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Abstract: The attitude estimation system based on vision/inertial fusion is of vital importance and
great urgency for unmanned ground vehicles (UGVs) in GNSS-challenged/denied environments.
This paper aims to develop a fast vision/inertial fusion system to estimate attitude; which can
provide attitude estimation for UGVs during long endurance. The core idea in this paper is to
integrate the attitude estimated by continuous vision with the inertial pre-integration results based
on optimization. Considering that the time-consuming nature of the classical methods comes from
the optimization and maintenance of 3D feature points in the back-end optimization thread, the
continuous vision section calculates the attitude by image matching without reconstructing the
environment. To tackle the cumulative error of the continuous vision and inertial pre-integration, the
prior attitude information is introduced for correction, which is measured and labeled by an off-line
fusion of multi-sensors. Experiments with the open-source datasets and in road environments have
been carried out, and the results show that the average attitude errors are 1.11◦ and 1.96◦, respectively.
The road test results demonstrate that the processing time per frame is 24 ms, which shows that the
proposed system improves the computational efficiency.

Keywords: attitude estimation; vision/inertial fusion; fast

1. Introduction

The attitude estimation of unmanned ground vehicles (UGVs) plays an important
role in autonomous navigation, rollover warning, and ride experience optimization. As a
part of navigation information, attitude can be calculated by many navigation methods
of unmanned vehicles, such as the strapdown inertial navigation system (SINS), vision
navigation system, LiDAR navigation system, polarized light navigation system, or multi-
sensor fusion system.

At present, UGVs rely more on the fusion of the global navigation satellite system
(GNSS) and inertial navigation system (INS), which can estimate the attitude all-weather,
all-day [1]. SINS can independently calculate the attitude independently, and its error
accumulates over time. As GNSS can independently provide high-precision measurement
information, using filtering methods such as the Kalman filter (KF), particle filter (PF),
extended Kalman filter (EKF), etc. to combine them can achieve high-precision attitude
estimation [2,3]. In general, GNSS/SINS integrated navigation systems work well when the
GPS signal has not interfered. However, the GNSS signals might be affected by attenuation
and multipath effects. In this case, how to design the attitude estimating system for UGVs
is vital [4]. To tackle this, LiDAR is an ideal choice. Generally, LiDAR can provide for UGVs
with incremental odometer information by accurate bearing and range measurements at
high frequency [5,6]. Zhou et al. designed a computationally efficient LiDAR-odometry
framework based on truncated least squares with a novel feature extraction module [7].
Nevertheless, the high cost of high-precision LiDAR prohibits its mass deployment in
UGVs. Bionic polarized light orientation can be used to achieve the low-cost orientation for
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UGVs and when fused with IMU can achieve high precision [8]. However, the precision
of orientation is influenced greatly by the atmospheric polarization mode errors and the
horizontal attitude errors [9,10]; that is, its orient precision is not robust.

Except for LiDAR and polarized light, the optical camera is an effective sensor to
aid the inertial, by which it can calculate the attitude. Due to its low cost, small size, and
rich environmental perception information, it is a very promising scheme in engineering
applications. At present, the vision/inertial fusion system can be divided into the method of
filtering and optimization [11]. The method based on filtering is to use the visual calculation
results to construct the measurement equation and use the inertial mechanization results to
construct the state equation. Then the state and measurement equation are fused through
the Kalman family filter. The method based on optimization is to construct the residuals
of inertial pre-integration results and visual reprojection results, respectively. Then the
navigation information consisting of the attitude information can be calculated through
the optimization method. Zhai et al. proposed a robust fusion algorithm of vision and
micro electromechanical system (MEMS), which apply the sliding window to design
the measurement equation based on the epipolar geometry constraint and the tri-focal
tensor constraint. To improve the accuracy of positioning, a new method of automatically
estimating the DoA of UGV ego-motion uncertainty was utilized in the framework of
UKF [12]. Yu et al. designed a camera-motion estimating method based on an innovative
EKF algorithm. In the EKF, a constant-velocity motion model is used as the dynamic system,
and the trifocal-tensor constraint is incorporated into the measurement model [13]. In the
same integration way, Indelman et al. used three-view images to construct constraints, and
a novel fusion method was designed based on IEKF with the results of SINS navigation.
This method can output the attitude, speed, and position of the carrier in real time [14].

