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Abstract: This paper is focused on the stabilization of Takagi–Sugeno fuzzy model-based Markovian
jump systems with the aid of a delayed state observer. Due to network-induced constraints in the
communication channel, a delay partition method combined with an event-triggered mechanism
is proposed to design the observer. Then, a novel integral sliding surface is designed, based on
which sliding mode dynamics is obtained. Further, according to stochastic stability theory, feasible
conditions are provided to ensure the sliding mode dynamics and the error dynamics have an
H∞ attenuate level γ. The challenge is to deal with the issue that transition rates may be totally
unknown. Moreover, an observer-based sliding mode controller is constructed to ensure the finite-
time reachability of the predefined sliding surface. Finally, a numerical example based on a robotic
manipulator is given to verify the effectiveness of the proposed method.

Keywords: Markovian jump systems; sliding mode control; observer design; event-triggering scheme

1. Introduction

With the strong demands for modeling a physical system with high accuracy, for
instance, the physical systems may have structural mutation due to changes of power, the
shift of parameters and external disturbances, etc., which provoke the need to seek for more
suitable mathematical models. Therefore, Markovian jump systems (MJSs) have attracted
numerous attention because of its ability to model such kind of physical model with multi-
modal characteristics or intelligent control system with multi-controller switching [1]. So
far, the researches on MJSs have been reported by many in both applications and theoretical
aspects, such as the Markov jump models are widely applied in nuclear power systems,
manufactory and network communication [2–5], etc. Theoretically, it also witnessed the
issue of stochastic stability analysis, stabilization, filter design and so on. For example, in [6],
the robust stability and control of uncertain discrete-time linear systems with Markovian
jumping parameters was dealt with; in [7], the problems of stochastic stabilization and
H∞ control for 2-D MJSs were proposed; and systematic theory on stochastic differential
equations with Markovian switching was presented in [8]; the H∞ filtering problem for
MJSs was studied in [9,10]; for more details, we may refer to [11–15] and some of their
references. In another aspect, due to the existence of nonlinearity, the Takagi–Sugeno
(T-S) fuzzy modeling approach has become one of the most popular and effective ways to
handle the synthesis of complex nonlinear systems [16], and the investigation on T-S fuzzy
model-based MJSs is also rich. In addition, the stabilization of nonlinear singular MJS
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with matched/unmatched uncertainties based on the T-S fuzzy model was studied in [17];
the robust H∞ control involving a class of uncertain stochastic MJSs was investigated
in [18], etc. [19–21]. As we all know, the transition rates (TRs) play a big role in the system’s
performance, but getting exact TR information seems impossible due to all kinds of limits
in actual systems, such as high cost, technique limitations and so on. Hence, it is necessary
to study MJSs in the presence of deficient TR information. Up to now, some results can be
found in dealing with this issue, but not enough. For example, some pioneer works dealt
with the issues of stabilization, stochastic stability and quantized filtering for (singular)
MJSs with deficiency mode information in [22–25]. However, all the results proposed
in literature [22–25] need TR information, no matter partially or fully. So, what if the
information of TRs for one mode to another is completely unknown? This is the new
challenge we are going to deal with in this paper.

Sliding mode control (SMC) has exclusive advantages in dealing with the nonlinear
complex system, such as the good transient performance, fast response speed and strong
robustness, which has attracted great attention in the community since its appearance. The
researches on SMC of MJSs were also active, for instance, a class of continuous-time MJSs
with digital communication constraints via SMC approach was proposed in [26]; the robust
H∞ SMC for discrete-time MJSs subject to intermittent observations was researched in [27];
in Ref. [28], the research of asynchronous SMC was investigated based on uncertain MJSs
with time-varying delays. In the presence of status components unavailable, observer-
based SMC arises, such as an adaptive sliding mode observer was designed for nonlinear
MJSs in [29]; the research about sensor fault estimation along with fault-tolerant control
for time-delay MJSs through sliding mode observer technique was studied in [30]; in [31],
a reduced-order sliding mode observer was designed to realize adaptive control of T-S
fuzzy modeled-based MJSs. More works can be found in [32–34] and references therein.

At present, the control systems are realized by distributed components connected
through the network, which could improve efficiency and reliability. Traditionally, the time-
triggered control is performed periodically that may bring a heavy communication burden.
Recently, the event-triggered control strategy has attracted numerous attention for the
transmission of data only allowed when it is necessary, which could save communication
resources and make full use of congested network channel. Therefore, the approach
of event-triggered control is becoming more and more popular, and the results have
been reported involving continuous-time and discrete-time systems [35–38], multi-agent
systems [39], stochastic systems [40] and neural networks [41], etc. Recently, the event-
triggered based SMC was also touched in the field, such as the event-triggered SMC for
stochastic systems on the way of output feedback was studied in [42], etc. However, the
problem of observer-based SMC through event-triggered mechanism is seldom touched
yet since such an issue is a difficulty due to network-induced constraints. For instance,
how to overcome the network-induced delays in constructing desire state observer in
order to realize good approximation of original state, and how to design sliding surface to
accommodate the sliding motion have partially stimulated our research.

Briefly speaking, this paper will handle the problem of how to design a sliding mode
observer for stabilization of nonlinear MJSs based on T-S fuzzy modeling approach. Most
of main attention will be focused on designing an event-triggered based time-delay sliding
mode observer and a novel sliding mode surface, then establishing feasible easy-checking
LMI conditions to ensure H∞ performance in sliding mode dynamics and error dynamics
with totally unknown mode transition information. The main contributions of this paper
can be concluded as: (1) Compared with traditional observer, the proposed event-triggered
time-delay state observer brings the benefits that error is better suppressed and better
stabilization property is obtained; (2) a novel sliding surface function is proposed, based on
which the observer gain matrices can be computed in the design process rather than given
as in [42]; (3) a new method is proposed to give feasible strict LMI conditions for stability
of MJSs with totally unknown transition information; and (4) fuzzy SMC law ensures
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finite-time reachability of sliding surface and keeps sliding motion of each sub-models in
the presence of uncertain transition information and nonlinearities.

Notions: In this paper, the concept X > 0 (X ≥ 0) denotes X is a positive definite (positive
semidefinite) matrix. I and 0 represent an identity matrix and zero matrix, respectively.E(·)
represents the expectation operator about probability measures. ‖ · ‖ represents the Eu-
clidean vector norm. ∗ denotes Symmetric elements in a symmetric matrix. sym{P}
expresses PT + P.

