correctly classify the tool wear state from the available sensors under
different cutting conditions [21–24]. The common factor in all these research projects is
the attempt to develop an effective and efficient Tool Condition Monitoring that supports
unmanned machining. A reliable system should integrate different information sources
and must be based on reliable sources so that a robust system can be built [8]. Although
multisensory integration has proven to improve the performance, it does most often rely on
the stationary assumption of acquired signals and, hence, disregard fractal or self-similar
characteristics of sensed data [25]. In this sense, capturing the non-linear or non-stationary
properties of sensed data provides important added information to support more reliable
condition monitoring systems.

Machining causes an interaction between the tool and the workpiece that leads to
vibrations during the cutting process. Large amplitude vibrations are known as chatter
and result in poor finishing and tool life shortening [22]. The non-linearities that charac-
terize noisy information and non-linear dynamics are inherent to condition monitoring
and call for a better understanding of sensed information [26]. Being non-linear, a system
can be described by non-linear equations, but these are difficult to solve and often are
approximated by linear equivalents that help attaining a solution, often disregarding the
chaotic behavior underneath. Given the noisy characteristic of sensor-based information
and the challenging task of modeling the cutting process, most often, tool wear monitor-
ing is performed using artificial intelligence techniques, such as neural networks [27,28],
taking advantage of their ability to model even the most complex non-linear functions.
Nevertheless, artificial neural networks, or other modeling techniques, take into account
pre-selected features or attributes to characterize the process being modeled, often collected
from sensed information that is sensitive to the number of data points in the sample, sam-
pling frequency, and signal-to-noise ratio [8]. In addition, if, in fact, those sensors capture
the inherent dynamics, it is often necessary to determine whether the collected information
carries enough information for the purpose of condition monitoring or, otherwise, has no
contribution at all.

Although a newcomer, chaos theory has proven to find a place in different fields of
research, such as energy [29], health [30,31], computing [32], and hydrology [33], and many
others, such as meteorology, economy, biomedicine, sociology, bioinformatics, chemistry, or
astrophysics [21]. Chaos is a term used to characterize apparently disordered deterministic
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non-linear systems with random-like behavior that are sensitive to initial conditions [34,35].
Deterministic systems may become unpredictable in the long term, and such evolution is
the subject for chaos theory [36]. This behavior is evident in the cutting process, as shown
by Grabec [37,38], being characterized by a complex and random-like behavior [26,39].
There were attempts to model this non-linear behavior relating the forces originated dur-
ing cutting with the depth of cut, but these tended to be unstable and subject to limited
boundaries upon cutting conditions. Chatter is a common manifestation of the random-like
behavior that characterizes hard cutting and is normally avoided through manipulation of
cutting conditions [40–42]. Further, there are also cumulative origins for the random-like
behavior associated with the fact that cutting tools, as well as work pieces, are not uniform.
The given behavior cannot be associated to machine noise since it pertains to frequencies
well above any machine borne noise [42]. The presented study takes into consideration the
underlying mechanisms of sensed signals as being deterministic and chaotic, as demon-
strated by several authors, such as Moon and Abarbanel [42] and Grabec [37,38]. The strong
dependency of condition monitoring systems on sensed information demands a better
understanding of sensed signals and their deterministic nature and, hence, determining
the feasibility of such systems to forecast under such complex behavior. Considering the
limited literature available on chatter, tool wear and non-linear behavior during cutting, it
is possible to depict a great impact these may have on tool life and wear.

A clear understanding of the sensed data and its dynamical behavior is fundamental
for a proper extraction, use, and understanding of condition monitoring indicators and,
hence, sensed information should be further explored to legitimate poorly understood
relationships to cutting tool wear. This paper explores the deterministic nature of sensed in-
formation using different techniques, such as the Lyapunov exponent, mutual information,
attractor dimension, and recurrence plots.