Compared with the optimized method, the optimization-based vision/inertial fusion
method is the current mainstream, which has the advantages of efficiency, precision, and
the possibility of achieving a large range of environments [11]. Forster et al. put forward a
systematic theory for inertial pre-integration, which cleverly converts the previous inertial
continuous mechanization results into incremental results. This theory provides a mature
theoretical basis for inertial navigation to incrementally output navigation information
and makes it possible for adding into the optimization framework [15]. Based on this, Qin
et al. proposed an optimized vision/inertial fusion system termed VINS-mono [16]. In the
back-end, the residual equation was constructed by the inertial pre-integration and vision
reprojection errors to optimize the navigation information in the sliding window. Similarly,
Campos proposed a similar vision/inertial fusion framework [17] based on [18]. These
two methods are generally recognized as classical VIO algorithms and have been further
studied by many scholars. Different from them, Venator et al. proposed a visual pose
estimation method based on 3D reconstruction, which used visual semantic segmentation
to eliminate dynamic feature points and GPS data to eliminate incorrect image association
information [19].

In summary, the fusion of vision/inertial is a vital means for UGVs to estimate attitude,
in which the fusion method based on optimization is the mainstream and has achieved
a good comprehensive effect. However, its high computational cost prohibits its mass
deployment in UGVs. To tackle this, an attitude estimation system is designed in this paper.
The main contributions of this paper are summarized as follows.

1. A fast attitude estimate system is proposed. Based on the optimization method, the
MEMS pre-integration results and the continuous visual attitude calculation results
are fused. In order to eliminate the accumulated error, the pre-measured offline
attitude library is introduced to provide a high-precision value.

2. The experimental comparison results demonstrate the computational efficiency of the
proposed method, and the attitude error will not accumulate with the endurance.

The rest of this paper is organized as follows. In Section 2, the system model, fusion
algorithm, and attitude library construction methods are introduced. In Section 3, we
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conduct experiments; the experimental results are discussed in Section 4. In Section 5, we
summarize this paper and give the conclusion.

2. Materials and Methods
2.1. System Model

In this paper, a fast attitude estimate system based on the fusion of vision/inertial is
proposed. Firstly, based on the optimization method, the MEMS pre-integration results
and the continuous visual attitude estimation results are fused. As shown in Figure 1,
based on consecutive image frames, the residual between two frames was constructed by
utilizing the attitude estimation by the continuous vision and the inertial raw data. Then,
the attitude between the two frames was calculated through optimization. Considering
that inertial noise and calculation error of vision will inevitably cause the attitude errors
accumulation over time, the pre-measured attitude libraries are introduced to ensure high
accuracy in continuous endurance.
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Figure 1. The working sequence of system.

The system can be divided into three parts: the attitude estimation based on the vi-
sion/inertial fusion method is given in Section 2.2. The off-line attitude library construction
method is given in Section 2.3. Finally, the platform of road test experiments designed in
this paper is given in Section 2.4.

2.2. Attitude Estimate Based on the Vision/Inertial Fusion

Since the purpose of this paper is to estimate the attitude, there is no need to recon-
struct the environment and the 3D position of feature points does not need to be calculated.
Therefore, we only use the camera geometric constraints to form residual equations, thereby
reducing the computational cost of the method [14,20]. So far, the attitude estimate the-
ory of continuous visual has matured and the epipolar geometric constraint for attitude
calculation can be expressed as:

pT
2 Fc p1 = 0 (1)

where the matching points of p2, p1 satisfy Equation (1) and the fundamental matrix Fc

satisfies:
Fc = Kc−T Rcbtc×cKc−1 (2)

where Kc is the camera intrinsics matrix, Rc is the rotation matrix and tc is the translation
matrix between two frames. According to Equation (2), the rotation matrix between two
frames can be solved by constructing the parameters matrix through multiple matching
points and performing SVD decomposition. Thus, it can be predicted that the accuracy of
matching determines the accuracy of attitude, and the accuracy of matching is influenced
by many factors such as light intensity, rotation, blur, scale change, and weak texture.
Considering that ORB is a fast and robust feature among the current feature extraction
algorithms and many research achievements have emerged up to now, this paper utilizes
it as the extraction method. After applying the RSNSAC as the matching method, the
attitude can be solved. Thus, given the attitude at i frame Rc

i , we can obtain the attitude at j
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frame Rc
j according to the solved rotation matrix Rc between i and j frames. Furthermore,

the attitude results can be used with the pre-integration of the MEMS to form the residual
equation.