2. Model Establishing and Problem Statement

Let us consider the model of single-link robot arm model proposed in [43], where the
equation of dynamic is given by

..
θ(t) = −MgL

J
sin(θ(t))− D(t)

J

.
θ(t) +

1
J

u(t) (1)

the meanings of parameters are defined in Table 1.

Table 1. NOTATIONS.

Symbol Meaning

ϑ(t) angle position of the robot arm
u(t) the input of control
D(t) coefficient of viscous friction

L length of the arm
J moment of inertia

M mass of the pay load
g the acceleration of gravity

Letting x1(t) = ϑ(t) and x2(t) =
.
ϑ(t). According to the method proposed in [44] that

under certain angle position, the nonlinearity sin(x1(t)) can be replaced by

sin(x1(t)) = h1(x1(t))x1(t) + βh2(x1(t))x1(t)

in which β = 0.1/π is a known parameter and the membership functions satisfy h1(x1(t))+
h2(x1(t)) = 1 with h1(x1(t)), h2(x1(t)) ∈ [0, 1]. By solving the above equation, the mem-
bership functions h1(x1(t)) and h2(x1(t)) are obtained as

h1(x1(t)) =

{ sin(x1(t))−βx1(t)
x1(t)(1−β)

, x1(t) 6= 0

1, x1(t) = 0

h2(x1(t)) =

{ x1(t)−sin(x1(t))
x1(t)(1−β)

, x1(t) 6= 0

0, x1(t) = 0

Based on the membership function mentioned above, it is easy to see that if x1(t)
is about 0 rad, then h1(x1(t)) = 1, h2(x1(t)) = 0, if x1(t) is about −π or π rad, then
h1(x1(t)) = 0 and h2(x1(t)) = 1. Hence, the fuzzy model-based state-space description of
the robotic system can be rewritten as:

Plant Rule 1: IF x1(t) is “about 0 rad”,
THEN

.
x(t) = A1x(t) + Bu(t)

where x(t) =
[

xT
1 (t) xT

2 (t)
]T and

A1 =

[
0 1

−MgL
J −D(t)

J

]
, A2 =

[
0 1

− βMgL
J −D(t)

J

]
, B =

[
0
1
J

]
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Particularly, as discussed in [43], the moment of inertia J may change due to the
abrupt change of actual operating, for instance, the switching of the parameters follows
the Markovian jumping rules. Therefore, based on the above model, let us consider the
following general model:

Plant Rule i: IF ϑ1(t) is Fi1 and ϑ2(t) is Fi2 and . . . and ϑp(t) is Fip
THEN { .

x(t) = Ai(rt)x(t) + B(rt)u(t)
y(t) = C(rt)x(t)

(2)

where x(t) ∈ Rn denotes the state vector; ϑ1(t), · · · , ϑp(t) are premise variables; Fij

(i = 1, 2, · · · , r; j = 1, 2, · · · p) are fuzzy sets, u(t) ∈ Rl is the control input; y(t) ∈ Rq is
the controlled output. Ai(rt) and C(rt) are the system matrices with appropriate dimen-
sions; B(rt) is the input matrix with full column rank. The process of stochastic jumping
{rt, t ≥ 0} is a continuous-time homogenous Markovian jumping process. The process of
generator with values in a finite set S = {1, 2, · · · , s} given by

Pr{rt+h = n|rt = m} =
{

πmnh + o(h),
1 + πmmh + o(h),

m 6= n,
m = n

where h > 0 and limh→0o(h)/h = 0, πmn(h) > 0,m 6= n, is the transition rate from mode m
at time t to mode n at time t + h. Meanwhile, πmm = − ∑

n 6=m
πmn < 0 for each m ∈ S .

Through fuzzy standard blending, the model can be easily derived:

.
x(t) =

r

∑
i=1

hi(ϑ(t))[Ai(rt)x(t) + B(rt)u(t)] (3)

in which ϑ(t) =
[

ϑ1(t) ϑ2(t) · · · ϑp(t)
]T ,hi(ϑ(t)) is the membership function that

the formula of which is

hi(ϑ(t)) =
Πp

j=1µij
(
ϑj(t)

)
∑r

i=1 Πp
j=1µij

(
ϑj(t)

)
where µij

(
ϑj(t)

)
is the rank of membership of ϑj(t) in µij. In addition, for all t > 0, it is

satisfied that hi(ϑ(t)) ≥ 0 and ∑r
i=1 hi(ϑ(t)) = 1. For simplicity, r(t) , m and hi(ϑ) is short

for hi(ϑ(t)) in the following.
The following Definitions and Lemma are introduced.

Definition 1. ([45]) Given the Lyapunov functional candidate V(x(t), rt, t ≥ 0) with twice
differentiable on x(t), then, LV(x(t), rt) which is infinitesimal operator is given by

LV(x(t), rt) = lim
δ→0

E{V(x(t + δ), rt+δ|x(t), rt = m)} −V(x(t), m)

δ
(4)

Definition 2. ([46]) The unforced stochastic system (2) (i.e., u(t) = 0 ) is said to be stochastically
stable for any initial condition x(t0) and tt0 , as long as it satisfies

lim
t→+∞

E
{∫ t

t0

‖x(s)‖2ds|x(t0), rt0

}
< +∞ (5)

Lemma 1. ([47]) Given any real number ε and any square matrix R, for any matrix F > 0, the
matrix inequality ε

(
R + RT) ≤ ε2F + RF−1RT holds.

Here, in this paper, an appropriate observer-based fuzzy SMC strategy for the model (2)
on the communication networks with network-induced constraints has been designed
to obtain good stochastic stability property with an H∞ performance in sliding mode
dynamics and error dynamics.
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3. Main Results

Given that the state component may not be accessible in practice, a state observer needs
to be designed first. Through digital communication medium, the signal is transmitted
in the output channel of observer that may suffer from network-induced delays, where
the output measurement y(t) sampled periodically with sampling period T. Here, y(iT)
(i = 0, 1, 2, · · · , ∞) is the current measurement and y(ikT) (ik ∈ N, k = 0, 1, 2, · · · , ∞,
i0 = 0, k is triggering time) is the one latest transmitted, respectively. The judgement
condition whether retrieving the transmission is determined by the following conditions:

[y((ik + j)T)− y(ikT)]TΩm[y((ik + j)T)− y(ikT)] > ρyT(ikT)Ωmy(ikT) (6)

where Ωm is a positive definite weighting matrix decided by the error tolerance ρ ∈ [0, 1).
The transmission scheme in the next transmission instant ii+1T is determined by

ik+1T = ikT + min
j≥1

{
jT
∣∣∣[y((ik + j)T)− y(ikT)]TΩm[y((ik + j)T)− y(ikT)] > ρyT(ikT)Ωmy(ikT)

}
(7)

Remark 1. From the above triggered mechanism, only meeting the triggering condition that data
packets sampled will be sent on the network; therefore, the network efficiency is improved. In
particular, if ρ = 0, it is seen that the data transmission mechanism is simplified from event
triggering to periodic triggering.

