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Abstract: In the context of Industry 4.0, the matrix production developed by KUKA robotics rep-
resents a revolutionary solution for flexible manufacturing systems. Because of the adaptable and
flexible manufacturing and material handling solutions, the design and control of these processes
require new models and methods, especially from a real-time control point of view. Within the
frame of this article, a new real-time optimization algorithm for in-plant material supply of smart
manufacturing is proposed. After a systematic literature review, this paper describes a possible
structure of the in-plant supply in matrix production environment. The mathematical model of
the mentioned matrix production system is defined. The optimization problem of the described
model is an integrated routing and scheduling problem, which is an NP-hard problem. The inte-
grated routing and scheduling problem are solved with a hybrid multi-phase black hole and flower
pollination-based metaheuristic algorithm. The computational results focusing on clustering and
routing problems validate the model and evaluate its performance. The case studies show that matrix
production is a suitable solution for smart manufacturing.

Keywords: cyber-physical system; heuristics; logistics; matrix production; optimization; smart manufacturing

1. Introduction

Thanks to digitization and Industry 4.0 technologies and solutions, today’s economy is
in the middle of significant transformation processes regarding the fulfilment of customers’
demands. Production companies must apply the solutions of the fourth industrial revolu-
tion to improve their efficiency. The ever-changing production and service sector requires
the improvement of these attributes. Logistics and material handling operations have
more and more importance related to the purchasing, production, distribution, and reverse
processes, and they have a significant impact on the strategic, tactical, and operative level
of enterprise systems.

As Figure 1 shows, Industry 4.0 technologies offer new innovation accelerators,
like augmented and virtual reality, cloud and fog computing related to big data problems,
additive manufacturing, Internet of Thing (IoT), autonomous standardized production
and material handling resources, smart tools, gentelligent products, simulation and digital
twin solutions, cyber security, and system integration. These Industry 4.0 technologies
are important influencing factors for manufacturing processes [1,2] and they lead to the
appearance of dynamic manufacturing networks [3].

Augmented and virtual reality is a key technology for smart manufacturing because
it makes it possible to realize an interactive human–machine interaction in a real-world
environment while the components of the physical world are extended by perceptual
information. Augmented and virtual reality can be used in training, design, manufacturing,
operation, services, sales, and marketing. In the field of manufacturing, the most important
applications are quality control and total quality management; maintenance operations,
especially in a dangerous environment; assembly work instructions; and performance
monitoring [4].
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Figure 1. Industry 4.0 technologies as new innovation accelerators and their impact on matrix production.

Complex manufacturing systems generate unprecedented amounts of data that are
difficult to handle with traditional computing methods. Cloud, edge, and fog computing
make it possible to manage big data problems. Big data is coming from a wide range of
sensors from manufacturing systems. Cloud and fog computing integrate servers, storages,
databases to support efficient networking, analytics, and intelligence solutions [5].

The introduction of additive manufacturing will have a great impact on the supply
chain processes and logistics solutions, because both external and in-plant material flow
solutions will change dramatically. It is caused by the fact that this technology is based
on the building of 3D objects by adding layer-upon-layer of various materials, like plastic,
metal, or organic materials [6].

The new concept of gentelligent products aims to develop genetically intelligent
products and components, which collect data through their lifecycle and bequeath them to
the next generation in various time spans. The appearance of gentelligent products has a
great impact on big data problems [7].

The application of digitalization-based technologies enables the virtualization of
product and process planning and control [8]. Digital twins represent an integrated prob-
abilistic simulation of complex products or processes using physical models, sensor up-
dates, and cloud-based information to mirror the product or process of its corresponding
twin [9,10]. Digital twin technology makes it possible to convert conventional manu-
facturing systems into cyber-physical systems, and this transformation can lead to the
improvement of the design process of in-plant material supply, adding a real-time phase to
the conventional in-plant supply process. In conventional manufacturing systems, the real
time optimization is almost impossible, because real time optimization is based on real time
data and status information. Using digital twin technology and smart sensor networks,
real time data and status information can be collected from the physical system, and a real
time model for discrete event simulation can be generated to perform scenario analysis for
real time decision making.

The Internet of Things describes an integrated system of computers and mechanical
machines provided with unique identifiers. The IoT in manufacturing systems makes
it possible to transfer data through a network among manufacturing equipment (stan-
dardized production cells and assembly cells), materials handling machines (autonomous
mobile robots and automated guided vehicles), intelligent tools, gentelligent products,
and ERP systems [11].