The pre-integration of MEMS from i to j can be expressed as:

∆Rij =
j−1

∏
k=i

Exp
((

ω̃k − bg
k

)
· ∆t
)

(3)

where ω̃k is the raw data of the MEMS and bg
k is the bias of the gyro at k frame. Then, the

residual equation can be given as:

r∆Rij = Log

(∆Rij

(
bg

i

)
· Exp

(
∂∆Rij

∂bg
i
· δbg

i

))T

· RT
j Ri

 (4)

where Ri and Rj is the rotation matrix at i and j frame, respectively. δbg
i is the deviation

value of the gyro bias at i frame. According to Equation (4), the attitude information to be
solved is Ri, Rj, δbg

i . For the convenience of solving the residual equation, the optimization
variables are set as δφi, δφj, δδbg

i . Thus, the partial derivative equation of r∆Rij with respect
to them can be given as:

∂r∆Rij

∂δφi
= −J−1

r (r∆Rij)RT
j Ri (5)

∂r∆Rij

∂δφj
= −J−1

r (r∆Rij) (6)

∂r∆Rij

∂δδbg
i
= −J−1

r (r∆Rij) · Exp(−r∆Rij) · Jr

(
∂∆Rij

∂bg
i
· δbg

i

)
·

∂∆Rij

∂bg
i

(7)

where Jr is the right Jacobian matrix of the three-dimensional special orthogonal group.
J−1
r is the inverse mapping of the Jr.

Thus, given the raw data of the gyro ω̃k and the attitude estimation results of the
consecutive images Ri, Rj, the attitude residual equation can be formed. According to the
partial derivative Equations (5)–(7), the optimization variables δφi, δφj, δδbg

i can be solved
by the Gauss-Newton method; thus, the attitude can be updated.

It is obvious that if the attitude estimation results of consecutive vision work well, the
attitude estimation results based on the vision/inertial fusion method are close to it. In this
way, the error of the attitude estimation results will cumulative. To tackle this, this paper
designs an off-line attitude library to calibrate the real-time image, as shown in Figure 1.
The offline attitude library contains the calibrated image and the camera intrinsics matrix
and attitude in the navigation frame. After the solution of Equation (2), high-precision
attitude results can be obtained which are not related to time.

2.3. Off-Line Attitude Library Construction Method

The off-line attitude libraries are constructed by multi-sensor fusion. As shown in
Figure 2, a tightly fused SINS/GNSS method is designed to provide the library with
accurate attitude in the navigation frame(E-N-U) firstly. Then, the vision/MEMS fused
system is utilized to collect image data.
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The liner system of SINS/GNSS can be expressed as:{ .
X(t) = F(t)X(t) + r
.
Z(t) = H(t)X(t) + q

(8)

where X(t) is the error-state vector of SINS, F(t) is the state transition matrix, r is the vector
of process noise, q is the vector of measurement noise, Z(t) is the vector of measurement,
and H(t) is the observation matrix constructed based on pseudo-range and pseudo-range
rate. As expressed in (2), the state vector X has 17 dimensions, which are composed of
3-dim attitude errors, 3-dim velocity errors, 3-dim position errors, 3-dim gyroscope drifts,
3-dim accelerometer drifts, 1-dim pseudo-range error, and 1-dim pseudo-range rate error:

X =
[
δVn

E , δVn
N , δVn

U , φn
E, φn

N , φn
U , δL, δλ, δh, εx, εy, εz,∇x,∇y,∇z, δrs, δvs

]
(9)

Based on the state vector, the state transition matrix F can be written as:

F =



Fvφ Fvv Fvp −Cb
n 03∗3 03∗2

Fφv Fφφ Fφp 03∗3 Cb
n 03∗2

0pv Fpφ Fpp 03∗3 03∗3 03∗2
06∗3 06∗3 06∗3 06∗3 06∗3 03∗2

0 0 0 0 0 1
0 0 0 0 0 0

 (10)

The measurement model can be calculated as:

Z(t) =
[

Zr(t)
Zυ(t)

]
=

[
01∗3 01∗3

(
PTECEF

e
)

01∗9 −1 0
01∗3 (P · Te

n)
(
Q · TECEF

e + P · δTe
n
)

01∗9 0 −1

]
X(t) +

[
q1
q2

]
(11)

where the Zr(t) is the pseudo-range measurement model and the Zv(t) is the pseudo-range
rate measurement model. The Te

n is the transformation of velocity from the navigation
frame system to the ECEF (Earth-Centered Earth-Fixed) frame:

Te
n(LI , λI) =

 − sin LI − sin LI cos λI cos LI cos λI
cos λI − sin LI sin λI cos LI sin λI

0 cos LI sin LI

 (12)

where [LI , λI , hI ] is the position of the SINS mechanization in navigation frame. In
Equation (11), P is the retraction of:

P =
[
(xI − xG)/ρ (yI − yG)/ρ (yI − yG)/ρ

]
(13)

where the vector [xI , yI , zI ] is the position of the SINS mechanization in the ECEF frame
which transformed from [LI , λI , hI ]. The vector [xG, yG, zG] is the position of GNSS in the
ECEF frame. The ρ denotes the pseudo-range which can be given by GNSS receiver.
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In Equation (11), the Q is the retraction of:

Q =
[

xρ−(x−xs)
.
ρ

ρ2
yρ−(y−ys)

.
ρ

ρ2
zρ−(z−zs)

.
ρ

ρ2

]
(14)

Given the true value of the SINS position (x, y, z) and the pseudo-range ρ, the pseudo-
range rate

.
ρ can be calculated as:

.
ρ = [x− xs, y− ys, z− zs] ·

[ .
x− .

xs,
.
y− .

ys,
.
z− .

zs
]
/ρ (15)

In Equation (11), the δTe
n is the retraction of:

δTe
n =

 −Vn
N sin L cos λ−Vn

U sin L cos λ −Vn
E cos λ + Vn

N sin L sin λ 0
−Vn

N cos L sin λ−Vn
U sin L sin λ −Vn

E sin λ−Vn
N sin L cos λ 0

−Vn
N sin L−Vn

U cos L 0 0

 (16)

The TECEF
e is the retraction of the transformation between [δL, δλ, δh] and [δx, δy, δz]:

TECEF
e =

 −(RN + h) sin L cos λ −(RN + h) cos L sin λ cos L cos λ
−(RN + h) sin L sin λ (RN + h) cos L cos λ cos L sin λ[
RN(1− e)2 + h

]
cos L 0 sin L

 (17)

Above is the calculation process of the system equation. Then, the time update step of
the Kalman filter with feedback can be written as:{

Xk/k−1 = FkXk−1
Pk/k−1 = FkPk−1FT

k + Qk
(18)

where, for the convenience of algorithmic calculation, the discrete form of error-state is
expressed as: Fk = I17∗17 + F(t)T. The measurement update step of Kalman filter with
feedback can be written as:

Kk = Pk/k−1HT
k (HkPk HT

k + Rk)
T

Xk = Xk/k−1 + Kk(Zk − HkPk/k−1)
Pk = (I − Kk Hk)Pk/k−1

(19)

where Equations (16) and (17) are the standard Kalman filter process [21]. Note that when
the multiple pseudo range and pseudo range rate data are received, multiple iterations are
performed according to (19). Followed by the Kalman filter, the mechanization results are
corrected by: 

Vn
k = Vn

k−1 − Xk(1 : 3)

Cb
n/k = (I + Xk(4 : 6)×)

(
Cb

n/k−1

)
[
λk, Lk, hk

]T
=
[
λk−1, Lk−1, hk−1

]T − Xk(7 : 9)

(20)

The integrated attitude results of SINS/GNSS only provides accurate attitude for the
attitude library. The purpose of a tightly integrated method is to maintain a high-precision
attitude, even when the GNSS fails for a short time.

Then, we can use the attitude results to build the attitude library. With the attitude
library in the navigation frame, we can use it to correct the accumulated error of the
proposed method by calculating the fundamental matrix K−T

1 Rcbtc×cK−1
2 .

2.4. Platform of Road Test Experiments

As shown in Figure 3, the platform of road test experiments consists of the Vehicle,
Camera, SINS, MEMS, and GNSS, whose position and the coordinates are also given in
Figure 3. The robot operating system (ROS) is the core operating system of the platform
which completes the data alignment of the multi-sensors and the program operation of the
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multi sensors fusion. The CPU of the intel core i5-8600K is the core processor and all road
test data are processed off-line.
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3. Results

For verifying the accuracy and computational cost of the attitude estimation system,
we conducted experiments using the KITTI dataset and urban road test data. The experi-
mental results are given in Sections 3.2 and 3.3, respectively. Furthermore, the parameters of
sensors used for the road test are given in Section 3.1. Considering the similar performance
of classical algorithms, for comparing the results of the experiments with the classical
method conveniently, we chose the VI-ORBSLAM [22] as the classical method after the
analysis in Section 1.
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3.1. Parameters of Sensors

The proposed attitude estimation system consists of MEMS, sensor of vision, SINS,
and GNSS, whose parameters are shown below.