3.1. Network and ZOH

Due to network transmission speed, network transmission protocol and the load
connected in the network, the network-induced delays are considered first, the released
transmission delay in kth is marked as dk, that is, dk = tk − ikT, where tk is the instance
that the measurement y(ikT) arrived ZOH. Let dm be the maximum transmission delay, i.e.,
dm = max{dk|k = 0, 1, 2, · · · , ∞}. Therefore, the interval of time [tk, tk + 1) can be divided
into subintervals as follows:

I1 = [tk, tk + T),
I2 = [tk + T, tk + 2T),
...
Ij̃k =

[
tk +

(
j̃k − 1

)
T, tk+1

)
,

(8)

where j̃k is determined by j̃k = min{j|tk + (j− 1)T ≥ tk+1, j = 1, 2, · · · }. Then

[
tk, tk1

)
= ∪ j̃k

j=1 Ij

Denote

τ(t) =


t− ikT, t ∈ I1
t− (ik + 1)T, t ∈ I2
...
t−
(

ik +
(

j̃k − 1
)

T
)

, t ∈ Ij̃k

(9)

Obviously,
0 ≤ τ(t) < dk + T ≤ dm + T , dm

Now, define 
0, t ∈ I1,
y(ikT)− y((ik + 1)T), t ∈ I2,
...
y(ikT)− y

(
ik +

(
j̃k − 1

)
T
)

, t ∈ Ij̃k
,

(10)
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which combines with (9) leads to

y(ikT) = ek(t) + y(t− τ(t)) (11)

Given the triggering situation (7), y((ik + j)T) satisfies that

eT
k (t)Ωmek(t) ≤ ρ[ek(t) + y(t− τ(t))]TΩm

[
ek(t) + yT(t− τ(t))

]
(12)

In addition, as shown in Figure 1 that the input y(t) in state observer satisfies

y(t) = y(ikT), t ∈ [tk, tk+1) (13)

that is the received signal equals to the signal released at instants of event-triggering
t0 < t1 < t2 < · · · < tk < · · · . The output signal from ZOH is piecewise constant but
continuous from the right. Thanks to the characteristics of ZOH causal reconstruction, it is
convenient to carry out the design of observer and the analysis of sliding motion.
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3.2. Luenberger State Observer Design

The premise variable is also unavailable which is considered in the paper. Therefore,
according to the measurement y(t) for t ∈ [tk, tk+1) (k = 0, 1, 2, · · · , ∞), it is easy to see
as follows.

Observer Rule i: IF ϑ̂1(t) is Mi1 and ϑ̂2(t) is Mi2 and . . . and ϑ̂n(t) is Mip
THEN { .

x̂(t) = Ai,m x̂(t) + Bmu(t) + Li,m(y(t)− ŷ(t− τ(t)))
ŷ(t) = Cm x̂(t)

(14)

where x̂(t) is the estimation of the state x(t). Li,m is the observer gain having appropriate
dimensions to be determined.

In addition, the dynamics of fuzzy observer (14) after fuzzy blending is inferred as

.
x̂(t) =

r

∑
i=1

hi
(
ϑ̂
)
[Ai,m x̂(t) + Bmu(t) + Li,m(y(t)− ŷ(t− τ(t)))] (15)
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It can be seen from (11) and (13) that y(t) = ek(t) + y(t− τ(t)). Moreover, the formula
of the fuzzy observer is given as follows:

.
x̂(t) =

r

∑
i=1

hi
(
ϑ̂
)
[Ai,m x̂(t) + Bmu(t) + Li,m(ek(t) + y(t− τ(t))− ŷ(t− τ(t)))] (16)

Define e(t) = x(t)− x̂(t) as estimated error. Combining (3) with (16), it is easy to
obtain: 

.
e(t) =

r
∑

i=1
hi
(
ϑ̂
)
[Ai,me(t)− Li,mCme(t− τ(t))− Li,mek(t)] + w(t)

ye(t) = Cme(t)
(17)

where w(t) = ∑r
i=1
(
hi(ϑ)− hi

(
ϑ̂
))
[Ai,mx(t) + Bmu(t)] is regarded as the disturbance. Ob-

viously, if ϑ(t) = ϑ̂(t), then w(t) = 0.

Remark 2. Combined with formulas (16) and (17), it is easy to obtain that the addition of time-delay
term makes the effect of sliding mode control better and can better suppress the error.

3.3. Sliding Surface Design

On the basis of (16), we propose a fuzzy integral sliding surface function:

s(t) = Gx̂(t)−
∫ t

0

r

∑
i=1

hi
(
ϑ̂
)
G[(Ai,m + λmBmKi,m)x̂(s) + (1− λm)Bmu(s)]ds (18)

where G ∈ Rm×n making GBm nonsingular is chosen, λm making I − 1
λm

Bm(GBm)
−1G

nonsingular is given. Ki,m making Ai,m + BmKi,m is Hurwitz is selected.
In view of the systems (16) and (18), as shown as follows

.
s(t)= −

r

∑
i=1

hi
(
ϑ̂
)
λmGBmKi,m x̂(t) + λmGBmu(t)

+GLi,m(ek(t) + Cme(t− τ(t)))

(19)

After arriving the sliding surface s(t) = 0, i.e.,
.
s(t) = 0, the equivalent control variable

can be obtained as follows:

ueq(t) =
r

∑
i=1

hi
(
ϑ̂
)[

Ki,m x̂(t)− 1
λm

(GBm)
−1GLi,m(ek(t) + Cme(t− τ(t)))

]
(20)

Then, by substituting (20) into (16), it is easy to obtain:

.
x̂(t) =

r

∑
i=1

hi
(
ϑ̂
)[

Ai,m x̂(t) + ImLi,m(ek(t) + Cme(t− τ(t)))
]

(21)

where Ai,m = Ai,m + BmKi,m and Im = I − 1
λm

Bm(GBm)
−1G.

Remark 3. By selecting appropriate λm such that Im is invertible. The benefit is that we can obtain
the observer gain matrices by solving the optimal problem of the following conditions rather than by
given in the design process.