The Industry 4.0 technologies make it possible to transform conventional manufac-
turing processes to cyber-physical manufacturing processes to aim for higher flexibility,
productivity, availability, cost-efficiency, energy-efficiency, and sustainability. The fulfil-
ment of more and more diverse customers’ demands requires more and more sophisticated,
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flexible, and intelligent solutions based on these technologies both inside and outside of
the production plants in all fields of industry including automotive industry as a flagship.

The in-plant material supply solutions are commonly based on milk-run material
supply, especially in the field of automotive industry. KUKA AG (one of the world’s leading
specialists in automation) offered a new, revolutionary solution for flexible manufacturing,
transforming conventional manufacturing into cyber-physical manufacturing with the
application of Industry 4.0 technologies. This new solution is the matrix production. With
its new demonstration plant opened on March 2018 in Augsburg, KUKA demonstrates the
advantages of this matrix production under real conditions. In a matrix production system,
standardized configurable production or assembly cells are arranged in a grid layout.
Manufacturing and logistics are separated and fully automatized. The matrix production
system uses various Industry 4.0 technologies, like robots and turntables in the production
and assembly cells, autonomous guided vehicles, digital twin support for real time control,
prediction, and performance analysis. However, as a journalist wrote [12], “However,
all theory is gray.” There is a huge number of open questions focusing on manufacturing
and logistics.

Manufacturing systems of increased complexity face a number of new design and
operation problems that can be addressed by the opportunities provided by the Fourth
Industrial Revolution. In the case of matrix production, the material supply of standardized
configurable production or assembly cells is one of the most important tasks of logistics,
because the separated manufacturing and logistics and the increased flexibility require
new models and methods. This article focuses on the optimization of in-plant supply in
matrix production. The highlights of the article are the following: (1) integrated model to
solve the in-plant material supply problem in matrix production system, which enables
both the conventional and real time planning of in-plant material supply; (2) integrated
solution of assignment and routing problems based on heuristic optimization algorithms.

The article is organized as follows. Section 2 presents a systematic literature review,
which summarizes the research background of in-plant supply optimization in manufactur-
ing systems. Section 3 is the problem description including the mathematical model of inte-
grated assignment and routing problem in matrix production systems. Section 4 presents
a metaheuristic optimization algorithm to solve the integrated assignment and routing
problem, based on flower pollination and black hole heuristics. Section 5 demonstrates
the numerical results. Conclusions, managerial impacts, and future research directions are
discussed in the remaining part of the article.

2. Literature Review

Within the frame of the systematic literature, the main scientific results, scientific
gaps, and bottlenecks are identified and described [13]. The optimization of logistics and
supply chain design and control of manufacturing systems has been researched in the past
30 years. The first articles in this field were published before 2000, focusing on heuristic
optimization of rough-mill yield with production priorities [14], optimum allocation of
jobs on machine-tools [15], and facility location problem for large-scale logistics [16].
The number of published research papers has increased; it shows the importance of the
optimization of manufacturing-related supply chain solutions.

The literature introduces a wide range of design methods used to solve problems of
manufacturing-related processes, like unified decomposition, decision-making methods,
queuing theory, data-driven modelling, fuzzy description, and heuristic and metaheuristic
algorithms and simulation.

Researchers solved a simultaneous planning task of an integrated production, inven-
tory, and inbound transportation problem as a mixed-integer linear program and proposed
a three-phase unified decomposition heuristic [17]. A bi-objective nonlinear programming
model was proposed as a decision-making tool to select the carriers between supply chain
levels with emphasis on the environmental factors [18], and the problem was solved with a
multi-objective meta-heuristic imperialist competitive algorithm. For the solution of coor-
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dination problems of production planning and transportation planning, a mixed-integer
linear programming model and a non-linear programming model were supposed, with
a decomposition-based heuristic and a Lagrangian relaxation method [19]. Service load
balancing, task scheduling, and transportation optimization problem were formulated
as a new queuing network for parallel scheduling of multiple processes and orders from
customers to be supplied [20]. Data-driven decision-making models are more and more
important in manufacturing, especially in the field of cyber-physical manufacturing and
logistics. The design and operation of manufacturing-related logistics and supply problems
can be managed using data-driven models and methods [21]. Simulation models can
be used both for the design of machines [22] and for the optimization of systems and
processes. Simulation techniques can be used as a decision support method for process
improvement of intermittent production systems [23]. A hybrid approach of discrete event
simulation integrated with location search algorithm was used to solve a cells assignment
problem in an assembly facility [24]. An ontology-driven, component-based framework
shows the application of Jellyfish-type simulation models [25]. The suggested integration
of simulation and encompassing mathematical optimization reduced the complexity of the
assembly facility and generated alternative assignments in two phases.