2. Theoretical Background on Non-Linear Indicators

There are two fundamental approaches when it comes to identifying chaos that
consist of graphical/qualitative or quantitative methods. Graphical methods are visually
more attractive and allow for deeper interpretations, although they sometimes lack the
essential deterministic inference [34,43]. There are some well-studied techniques allowing
visualization, such as phase space plots, power spectrum maps, and recurrent maps [36,44].
Nevertheless, graphical methods are not subject to objective conclusions and might give rise
to different interpretations and, fundamentally, are not quantifiable and, hence, not prone
to be integrated in unmanned automation. There are a few quantifiers that support a more
objective measure of chaos or random-like behaviors, and these are: entropy, Lyapunov
exponent, fractal dimension, and correlation dimension [36,38,45,46]. These indicators are
fundamental for an unbiased discussion regarding the importance of sensed data and their
role in the development of condition monitoring systems being industrial, medical, or
otherwise general systems using sensed data. It should be emphasized that the growing
numbers of autonomous systems rely on sensed information in order to interact with the
environment, e.g., robotics.

2.1. Average Mutual Information

Given the complexity of the underlying system dynamics, one relies on time-series
to perform an evaluation of the deterministic behavior of the cutting process. Tool con-
dition monitoring implies data collection from different sources that assume a temporal
sequence format, providing the basis for diagnosing, i.e., xi, where i represents the sample
sequence number that finds correspondence in a time scale according to the sampling
period. Taken’s theorem (Takens [47]) states that the dynamics of a time series are fully
captured in an m dimensional phase space which is as least the dimension of the original
attractor. The reconstructed phase space can be built from the time series using the delay
method introduced by Fraser and Swinney [48], as follows:

yi = [xi, xi−τ , xi−2τ , . . . , xi−(m−1)τ ], (1)
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where τ is the time delay and m the embedding dimension. Determining appropriate
parameters is not trivial and might be done using the Average Mutual Information (AMI)
(Fraser and Swinney [48]), Autocorrelation Function (ACF) [49], or Correlation Integral
(CI) [50]. From these methods, the Average Mutual Information is considered the best since
it reflects non-linear properties and, thus, does not require large amounts of data otherwise
required by CI and ACF. The AMI approach sets the time delay as the first minimum of the
Average Mutual Information, a method suggested by Fraser and Swinney [48]. The AMI is
given by

I(τ) = −∑
ij

pij(τ) ln
pij(τ)

pi pj
, (2)

where pi is the probability of finding a time series value in the i-th interval, and pij(τ) is the
joint probability that an observation falls into the i-th interval and the observation time τ
later falls into the j-th interval. The embedding dimension m can be determined using the
false nearest neighbor method [51], considering that the attractor of a deterministic system
has a smooth and regular shape. It means that, if two points, yi and yt, are sufficiently close
in the reconstructed attractor, they cannot grow apart more than a given constant.

Ri =
|xi+mτ − xt+mτ |
‖yi − yt‖

. (3)

If Ri is larger than a given threshold, then, yi is marked as having a false nearest
neighbor. Equation (3) must be applied for the whole time series and for various values of
m until the fraction of points for which Ri is bigger than the threshold is negligible.

2.2. Lyapunov Exponents

Sensitive dependence on initial conditions can also be performed using Lyapunov
exponents and can be used to determine if a given system is chaotic or stable. The so-
called Lyapunov exponent captures the rate at which two initially close trajectories on the
phase space grow apart [52]. Lyapunov exponents are defined as the average growth rate,
λi, considering two neighboring points, and, in the ith direction, considering time as t,
according to the following formulation [53]:

λi = lim
t→∞

1
t

log2
‖δxi(t)‖
‖δxi(0)‖

. (4)

The most important thing to retain is the largest Lyapunov exponent, λ1, enabling us
to depict a chaotic system, hence being sufficient for the present study. The algorithm used
to calculate λ1 is briefly explained and follows the guidelines provided by Wolf et al. [53],
which gives a simple implementation method.