Here, designing a sliding mode controller based on observer for the system (2) is the
purpose of this paper and the controller can meet two conditions as follows:
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1. It is stochastically stable for system (17) with w(t) = 0 and the sliding mode dynamics (21).
2. The measurement of H∞ performance with the condition of zero-initial will be satisfied

as follows:

J = E
∫ +∞

0

[
yT

e (s)ye(s)− γ2wT(s)w(s)
]
ds < 0

where γ is a positive constant.

Remark 4. By selecting this integral sliding mode functional, the linear LMI is obtained for the
obtained sliding mode stochastic stability analysis, so that the gain matrix of the observer can be
obtained instead of artificial design, which reduces the conservatism.

3.4. Stochastic Stability and H∞ Performance Analysis

Remark 5. Given positive scalars dm, γ, a1m, a2m and ρ ∈ [0, 1), the error dynamics (17) and the
sliding mode dynamics (21) are stochastically stable with an H∞ attenuation level γ, if matrices
Pm > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, Ωm > 0, free weighting matrices Skm (k = 1, 2, 3)
and Yim with appropriate dimensions exist, the following condition is satisfied for each m ∈ S :

A11
i,m A12

i,m A13
i,m 0

∗ A22
i,m 0 A24

i,m
∗ ∗ A33

i,m 0
∗ ∗ ∗ A44

i,m

 < 0 (22)

where

A11
i,m =


A11

i,m −S1m 0 a1m Ai,m I−1
m PT

m
∗ Dm −S2m 0
∗ ∗ −Q1 0
∗ ∗ ∗ dmR1 − sym{amPm Im}

,

A22
i,m =



A22
i,m B11

i,m 0 amA
T
i,mPT

m B12
i,m Pm

∗ B13
i,m −S4m CT

mYT
i,m 0 0

∗ ∗ −Q2 0 0 0
∗ ∗ ∗ B14

i,m B15
i,m a2mPm

∗ ∗ ∗ ∗ B16
i,m 0

∗ ∗ ∗ ∗ ∗ −γ2 I



A12 =


0 0 0 0 0 0
0 CT

mΩmCm 0 CmΩm 0 0
0 0 0 0 0 0
0 a1mYi,mCm 0 0 a1mYi,m 0



A13 =


S1m 0 Pm Im

0 S2m 0
0 0 0
0 0 0



A24 =



S3m 0 0
0 S4m CT

mYT
i,m

0 0 0
0 0 0
0 0 0
0 0 0


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A33
i,m = diag

{
−R1/dm,−R1/dm,−Pm/2

}
A44

i,m = diag
{
−R2/dm,−R2/dm,−Pm

}
A11

i,m = sym
{

Pm Ai,m + S1,m
}
+ Q1 + ∑s

n=1 πmnPn

A22
i,m = sym

{
Pm Ai,m + S3,m

}
+ Q2 + CT

mCm + ∑s
n=1 πmnPn

Dm = sym{S2m}+ CT
mΩmCm B11

i,m = Yi,mCm − S3m

B12
i,m = CT

mΩm −Yi,m

B13
i,m = S4m + ST

4m + CT
mΩmCm

B14
i,m = dmR2 − a2mPm

B15
i,m = −a2mYi,m B16

i,m = (ρ− 1)Ωm

The observer gain matrices are computed by Li,m = P−1
m Yi,m.

Proof. First, the overall closed-loop system is stochastically stable with w(t) = 0 will be
proved. Therefore, choose the following stochastic Lyapunov–Krasovskii functional:

V(x̂(t), e(t), rt) = V(x̂(t), rt) + V(e(t), rt)

where

V(x̂(t), rt) = x̂T(t)P(rt)x̂(t) +
∫ t

t−dm
x̂T(s)Q1 x̂(s)ds +

∫ 0
−dm

∫ t
t−θ

.
x̂

T
(s)R1

.
x̂(s)dsdθ

V(e(t), rt) = eT(t)P(rt)e(t) +
∫ t

t−dm
eT(s)Q2e(s)ds +

∫ 0
−dm

∫ t
t−θ

.
eT
(s)R1

.
e(s)dsdθ

By employing Definition 1, it obtains

LV(x̂(t), m)= 2x̂T(t)Pm

r

∑
i=1

hi
(
ϑ̂
)[

Ai,m x̂(t) + ImLi,m(ek(t) + Cme(t− τ(t)))
]

+x̂T(t)
s

∑
n=1

πmnPm x̂(t) + x̂T(t)Q1 x̂(t) + dm
.
x̂

T
(t)R1

.
x̂(t)

−x̂T(t− dm)Q1 x̂(t− dm)−
∫ t

t−dm

.
x̂

T
(s)R1

.
x̂(s)ds

and

LV(e(t), m)= 2eT(t)Pm

r

∑
i=1

hi
(
ϑ̂
)
[Ai,me(t)− Li,mek(t)− Li,kCe(t− τ(t))] + eT(t)

s

∑
n=1

πmnPme(t)

+eT(t)Q2e(t)− eT(t− dm)Q2e(t− dm) + dm
.
eT
(t)R2

.
e(t)−

∫ t

t−dm

.
eT
(s)R2

.
e(s)ds

in which

2x̂T(t)PmImLi,mek(t) ≤ x̂T(t)PmImP−1
m IT

mPm x̂T(t) + eT
k (t)LT

i,mPLi,mek(t)

2x̂T(t)PmImLi,mCme(t− τ(t))≤ x̂T(t)PmImP−1
m IT

mPm x̂T(t)

+eT(t− τ(t))CT
mLT

i,mPmLi,mCme(t− τ(t))
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It is obvious from the Leibniz–Newton formula that

2x̂T(t)S1m

[
x̂(t)− x̂(t− τ(t))−

∫ t
t−τ(t)

.
x̂(s)ds

]
= 0

2x̂T(t− τ(t))S2m

[
x̂(t− τ(t))− x̂(t− dm)−

∫ t−τ(t)
t−dm

.
x̂(s)ds

]
= 0

where S1m, S2m are free weighting matrices. Moreover,

− 2x̂T(t)S1m

∫ t

t−τ(t)

.
x̂(s)ds ≤

∫ t

t−τ(t)

.
x̂

T
(s)R1

.
x̂(s)ds + dm x̂T(t)S1mR−1

1 ST
1m x̂(t) (23)

−2x̂T(t− τ(t))S2m

∫ t−dm

t−τ(t)

.
x̂(s)ds≤

∫ t−τ(t)

t−dm

.
x̂

T
(s)R1

.
x̂(s)ds

+dm x̂T(t− τ(t))S2mR−1
1 ST

2m x̂(t− τ(t))
(24)