• Parameters of MEMS.

The parameters of the MEMS are given in Table 1.

Table 1. Parameters of MEMS.

Parameters Unit Value

Accelerometer bias 10−3 g 5 (1σ)
Accelerometer scale factor Ppm 500 (1σ)
Accelerometer installation Arcsec 80 (1σ)
Accelerometer white noise 10−3 g/sqrt(Hz) 0.5 (1σ)

Gyroscope bias ◦/h 11.6 (1σ)
Gyroscope scale factor Ppm 500 (1σ)
Gyroscope installation Arcsec 80 (1σ)
Gyroscope white noise ◦/h/sqrt(Hz) 0.5 (1σ)

pdate cycle Ms 0.005

• Parameters of vision.

The sensor of vision is triggered by hardware and can generate an image with a
resolution of 1250 ∗ 500 per 0.05 s.

• Parameters of SINS/GNSS.

Considering that the changes of the angular velocity are very slow in the road test
environment, the attitudes error calculated by SINS/GNSS with a high-precision IMU is
within 0.2◦.

3.2. Experiments with KITTI Dataset

The experiments in the highway area were conducted using the KITTI dataset 2011_10_
03_drive_0042 from raw sequence 000000 to sequence 001100. The trajectory was about
1384 m and average velocity was about 75.9 km/h [23]. For comparing the experiments
results with the ground truth conveniently, we used the camera frame of the first frame as
the navigation frame. Since there was no prior library with attitude labels, we took raw
images every 100 frames to build a library and take the ground truth as the attitude value.

The vision/inertial fusion attitude results of the proposed method and the classical
method is shown in Figure 4, which demonstrates the effectiveness of the proposed method
in this experiment. The error of the classical method and proposed method are given in
Figure 5, which shows the error comparison of the proposed method with the classical
method.

The attitude results in Figure 4 demonstrate that the effect of the proposed method
is close to the classical method in the KITTI dataset. The attitude error results in Figure 5
show the details of the proposed method, which demonstrate the effectiveness of the
proposed vision/inertial integrated method and the corrected method based on the off-line
attitude library.

The computational efficiency and average error of the proposed method and classical
method is summarized in Table 2. Note that the average attitude error is obtained by taking
the average of all three attitude angles and the processing time per frame is obtained by
taking the average of all frames consuming time. As we can see from two quantitative
metrics illustrated in Table 2, the average attitude error of the classical method is better
than the proposed method in this case. Compared with the classical method, the processing
time per frame of the proposed method is reduced by 79%.
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Figure 4. Attitude results of the classical method, the proposed method, and ground truth.

Figure 5. Error of the classical method and proposed with ground truth in the KITTI dataset.
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Table 2. Average attitude error and the processing time per frame of the case.

Area Average
Velocity (km/h) Algorithm

Average
Attitude
Error (◦)

Processing
Time

per Frame (ms)

Highway 75.9
Classical 0.79 119
Proposed 1.11 25

3.3. Experiments with Urban Road Test Data

The road test experiment was conducted in Jinhu Street, Xi’an, China, which is shown
in Figure 6. The vehicle velocity is about 30−40 km/h, and the trajectory of the urban road
is about 1692 m.
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The off-line attitude library is also constructed based on the SINS/GNSS before this
road test. After collecting the library data, seven locations were selected to build the library
before the test, which are shown in Figure 7. The SINS used in this paper is a high-precision
inertial navigation system and the attitude estimation error of the SINS/GNSS can be
maintained within 0.2◦ during long endurance. Taking into account the attitude calibration
error of SINS ant MEMS, it can be considered that the accuracy of the attitude in the attitude
library is within 0.3◦.
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In [23], the navigation results of SINS/GNSS are used to design the ground truth of
navigation because of its high precision. Thus, for verifying the accuracy of the proposed
method, the tightly integrated SINS/GNSS navigation method, the same method proposed
in Section 2.3, is introduced and the attitude results are used as the ground truth. The
attitude estimation error by the SINS is better 0.2◦ per hour. Even if the GNSS fails in
a short time, the attitude estimation accuracy of SINS/GNSS will not be affected. Since
the attitude estimation error of the SINS/GNSS is better than 0.2◦, the attitude estimation
results of SINS/GNSS can be used as the ground truth.

The vision/inertial fusion attitude results of the proposed method are shown in
Figure 8, which demonstrates the effectiveness of the proposed method in this road test.