Various heuristic and metaheuristic algorithm make it possible to solve NP-hard
optimization problems in manufacturing systems. Service load balancing, scheduling,
and logistics optimization in cloud manufacturing are solved with a genetic algorithm [26].
A supply chain configuration problem of manufacturing plants, distributors, and retailers is
formulated as an integer-programming model and solved with an ant colony optimization-
based heuristic [27]. A new mathematical model for multi-product economic order quantity
model with imperfect supply batches was supposed by researchers. They developed three
robust possibilistic programming approaches and solved the problems with two novel
meta-heuristic algorithms named water cycle and whale optimization algorithms [28].
The whale optimization algorithm was also used to solve a production-distribution net-
work problem [29]. A novel integrated bacteria foraging algorithm embedding a five-phase
based heuristic was supposed to solve an integrated model of facility transfer and pro-
duction planning in dynamic cellular manufacturing-based supply chain [30]. The design
problems of closed-loop supply chains represent a special form of manufacturing-related
supply problems, where disassembly operations are performed instead of manufacturing.
An optimized disassembly process is required for efficient remanufacturing and recycling
of returned products. The dynamic lot-sizing and vehicle routing problem of this integrated
process was solved with a two-phase iterative heuristic [31]. Time- and capacity-related
constraints of manufacturing-related logistics are usually taken into consideration as hard
constraints, but they are in truth soft constraints, because they are influenced by more exter-
nal factors and their stochastic environment. Soft constraints can be taken into consideration
using biased-randomized algorithms as an effective methodology to cope with NP-hard
and non-smooth optimization problems in many practical applications [32]. One optimiza-
tion approach uses set partitioning and another approach employs the concept of seed
routes to determine the solution of an integrated production, inventory, and distribution
model for supplying retail demand locations from a production facility [33]. Iterated greedy
algorithm solved the optimization problem of makespan for the distributed no-wait flow
shop scheduling problem [34]. Other interesting solutions are represented by hybrid algo-
rithms, like a hybrid genetic algorithm for multi-product competitive supply chain network
design with price-dependent demand [35], a hybrid firefly-chaotic simulated annealing
approach for facility layout problem [36], or a prioritized K-mean clustering hybrid genetic
algorithm for discounted fixed charge transportation problems [37]. Manufacturing and
in-plant supply processes are typical uncertain environments, where fuzzy modelling and
fuzzy optimization offer suitable tools, and fuzzy approach can easily integrate with other
analytical or heuristic algorithms [38].

Several scenarios and case studies related to the research field were assessed and eval-
uated in various articles. The case studies of manufacturing-related logistics and supply
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chain problems are generally focusing on traditional manufacturing, cloud manufactur-
ing [26], or dynamic cellular manufacturing [30], and only a few of them are discussing
the logistics and in-plant supply problems of cyber-physical manufacturing systems, espe-
cially the matrix production concept. The most important fields of case studies are from
the automotive industry, but valuable case studies have been published in the fields of
perishable inventory systems [39], biofuel supply [40], fast moving parts [41], garment
manufacturing [42], rice supply chain [43], luxury watches [44], or winery [45].

In this article, black hole and flower pollination heuristic is used. Albert Einstein was
the first scientist who predicted the existence of black holes in 1916. American astronomer
John Wheeler was the denominator of black holes. When a star burns out, it may collapse,
or fall into itself. In the case of smaller stars, they become a neutron star or a white dwarf,
while in the case of larger stars they will create a stellar black hole. Black holes are invisible,
but the environment outside of the Schwarzschild radius can be analyzed. The black holes
have a great impact on particles near them. If the distance between the particle and the
core of the black hole is smaller than the Schwarzschild radius, the particle can move in
any direction, but in the other case, the space-time is deformed and the particle will be
absorbed by the black hole. The black hole heuristic is based on this phenomenon of black
holes in the outer space [46]. There are various applications of the black hole heuristic, like
discrete sizing optimization of planar structures [47], feature selection and classification on
biological data [48], and optimization of consignment-store-based supply chain [49] or for
urban traffic network control [50].