Similarly,

2eT(t)S3m

[
e(t)− e(t− τ(t))−

∫ t
t−τ(t)

.
e(s)ds

]
= 0

2eT(t− τ(t))S4m

[
e(t− τ(t))− e(t− dm)−

∫ t−τ(t)
t−dm

.
e(s)ds

]
= 0

where S3m, S4m are free weighting matrices. Then

−2eT(t)S3m
∫ t

t−τ(t)
.
e(s)ds ≤

∫ t
t−τ(t)

.
eT
(s)R

.
e(s)ds + dmeT(t)S3mR−1

2 ST
3me(t)

−2eT(t− τ(t))S4m

∫ t−dm

t−τ(t)

.
e(s)ds≤

∫ t−τ(t)

t−dm

.
eT
(s)R2

.
e(s)ds

+dmeT(t− τ(t))S4mR−1
2 ST

4me(t− τ(t))

On the other hand, it holds that

.
x̂(t)

r

∑
i=1

hi
(
ϑ̂
)
α1mPm I−1

m

[
Ai,m x̂(t) + ImLi,m

(
ey(t) + Cme(t− τ(t))−

.
x̂(t)

)]
= 0

Then

.
e(t)

r

∑
i=1

hi
(
ϑ̂
)
α2mPm

[
Ai,me(t)− Li,mCme(t− τ(t))− Li,mey(t)−

.
e(t)

]
= 0

where α1m and α2m are chosen parameters. In summary, we have

LV(x̂(t), e(t), rt) ≤
r

∑
i=1

hi
(
ϑ̂
)
ηT(t)Φi,mη(t)

in which

ηT(t) = [xT(t) xT(t− τ(t)) xT(t− dm)
.
xT

(t)
eT(t) eT(t− τ(t)) eT(t− dm)

.
eT
(t) eT

k (t)]

and Φi,m = Φi,m + {∑s
n=1 πmnPn, 0, ∑s

n=1 πmnPn, 0}, where

Φi,m =

[
Φ1

i,m Φ2
i,m

∗ Φ3
i,m

]
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with

Φ1
i,m =


Φ11

i,m −S1m 0 a1m Ai,m I−1
k PT

m
∗ Φ12

i,m −S2m 0
∗ ∗ −Q1 0
∗ ∗ ∗ Φ13

i,m



Φ2
i,m =


0 0 0 0 0
0 CT

mΩmCm 0 0 CT
mΩ

0 0 0 0 0
0 a1mPmLi,mCm 0 0 a1mPmLi,m



Φ3
i,m =


Φ31

i,m Φ32
i,m 0 a2m AT

i,mPT
m Φ33

i,m
∗ Φ34

i,m −S4m CT
mLT

i,mPT
m 0

∗ ∗ −Q2 0 0
∗ ∗ ∗ Φ35

i,m Φ36
i,m

∗ ∗ ∗ ∗ (ρ− 1)Ωm


in which

Φ11
i,m = sym

{
Pm Ai,m + S1m

}
+ Q1 + ∑s

n=1 πmnPn + dmS1mR−1
1 ST

1m + 2Pm ImP−1
m ImPm

Φ12
i,m = S2m + ST

2m + CT
mΩmCm + dmS2mR−1

1 ST
2m

Φ13
i,m = dmR1 − sym

{
amPm I−1

m
}

Φ31
i,m = sym

{
Pm Ai,m + S3m

}
+ Q3 + ∑s

n=1 πmnPn + dmS3mR−1
2 ST

3m

Φ32
i,m = PmLi,mCm − S3m

Φ33
i,m = CT

mΩm − PmLi,m

Φ34
i,m = S4m + ST

4m + CT
mΩmCm + dmS4mR−1

2 ST
4m + CT

mLT
i,mPmLi,mCm

Φ35
i,m = dmR2 − a2mPm

Φ35
i,m = −a2mPmLi,m

Letting PmLi,m = Yi,m and Φi,m < 0 can be known from (22) by Schur complement. So,
if a scaler µ , λmin

{
−Φi,m

}
> 0 is denoted, we will know

LV(x̂(t), e(t), rt) ≤ −µ‖x̂(t)‖2

Hence, after using Dynkin’s formula, some conclusions can be drawn, that is, for t > 0

EV(x̂(t), e(t), rt)−EV(x̂(0), e(0), r0) ≤ −µE
∫ t

0
‖x̂(t)‖2ds

which produces

E
∫ t

0
‖x̂(s)‖2ds ≤ µ−1EV(x̂(0), e(0), r0)

Then, according to Definition 1, it is stochastically stable when w(t) = 0 for the sliding
mode dynamics (21), and it also can be proved for error system (17) in the same way.
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Next, the H∞ performance of overall closed-loop system will be considered.
EV(t) = E

∫ +∞
0 LV(s)ds ≥ 0 in the condition of zero-initial. Therefore,

J= E
∫ +∞

0

[
yT

e (s)ye(s)− γ2wT(s)w(s)
]
ds

≤ E
∫ +∞

0

[
yT

e (s)ye(s)− γ2wT(s)w(s) + LV(s)
]
ds

= E
∫ +∞

0

r

∑
i=1

hi(x̂(s))ζT(s)Φ̂i,mζ(s)ds

in which ζT(t) =
[

ηT(t) wT(t)
]T , and

Φ̂i,m =
^
Φi,m + diag

{
s

∑
n=1

πmnPn, 0,
s

∑
n=1

πmnPn, 0

}

with
^
Φi,m =

 Φi,m + diag
{

0, CT
mCm

} [
0

Pm

]
∗ −γ2 I


By utilizing Schur’s complement and the inequality (24), obviously, Φ̂i,m < 0 means

J < 0. Therefore, it is stochastically stable for the sliding mode dynamics (21) with error
dynamics (17) with an H∞ disturbance attenuation level γ. �

Remark 6. Due to various environmental constraints, the TRs information is often not obtained
as expected in practice. Therefore, TRS may encounter three situations, where πmn is completely
known, partially known and completely unknown.

For example, the TR matrix may be presented as follows:
π11 ? · · · π̂1s + ∆π̂1s
π21 π̂22 + π̂22 · · · ?

...
...

. . .
...