Figure 8. Attitude results of the proposed method and ground truth.
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The attitude results in Figure 8 demonstrate that the effect of the proposed method
is close to the classical method in the road test experiment. The attitude error results in
Figure 9 show the details of the proposed method, which demonstrate the effectiveness of
the proposed vision/inertial integrated method and the corrected method based on the
off-line attitude library.

Figure 9. Error of the proposed method with ground truth in the road test.

The computational efficiency and average error of the proposed method in the road
test is summarized in Table 3. As we can see from two quantitative metrics illustrated in
Table 3, the average attitude error of the proposed method is 1.97◦ in the road test and the
processing time per frame of the proposed method is 24 ms.

Table 3. Average attitude error and the processing time per frame of the urban road test.

Area Average Velocity
(km/h)

Average Error
(◦)

Processing Time per Frame
(ms)

Urban 30–40 1.97 24

4. Discussion

Based on the analysis of the experiment results in Section 3, the discussion of the
experiment results, the proposed system, and the future work are given in Section 4.1,
Section 4.2, and Section 4.3, respectively.

4.1. Discussion of the Experiment Results

As shown in Table 2, the attitude estimate accuracy of the classical method is better
than the proposed method in that case. Considering that, with the endurance of UGVs,
the error will inevitably accumulate with time without the loop closure. On the contrary,
the attitude error of the proposed method will not accumulate. Therefore, the proposed
method is more suitable for the UGVs. Most importantly, the computational efficiency of
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the proposed method is far superior to the classical method, which makes it possible to
deploy it on industrial processors.

Furthermore, as shown in Tables 2 and 3, the average error of the proposed method in
the urban road test is greater than with the KITTI dataset, which may be caused by sensor
calibration errors and fewer environmental characteristics.

4.2. Discussion of the Proposed System

The purpose of this paper is to design a fast attitude estimation system for UGVs.
Compared with the proposed system, using a pure vision attitude estimation module and
the attitude library can also complete the task. Meanwhile, the calculation efficiency will
be higher, and the accuracy will also be higher without the attitude jumping of the MEMS
on bumpy roads. However, the pure visual attitude estimation module is unstable, which
may track failure caused by many factors such as bumps, fast rotation, and occlusion, etc.
Without the relocation, the attitude estimation will fail. In this case, fusing the vision and
inertia can provide continuous attitudes for UGVs by pre-integration. That is why the
MEMS/camera integration system is utilized in this paper.

4.3. Discussion of Futher Work

Fast attitude estimation makes it possible for deployment on industrial processors.
In the future, we will design an attitude estimation system based on FPGA to provide
high-precision and low-cost attitude estimation for UGVs.

With the development of servers and the Internet of Vehicles, all UGVs can interact
with the servers in real time in the future. In this case, all UGVs will be able to upload data
to the server or download data, which makes it possible for the construction and utilizing
of the attitude library. In the future, we will use multi-vehicle collaboration to take a trial.

5. Conclusions

Compared with the high computational cost of the current classical vision/inertial
fusion algorithm, this paper proposes a fast vision/inertial fusion system estimate atti-
tude with high precision, which only relies on MEMS and a camera. By integrating the
attitude estimated by continuous vision with the inertial pre-integration results based
on optimization, the proposed system can provide high-precision attitude estimation for
UGVs during long endurance. Considering that the errors of continuous vision and inertial
pre-integration are cumulative, the prior information with attitude information is intro-
duced, which are measured and labeled by off-line fusion of multi-sensors. Experimental
results demonstrate the effectiveness of the proposed method. The contributions of the
paper can be summarized as:

1. This paper proposed a vision/inertial integration navigation system based on opti-
mization to tackle the high computational cost of the classical method. Considering
the cumulative error of the continuous vision and inertial pre-integration, the prior
attitude information is introduced for correction, which is measured and labeled by
an off-line fusion of multi-sensors.

2. Experimental results show that in contrast with the classic method, the processing
time per frame of the proposed method is reduced from 119 ms to 25 ms, which
demonstrates the computational efficiency. Thus, the proposed method can tackle the
high computational cost of the current vision/inertial integration method and makes
it possible deploy on industrial processors.

3. According to the KITTI and road test results, the proposed method is slightly inferior
in accuracy. Considering that the attitude error of the proposed method will not
accumulate with the endurance of UGVs, the proposed method is more suitable for
UGVs in long endurance.

In short, the proposed method posse computational efficiency and accuracy for UGVs
in long endurance.
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