λ1 =
1

tM − t0

M

∑
k=1

log2
L′(tk)

L(tk−1)
. (5)

It is first required to determine the nearest neighbor of initial point yk. L(tk) is the
Euclidean distance between the initial point and the nearest neighbor. Iterating both points
in time for a given time in proportion to the embedding delay τ enables the calculation of
the final distance L′(tk−1).

2.3. Recurrence Plots

Earlier studies using recurrent plots were designed to find non-stationary behavior
in dynamic systems [44]. Recurrent plots use a two-dimensional representation where
each point represents the distance, in a given graded scale, between two adjacent points
in the reconstructed attractor. The absence of a pattern on these plots depicts a system
with an underlying random behavior, if, otherwise, there is a depictable structure then the
system has a deterministic nature [54]. Recurrence plots, by definition, do not provide a
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quantitative measure relying on the interpretation of the two-dimensional plot, considering
the homogeneity of the structure, where clear patterns depict the stationary nature of the
system. Although not in the scope of this paper, a quantitative measure could be obtained
from the calculation of its semi-variance and plotted against distance as a variogram [55].
Recurrent plots depicting a homogenous structure demonstrate the stationary nature of
signals and, hence, are deterministic, or, otherwise, stochastic.

3. Materials and Methods

Considering past research experience [5,8,21,28] and the extensive evidences from
literature [1,2,56], background experimental work was conducted on the turning process
to collect tool wear data pertaining to sensed vibration, sound, feed, and tangential force.
Experimental work was done on a MHP Model Moog-Turn 50 (MT50) Slant Bed Turning
Centre (MHP Machines Ltd., Kingsbury, UK), with standard CNC control. The effective
bed size is 500 mm with a DC servo motor of 18 kW driving the spindle. This machine
can provide a constant power of 34 kW between 1000 and 3000 RPM, and the range of
admissible cutting parameters is limited by the maximum 4000 RPM imposed by the chuck
capacity. The turning center has the following program resolution: feed rate 0.001 mm/rev;
cutting speed 1 m/min; and depth of cut resolution 0.001 mm. Data was acquired from a
block of mild steel under realistic production conditions that consisted of a cutting speed
of 350 m/min, a feed rate of 0.25 rev/min, and a depth of cut of 1 mm, with an insert type
HC-P25 grade (WALTER designation of grade WTN 43) coated carbide (CNMG 120408).
The sensors, characteristics and mounting (schematic in Figure 1) can be found in Table 1.
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Table 1. Sensors, characteristics, and mounting.

Scheme Type Characteristics Mounting

Accelerometer Piezotron Kistler
8752A50

Coupler–Kistler 5108,
mounted resonant

frequency 32.6 kHz,
transverse sensitivity

1.6%, range ±50 g, and
sensitivity 100.2 mV/g

Measuring Vertical
vibration–Mounted

on the base.

Microphone ECM-1028 Matching amplifier. 10 cm from cutting
insert.

Strain gauge -

Feed and tangential force
measurement–two half

wheatstone bridge
(amplification–RS

435–692) mounting

Tool holder-feed and
tangential direction.

Data acquisition was performed with a data acquisition board (Amplicon PC30 PGL,
Brighton, UK) with a maximum sampling rate of 200 kHz, a typical conversion time of
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10 microseconds, and a 16-way multiplexed input, for which Direct Memory Access (DMA)
control was used. The analogue signals were sampled at 20 kHz with tool wear and sensor
data being acquired at intervals of 2 min, considering an expected tool life, for each insert,
of about 15 min. Sample data was recorded for 6 inserts and the length of each sample was
4096 points, and these were acquired approximately in the middle of the bar.