πs1 π̂s2 + ∆π̂s2 · · · ?


in which πmn, π̂mn and ∆π̂mn ∈ [−δmn, δmn] subject to 0 < δmn < |πmn, π̂mn|, denote the
known values, the estimated values and estimated error of uncertain TRs, respectively. Then “?”
denotes TRs that unknown completely. Hereinafter, in order to calculate uniformity, these known
TRs are represented by πmn , π̂mn + ∆π̂mn, where ∆π̂mn = 0, so, the TR matrix can be described
further by 

π̂11 + ∆π̂11 ? · · · π̂1s + ∆π̂1s
π̂21 + ∆π̂21 π̂22 + ∆π̂22 · · · ?

...
...

. . .
...

π̂s1 + ∆π̂s1 π̂s2 + ∆π̂s2 · · · ?


where ∆π̂mn ∈ [−δmn, δmn] with δmn ≥ 0. According to the above transformation, the following
sets are defined:

Im,k = Im,kn ∪ Im,ukn,

where

Im,kn ,{n : π̂mn is known for n ∈ S}

Im,ukn ,{n : π̂mn is not known for n ∈ S}
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Based on the above sets, the following situations are considered:

1. m ∈ Im,kn and π̂mn for ∀n ∈ Im,kn are known, that is Im,kn are known, that is Im,kn = S ;
2. m ∈ Im,kn and π̂mn for ∀n ∈ Im,kn are partially known, that is Im,kn 6= S while Im,kn is also

not empty;
3. m ∈ Im,ukn and π̂mn for ∀n ∈ Im,kn are partially known, that is Im,kn 6= S while Im,kn is also

not empty;
4. m ∈ Im,ukn and π̂mn for ∀n ∈ Im,kn are all unknown, that is Im,kn = φ.

It is known that the above cases 1–3 have been investigated in other works, while
the cased 4 was neglected, where is the main difficulty lies. Therefore, in this paper, the
following method brought from [48] is introduced.

For the case 4, i.e., m ∈ Im,ukn and Im,kn = ∅, there exists n ∈ In,kn with In,kn is not
empty for n 6= m. In this situation, define

πmm = amπnn (25)

where am is the estimated parameter that will be determined.
For example, the three modes TR matrix could be expressed by: π̂11 + ∆π̂11 π̂12 + ∆π̂12 π̂13 + ∆π̂13

π̂21 + ∆π̂21 π̂22 + ∆π̂22 π̂23 + ∆π̂23
? ? ?


It is seen from the above matrix that I3,kn is empty, while the unknown TR π33 can

be estimated by π11 or π22. Based on TRs matrix mentioned above, the theorem will be
obtained as follows.

Theorem 2. Given positive scalars dm, γ, a1m, a2m and ρ ∈ [0, 1). The sliding mode dynamics (21)
with the error dynamics (17) is stochastically stable with an H∞ attenuation level γ, if matrices
Pm > 0, Q1 > 0, Q2 > 0, R1 > 0, R2 > 0, Umm > 0, Wmm > 0, Ωm > 0, free weighting
matrices Skm (k = 1, 2, 3) and Yim with appropriate dimensions exist, the following conditions are
satisfied for each m ∈ S If m ∈ Im,kn and Im,kn = S , then

Γ11
i,m A12

i,m A13
i,m 0 A15

i,m 0
∗ Θ11

i,m 0 A24
i,m 0 A26

i,m
∗ ∗ A33

i,m 0 0 0
∗ ∗ ∗ A44

i,m 0 0
∗ ∗ ∗ ∗ A55

i,m 0
∗ ∗ ∗ ∗ ∗ A66

i,m


< 0, (26)

If m ∈ Im,ukn, there exists n 6= m such that n ∈ In,kn, for ∀l ∈ Im,ukn,

Γ21
i,m A12

i,m A13
i,m 0 C15

i,m 0
∗ Θ21

i,m 0 A24
i,m 0 C26

i,m
∗ ∗ A33

i,m 0 0 0
∗ ∗ ∗ A44

i,m 0 0
∗ ∗ ∗ ∗ − 1

am
Wmm 0

∗ ∗ ∗ ∗ ∗ − 1
am

Wmm


< 0 (27)

where Γk1
i,m is defined as:

Γk1
im −S1m 0 a1m Ai,m I−1

m PT
m

∗ Dm −S2m 0
∗ ∗ −Q1 0
∗ ∗ ∗ dmR1 − sym{amPm Im}


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and, Θk1
i,m is defined as:

Θk1
i,m B11

i,m 0 am AT
i,mPT

m B12
i,m Pm

∗ B13
i,m −S4m CT

mYT
i,m 0 0

∗ ∗ −Q2 0 0 0
∗ ∗ ∗ B14

i,m B15
i,m a2mPm

∗ ∗ ∗ ∗ B16
i,m 0

∗ ∗ ∗ ∗ ∗ −γ2 I


with

A15 = A26 =

[
P1 − Pm · · · Pm−1 − Pm Pm+1 − Pm · · · Ps − Pm

0 · · · 0 0 · · · 0

]

Γ11
i,m = sym

{
Pm Ai,m + S1m

}
+ Q1 + ∑s

n=1 πmnPn + ∑n 6=m
δ2

mn
4 Umn

Γ21
i,m = sym

{
Pm Ai,m + S1m

}
+ Q1 +

δ2
nn
4 amWmm + amπ̂nn(Pm − Pl)

Θ11
i,m = sym

{
Pm Ai,m + S3m

}
+ Q2 + CT

mCm + ∑s
n=1 πmnPn + ∑n 6=m

δ2
mn
4 Umn

Θ21
i,m = sym

{
Pm Ai,m + S3m

}
+ Q2 + CT

mCm + δ2
nn
4 amWmm + amπ̂nn(Pm − Pl)

A55 = A66 = −diag
{

Um1, · · · , Um(m−1), Um(m+1), · · · , Ums

}
C15 = C26 =

[
Pm − Pl 0

]T

The observer gain matrices are computed by Li,m = P−1
m Yi,m.