Flower pollination-based heuristic belongs to the bio-inspired algorithms [51]. This
algorithm is used in various fields, like identifying essential proteins [52], multi-level image
thresholding [53], visual tracking [54], EEG-based person identification [55], or double-
floor corridor allocation problem [56]. The solutions of the mathematical problems are
represented by pollen grains, and the optimization process is based on the moving of these
grains in the search space modelled by biotic, probiotic, and self-pollination. The algorithm
can be described in four important steps.

As the above-mentioned content analysis shows, existing studies focus on the analyt-
ical and heuristic optimization of both conventional and cyber-physical manufacturing
systems, while only a few of them consider the energy efficiency aspects of in-plant material
supply in cyber-physical systems.

More than 50% of the articles were published in the last 5 years. This result indicates
the scientific potential of the design of in-plant supply solution of cyber-physical manufac-
turing environment. The articles that addressed the design and control problems of the
manufacturing system and their material supply problems are focusing on conventional
manufacturing, and only a few of them describe the logistic problems of cyber-physical
manufacturing. Therefore, this research topic still needs more attention and research.
According to that, the focus of this research is the modelling and optimization of in-plant
supply of the matrix production system, focusing on cell assignment and routing problems.

Table 1 summarizes the main contributions of the related research works from the
main contribution and the focus on manufacturing, optimization method, and sustain-
ability point of view. As the analysis shows, a wide range of research works focus on the
optimization of conventional manufacturing systems from technology and in-plant supply
point of view, and these works are using both analytical methods and heuristics. There are
some research works related to the in-plant supply optimization in cyber-physical systems,
but these researches are focusing on KPIs (Key Performance Indicators). The table identifies
a research gap, because the in-plant material supply of cyber-physical systems has not
been extensively published until now. As a consequence related to the analysis shown
in Table 1, the main contributions of this article are the followings: (1) model framework
of autonomous guided vehicles-based supply of matrix production; (2) mathematical de-
scription of cell assignment and routing problem in matrix production; (3) computational
method based on flower pollination algorithm to solve the assignment and routing problem
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in matrix production; and (4) computational results of the described model to validate the
models and the methods.

Table 1. Authors’ contributions related to the optimization of cyber-physical production systems including I4.0 and heuristic
optimization approaches.

Research Contribution
Optimization Manufacturing

Sustain-
abilityAnalyti-

cal
Heuris-
tics

Conven-
tional

Cyber-
physical

Rosin et al., 2020 [1] Application of principles and tools of I4.0 in lean management X
Skapinyecz et al., 2018 [2] Optimal selection of logistics service providers in Industry 4.0 X X

Tchoffa et al., 2019 [3] Extension of federated interoperability framework in I4.0 X X
Alcácer et al., 2019 [4] Information and communication technologies in I4.0 X

Dastjerdi et al., 2016 [5] Impact of fog computing on IoT solutions X
Huang et al., 2013 [6] Additive manufacturing and sustainability X X

Wu et al., 2010 [7] Magnetic magnesium for data storage in gentelligent products X X X
Guo et al., 2019 [8] Modular based flexible digital twin for factory design X

Tao et al., 2018 [9] Digital twin-enabled product design, manufacturing, and
service X

Ding et al., 2019 [10] Digital twin-based cyber-physical production system X
Cui et al., 2020 [11] Big data applications X X

Schahinian, 2020 [12] Concept of matrix production X
Bányai et al., 2019 [13] Real time optimization of matrix production systems X X

Azarm et al., 1991 [14] Production priorities in the heuristic optimization of rough-mill
yield X X

Kops et al., 1994 [15] Optimum allocation of jobs on machine tools X X
Hidaka et al., 1997 [16] Facility location for large-scale logistics using heuristics X X
Chitsaz et al., 2019 [17] Joint optimization of production and distribution X X

Eydi et al., 2020 [18] Decision making for supplier and carrier selection X X X
Feng et al., 2018 [19] Integrated production and transportation planning X X X

Ghomi et al., 2019 [20] Optimization in cloud manufacturing X X
Sadati et al., 2018 [21] Identification of significant control variables in manufacturing X X X