A typical graph of the evolution of flank wear with cutting time, obtained from the
experimental work, is shown in Figure 2 and consists of three stages; the first is a short
period of rapid wear, and the wear then progresses at a slower rate over a period, in which
most of the useful tool life lies. The last stage is a rapid period of accelerated wear, and it is
usually recommended that the tool be replaced before this stage. Under the given cutting
conditions, the first stage can be observed to end at approximately 3.5 min after the start of
cutting, which corresponds to VBB = 0.09 mm, the second stage lies in the interval between
3.5 min and 14.7 min (0.09 < VBB < 0.3 mm), and the third stage starts after 14.7 min of
cutting time. The beginning of the third stage coincides with a value of flank wear of
0.3 mm, which is the tool life criterion established in the ISO3685 (1993) standard [57].
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The complexity of the cutting dynamics, as well as the noise present in sampled
information, makes it difficult to deploy a robust condition monitoring system set to work
in real manufacturing conditions. Hence, a deeper understanding on the nature, robustness,
and effectiveness of each of the wear-related acquired information is needed. As can be
seen from Figure 2, as the tool life comes to its end, there are slight differences in tool life
between cutting tips, which proves difficult to anticipate or otherwise model given the
wide range of variables governing the cutting process dynamics.

4. Results and Discussion

Based on the earlier description, average mutual information and false nearest neigh-
bors were determined in order to identify the switching dynamics in the time series
pertaining to the different sensors. In Figure 3, the average mutual information is plotted
against the time lag for each of the sensors, from which the first minimum provides the
correct lag time. In the case of new inserts, and from Figure 3, it can be seen that both
forces, feed and tangential, present an estimated time delay of 0.1 ms. Sound achieves its
first minimum at 0.2 ms, and vibration shows its first minimum at 0.25 ms.
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Figure 3. Average mutual information of acquired sensor data for new inserts versus time lag.

From Figure 4, it can be seen that, for worn inserts, mutual information changes signifi-
cantly, increased by 25%, having both feed and tangential forces a delay time corresponding
to 0.1 ms. Sound has its first minimum at 0.1 ms, and vibration shows its first minimum
0.15 ms. From the difference between time lags for worn and new tools, it can already be
seen that the system’s dynamics change as tool wear evolves. The mutual information
function of worn tools exhibits an initial stronger gradient than the mutual information
function of new tools. This is a strong indication that the system’s dynamics for worn tools
are more chaotic (or less predictable) than that for new tools.

Machines 2021, 9, x FOR PEER REVIEW 8 of 12 
 

 

 
Figure 4. Average mutual information of acquired sensor data for worn inserts versus time lag. 

To determine the embedding dimension of the underlying system, it is first required 
to search for the first occurrence of the dimensional state space, where the percentage of 
false nearest neighbors drops to zero. Figure 5 shows that the number of false nearest 
neighbors drops to zero for the first time when the embedding dimension reaches 3—the 
plot for new tools show identical results. This means that the time series signal has an 
attractor that fully unfolds with an embedding dimension of 3, meaning that the orbits are 
distinct and do not overlap. In other words, it would be justified to model the behavior of 
the system with not less than three autonomous first-order ordinary differential equa-
tions. The largest Lyapunov exponent was determined according to the approach de-
scribed and converges to 0.33—this value provides a comprehensive proof that the system 
demonstrates a chaotic behavior. 

 

 
Figure 5. False nearest neighbors of acquired sensor data for worn inserts versus embedding dimen-
sion. 

The recurrence plot obtained for sound for different tools, in Figures 6 and 7, typifies 
the encountered behavior underneath the corresponding tools for different tool wear 
stages. The consistent structures found for the different tools suggest that there is a coher-
ent evolution of the structure that is replicable and should aid in inferencing about its 

Av
er

ag
e 

M
ut

ua
l I

nf
or

m
at

io
n

Figure 4. Average mutual information of acquired sensor data for worn inserts versus time lag.