Proof. (Case I): i ∈ Ii,kn and Ii,kn = S . �

According to the partition of TRs, letting ∑s
n=1,n 6=m πmn = −πmm. Therefore,

∑s
n=1 πmn(h)Pj also is

s

∑
n=1

πmnPn=
s

∑
n=1

πmnPj +
s

∑
n=1

∆πmnPn

=
s

∑
n=1

πmnPn +
s

∑
n=1,n 6=m

∆πmnPn + ∆πmmPm

=
s

∑
n=1

πmnPn +
s

∑
n=1,n 6=m

∆πmn(Pn − Pm)

=
s

∑
n=1

πmnPn +
s

∑
n=1,n 6=m

[
1
2

∆πmn(Pn − Pm) +
1
2

∆πmn(Pn − Pm)

]

≤
s

∑
n=1

πmnPn +
s

∑
n=1,n 6=m

[
δ2

ij

4
Umn + (Pn − Pm)U−1

mn(Pn − Pm)

]

(28)

By using Schur’s complement theory, it seems known that (26) supports Theorem 2
holds in this case.
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(Case II): Since m ∈ Im,uk, and Im,kn = ∅, while there exists a n 6= m such that n ∈ In,kn.
Here, πmm is estimated by amπnn. Denoting λm,kn , πmm.Therefore ∑s

n=1 πmnPn can be
written as

s

∑
n=1

πmnPn= πmmPm + ∑
n∈Im,ukn

πmnPn

= πmmPm − λm,k ∑
n∈Im,ukn

πmn

−λm,k
Pn

(29)

Noting that ∑n∈Im,ukn
πmn = −πmm = −λm,k > 0. For ∀l ∈ Im,ukn, it satisfies that

^
Φi,m + diag

{
s

∑
n=1

πmnPn, 0,
s

∑
n=1

πmnPn, 0

}
= ∑

n∈Im,ukn

πmn

−λm,k

[
^
Φi,m + diag{πmm(Pm − Pl), 0, πmm(Pm − Pl), 0}

]
=

^
Φi,m + diag{πmm(Pm − Pl), 0, πmm(Pm − Pl), 0}

=
^
Φi,m + diag{amπnn(Pm − Pl), 0, amπnn(Pm − Pl), 0}

(30)

In the above formula (30), it has

amπnn(Pm − Pl) = amπ̂nn(Pm − Pl) + am∆π̂nn(Pm − Pl) (31)

Then, with the help of Lemma 1 and for any Wmm > 0, it can be obtained that

∆π̂nn(Pm − Pl)=

[
1
2

∆π̂nn(Pm − Pl) +
1
2

∆π̂nn(Pm − Pl)

]
≤
[
(δnn)

2

4
Wmm + (Pm − Pl)W−1

mm(Pm − Pl)
T

] (32)

In combination with (28)–(32), by using Schur complement theory, Theorem 2 holds
from (27) in this case.

Remark 7. When analyzing the conditions in Theorem 2, this is an important issue that how to
determine ai. Therefore, proposing the maximum optimization problem to settle this problem, that is

max. ∑ ai,

subject to Pi, . . . ,Ωm in (26), (27).
Therefore, the H∞ performance is ensured with unknown TRs.

3.5. Reachability of Sliding Surface

In the section, to guarantee the accessibility of the sliding surface s(t) = 0, it will
be confirmed that the control scheme proposed will make the estimated state to the pre-
designed sliding surface in the limited range of time.

Theorem 3. Assuming that the conditions in Theorem 2 are solvable and (18) is proposed. By the
fuzzy SMC law synthesized as follows, the state trajectories of (16) will be driven onto the sliding
surface s(t) = 0 in the limited range of time:

u(t) =
r

∑
i=1

hi
(
θ̂
)
Ki,m x̂(t)− (ρ(t) + δ)sgn(s(t)) (33)

in which δ is a small positive tuning scalar, and

ρ(t) = max
m∈S

r

∑
i=1

hi
(
θ̂
)
λ−1

m ‖(GBm)‖−1[‖GLi,m‖‖y(t)‖+ ‖GLi,mCm‖‖x̂(t− τ(t))‖]
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Proof. Choose Lyapunov function as follows:

V(t) =
1
2

sT(t)s(t) (34)

Then

LV(t)= sT(t)
.
s(t)

= sT(t)
r

∑
i=1

hi
(
θ̂
)
G[−λmBmKim x̂(t) + λmBmu(t) + Lim(y(t)− y(t− τ(t)))]

≤ |s(t)|
r

∑
i

hi(x̂(t))[‖GLimCm‖‖x̂(t− τ(t))‖+ ‖GLim‖‖y(t)‖]

−sT(t)
r

∑
i=1

hi(x̂(t))λmGBmKi,m x̂(t) + λmsT(t)GBmu(t)

(35)

By substituting (33) into (35), we can obtain:

LV(t) ≤ −δ‖s(t)‖ < 0 for s(t) 6= 0 (36)

Noting that ‖s(t)‖ ≤ |s(t)|, then

LV(t) ≤ −γ‖s(t)‖ ≤ −
√

2γV1/2(t)

Now, consider the equation as follows:

dV(t) = −
√

2γV1/2(t)dt (37)

where V−1/2(t)dV(t) = −
√

2γdt
from 0 to t∗, we integrate both sides it will yield

2E
[
V1/2(t∗)−V1/2(0)

]
= −
√

2γt∗

from this, it is known that a constant t∗ =
√

2V(0)/γ exists such that EV1/2(t∗) = 0
(for all t ≥ t∗, that is Es(t) = 0). In the case where dV(t) < −

√
2γV1/2(t), because of

monotonicity, t∗ is much smaller. As a result, the reachability is almost guaranteed in the
limited range of time. The theorem is completely proved. �

Remark 8. Compared with the traditional Markov jump system with completely known transfer
rate, this study gives a stochastic stability criterion with completely unknown transfer rate of a
certain mode, which extends the theoretical depth of this kind of system.

Remark 9. Theorem 3 not only illustrates the finite time reachability of sliding mode, but also
proves the upper bound of the arrival time.

4. Numerical Example

Considering the dynamic equation of the single-link robot arm model as mentioned before

..
θ(t) = −MgL

J
sin(θ(t))− D(t)

J

.
θ(t) +

1
J

u(t)

In detail, g = 9.81 and L = 0.5, the time invariant D(t) = D0 = 2. M and J have
three different modes as shown in Table 2. Following the fuzzy approach in Part II, the
state-space can be described as follows:
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Table 2. Parameters for M and J of Different Modes.

Mode m Parameter M Parameter J

1 1 1
2 1.5 2
3 2 2.5

Plant Rule 1: IF x1(t) is “about 0 rad”,
THEN { .

x(t) = A1,mx(t) + Bmu(t)
y(t) = Cmx(t)

(38)

Plant Rule 2: IF x1(t) is “about π rad or −π rad”,
THEN { .

x(t) = A2,mx(t) + Bmu(t)
y(t) = Cmx(t)

(39)

where x(t) =
[

xT
1 (t) xT

2 (t)
]T , and

A2,1 =

[
0 1
−βgL −D0

]
, A2,2 =

[
0 1

−0.75βgL −0.5D0

]
, A2,3 =

[
0 1

−0.8βgL −0.4D0

]

B1 =

[
0
1

]
, B2 =

[
0

0.5

]
, B3 =

[
0

0.4

]
, C1 = C2 = C3 =

[
1 1

]
First, let us check the SMC theory with fully known TR information, and the related

TR matrix of the three operation modes is given by: −2.5 0.8 1.7
1.8 −3.5 1.7
0.6 0.7 −1.3


In this way, we can check the effectiveness of the proposed results based on Theorem 1.

Suppose T = 0.1s and dm = 0.2. In addition, letting the gain matrices K1m =
[
−2 −3

]
,

K2m =
[
−12 −6

]
, λm = 2, aim = 0.1, (i = 1, 2; m = 1, 2, 3), ρ = 0.1, G =

[
1 0

]
and

γ = 3.5. By solving the condition in (22), it obtains the following feasible solutions:

P1 =

[
8.7998 1.9976
1.9976 1.4892

]
, P2 =

[
7.8970 1.7822
1.7822 1.8142

]
, P3 =

[
8.1524 1.5095
1.5095 2.0841

]
,

Q1 =

[
11.8241 2.5154
2.5154 1.4871

]
, Q2 =

[
1.4191 0.6498
0.6498 2.1203

]
, R1 =

[
6.4342 1.4680
1.4680 1.5033

]
,

R2 =

[
2.0690 0.0436
0.0436 0.3314

]
, Y11 =

[
0.1431
0.0938

]
, Y12 =

[
0.1390
0.1162

]
, Y13 =

[
0.2078
0.1707

]
,

Y21 =

[
0.3133
0.1300

]
, Y22 =

[
0.1136
0.0970

]
, Y23 =

[
0.2049
0.1844

]
,

Ω1 = 0.1125, Ω2 = 0.1006, Ω3 = 0.0642
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Therefore, the gain matrices of the observer are computed as

L11 =
[

0.0028 0.0592
]T , L12 =

[
0.0040 0.0601

]T , L13 =
[

0.0119 0.0733
]T

L21 =
[

0.0227 0.0568
]T , L22 =

[
0.0030 0.0505

]T , L23 =
[

0.0101 0.0811
]T

Next, let us consider the case that the TR information is deficient, for instance, the
related TR matrix of the three operation modes is given by: −2.5 + ∆̂11 0.8 + ∆̂12 1.7 + ∆̂13

1.8 + ∆̂21 −3.5 + ∆̂22 1.7 + ∆̂23
? ? ?


Here, we can estimate π33 by π33 = a3π11. By selecting a3 = 1, ∆̂πmn ≤ δmn = |0.1π̂mn|,

and the other parameters are chosen as above. After solving the conditions in Theorem 2,
it is easy to obtain:

P1 =

[
7.6528 1.7503
1.7503 1.4026

]
, P2 =

[
7.0124 1.5473
1.5473 1.6671

]
, P3 =

[
7.4199 1.4446
1.4446 1.9999

]
,

Q1 =

[
8.8393 2.0522
2.0522 1.4767

]
, Q2 =

[
1.3527 0.6770
0.6770 2.1394

]
, R1 =

[
4.5128 0.9448
0.9448 1.3326

]
,

R2 =

[
1.9617 0.0627
0.0627 0.3889

]
, Y11 =

[
0.1482
0.0974

]
, Y12 =

[
0.1239
0.1174

]
, Y13 =

[
0.2063
0.1862

]
,

Y21 =

[
0.3290
0.1490

]
, Y22 =

[
0.0980
0.1031

]
, Y23 =

[
0.0768
0.0730

]
,

Ω1 = 0.1148, Ω2 = 0.0661, Ω3 = 0.0763

Therefore, the gain matrices of the observer are computed as

L11 =
[

0.0049 0.0634
]T , L12 =

[
0.0027 0.0679

]T , L13 =
[

0.0113 0.0850
]T ,

L21 =
[

0.0262 0.0736
]T , L22 =

[
0.0004 0.0615

]T , L33 =
[

0.0038 0.0337
]T

Now, let us consider the maximum allowable a3 for feasible solutions of the system
with the above parameters by solving the optimal problems in Remark 7. For different H∞
attenuation levels γ with fixed error tolerance ρ = 0.1 and transmission delay dm = 0.1, we
can see the maximum allowable a3 for different attenuation levels γ in Figure 1. From these
results, it is easy to obtain that the proposed scheme can reduce the average transmission
frequency while maintaining the control performance.

In addition, the state response of the overall closed-loop system with initial conditions
x(t) = [0.1π −0.5]T and x̂(t) = [0 0]T is presented in the following Figures 2–4. Figure 2
depicts the state response of original system under control; Figure 3 plots the state response
of observer system under control; the controller input is given in Figure 4.
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Note that although the issue about sliding mode control based on observer for T-S
model-based Markovian jump systems has been investigated in this paper, it still leaves
much space for improvements. A future study should tackle new problems such as time
delay and packet dropout.

Therefore, the design of state observer in this paper is implemented in the following
way: First, select appropriate gain matrices Ki,m such that Ai,m + BmKi,m is Hurwitz. Second,
obtain observer gain matrices Li,m by solving the inequalities in Theorem 1 or Theorem 2.
Third, set an event-generator based on the parameter obtained in the second step. Last,
design the sliding mode controller proposed in (33). The diagram of overall implementation
is presented in the following Figure 5.
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Finally, in order to verify the advantage of the proposed method, a simulation study
is conducted by comparing the system performance on original system based on the
state observer without output time-delay, i.e., ŷ(t− τ(t)) is changed by ŷ(t). Taking the
same parameters above, the simulation result is presented in Figure 6, from which it
is seen that, compared with the system performance in Figure 2, much longer time is
needed for the system to reach its steady state and the system stability is also affected to
some extent. Therefore, proposing a time-delay Luenberger observer is a benefit for the
system performance.
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5. Conclusions

In this paper, the issue about sliding mode control based on observer for T-S model-
based Markovian jump systems was investigated. Firstly, it involved designing an event-
triggered based time-delay sliding mode observer, which can suppress the error and obtain
good stability. On this basis, a novel integral sliding surface was proposed and the observer
gain matrices can be computed in the design process. Then, according to stochastic stability
theory, the H∞ performance of the sliding mode dynamics and the error dynamics were
ensured in terms of LMI conditions. In addition, a fuzzy sliding mode controller was
constructed to guarantee the finite-time reachability of the predefined sliding surface.
Finally, numerical examples based on robotics were presented to verify the effectiveness of
the proposed method.
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