To determine the embedding dimension of the underlying system, it is first required
to search for the first occurrence of the dimensional state space, where the percentage of
false nearest neighbors drops to zero. Figure 5 shows that the number of false nearest
neighbors drops to zero for the first time when the embedding dimension reaches 3—the
plot for new tools show identical results. This means that the time series signal has an
attractor that fully unfolds with an embedding dimension of 3, meaning that the orbits are
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distinct and do not overlap. In other words, it would be justified to model the behavior of
the system with not less than three autonomous first-order ordinary differential equations.
The largest Lyapunov exponent was determined according to the approach described and
converges to 0.33—this value provides a comprehensive proof that the system demonstrates
a chaotic behavior.
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Figure 5. False nearest neighbors of acquired sensor data for worn inserts versus embedding dimension.

The recurrence plot obtained for sound for different tools, in Figures 6 and 7, typifies
the encountered behavior underneath the corresponding tools for different tool wear
stages. The consistent structures found for the different tools suggest that there is a
coherent evolution of the structure that is replicable and should aid in inferencing about its
deterministic nature. The transition between recurrence plots from new to almost worn
tools illustrates the change in dynamics, depicting the course structure in all worn tools as a
more deterministic nature, hence being simpler to model and more predictable in behavior.
Completely worn out tools tend to display a fine-grained structure that approximates
to the ones produced by random signals, meaning that randomness plays a major role
at this stage of wear. It can also be seen that, for worn out tools, recurrent plots are no
longer symmetrical on both diagonals, although there is symmetricity along the principle
diagonal. One possible candidate explanation might be the occurrence of chatter induced
by structural changes promoted by the changes in contact surface between the tool and
material being cut. Proving the existence of a chaotic behavior and, hence, the existence
of a deterministic behavior would be a pure academic exercise if no further use could be
given to these findings. Hence, it is encouraging that the results provided by the recurrence
plots offer significant evidence of changes in the systems’ dynamics that are detectable
and can be quantifiable, as suggested earlier, considering a two-dimensional structural
measure, such as the semivariance.

The importance of these findings stems from the fact that sensed signals, and corre-
sponding sensors, used in condition monitoring are often not assessed from this perspective
prior to its utilization, considering that given past evidence regarding the apparent ran-
domness are not conclusive, and the signals may carry tool wear-related information.
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5. Conclusions

The renewed interest on the selection criteria of adequate features/sensors for different
unmanned systems has placed an increased relevance upon the robustness of information
sources. This study explores the deterministic nature of sensed information for condition
monitoring providing qualitative and quantitative evidence of their impact. It was found
in this study that sensed information from different sensors, widely used for condition
monitoring of the cutting process, provide strong evidence that the underlying system ex-
hibits a chaotic behavior, determining that the nature of the cutting process is deterministic.
The changes depicted from the recurrent plots at different wear levels suggest its feasibility
to detect, or contribute to the detection, of wear level and can be used as a feature on the
development of monitoring. As of this stage, there is no measure on the degree of tool
wear, although a clear relationship can be depicted. The overall results demonstrate the
existence of low dimensional chaos in both new and worn tools, defining a deterministic
nature of cutting dynamics and, hence, broadening the available approaches to tool wear
monitoring based on the theory of chaos. Findings indicate that recurrence plots can be
used to infer upon the degree of tool wear since a consistent and progressive evolution of
the two-dimensional mapping can be depicted. Further, this study provides new insights
of the underlying dynamics of the cutting process, contributing strongly to an adequate
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choice of sensors, associated extracted features, and mainly, motivates the exploration of
chaos theory applied at an experimental level using real data. This same approach can be
used to study the relevance of other information resources being sampled from sensors or
otherwise collected from tertiary sources. This study reveals the potential of this technique
for tool wear monitoring, but there is still no quantifiable indicator for automated reason-
ing. Further work should be conducted to quantify the degree to which two-dimensional
recurrent maps change according to the corresponding tool wear level, perhaps using a
variogram upon the recurrence plot to measure the degree of spatial dependence.
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