Haberer et al., 2016 [22] Optimization of a crawler track unit X X

Tamás, 2017 [23] Simulation-enabled decision making in manufacturing
processes X X

Saez-Mas et al., 2020 [24] Hybrid approach for cell assignment problems X X
Bohács et al., 2017 [25] Ontology-driven framework for Jellyfish-type simulation X X X
Ghomi et al., 2019 [26] Optimization of queueing problems in cloud manufacturing X X
Hong et al., 2018 [27] Multi-stage supply chain optimization X X X
Khalilpourazari et al.,

2019 [28] Analysis of impact of defective supply batches X X

Mehranfar et al., 2019 [29] Sustainability oriented product distribution X X X
Liu et al., 2017 [30] Impact of facility transfer on cellular manufacturing X X X

Habibi et al., 2017 [31] Integrated optimization f collection and disassembly X X
Juan et al., 2020 [32] Soft constraints in production optimization X X X

Russel, 2017 [33] Optimization in production routing X X
Shao et al., 2017 [34] No wait flow shop scheduling optimization X X

Saghaeeian et al., 2018 [35] Multi-product competitive supply chain network design X X X
Tayal et al., 2018 [36] Facility layout optimization from big data point of view X X X
Tari et al., 2018 [37] Discounted fixed charge transportation problems X X X

Sakalli et al., 2018 [38] Integrated stochastic production and distribution planning X X
Abouee-Mehrizi et al.,

2019 [39]
Design of perishable inventory systems with Markov decision

process X X

Aboytees et al., 2020 [40] Optimization of hub-and-spoke network problems X X X
Behfard et al., 2018 [41] Optimization of last time buy problem for fast moving parts X X

Ma et al., 2018 [42] Resource sharing optimization X X
Cheraghalipour et al.,

2019 [43]
Agricultural supply chain optimization for wide geographic

range X X X

Respen et al., 2017 [44] Perturbations in production plan, demand, and dispatching X X
Varas et al., 2018 [45] Lot sizing for uncertain demands X X
Hatamlou, 2013 [46] Heuristic data clustering X

Gholizadeh et al., 2019 [47] Discrete sizing optimization with heuristics X
Pashaei et al., 2017 [48] Binary black hole heuristics X
Bányai et al., 2017 [49] Consignment-store-based supply chain optimization X X X

Khooban et al., 2017 [50] Fuzzy logic-based urban traffic network control X
Lei et al., 2019 [51] Flower pollination heuristics X
Lei et al., 2018 [52] Application of flower pollination heuristics X

Shen et al., 2018 [53] Multi-level image thresholding with flower pollination
heuristics X
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Table 1. Cont.

Research Contribution
Optimization Manufacturing

Sustain-
abilityAnalyti-

cal
Heuris-
tics

Conven-
tional

Cyber-
physical

Gao et al., 2018 [54] Visual tracking with flower pollination heuristics X
Rodrigues et al., 2016 [55] Binary flower pollination algorithm X

Guan et al., 2019 [56] Double-floor corridor allocation X
Kherabadi et al., 2017 [57] Gravitational search algorithm in Fuzzy controllers X

Szentesi et al., 2021 [58] Process optimization for distribution logistics X X
Bányai et al., 2017 [59] Optimization of blending technologies X X
Hardai et al., 2021 [60] Logistics aspects of I4.0 X

Kundrák et al., 2019 [61] Efficiency improvement in manufacturing technologies X
This proposal Optimization of in-plant supply for matrix production X X X

3. Materials and Methods

The optimization problem of the matrix production-based in-plant supply has two
stages. Within the frame of the first stage, the various production orders must be assigned
to the available standardized production cells, while the second phase focuses on the
optimal routing of automated guided vehicles. The structure of the integrated assignment
and routing model can be seen in Figure 2.

Figure 2. Integrated model of assignment and routing problem in a cyber-physical manufacturing en-
vironment.

Phase 1 includes the assignment of production orders to the grid cells. Production
orders are generated by the Enterprise Resource Planning (ERP) using the results of Material
Requirement Planning (MRP-I) and Manufacturing Resource Planning (MRP-II). The ERP
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is connected to the sensors and data collection units of cyber-physical environment through
a digital twin solution, which makes it possible to make real time analysis, controlling,
and forecasting. The size of the AGV pool defines the number of available AGVs, which
has a great impact on the in-plant supply process from an availability and efficiency
point of view. The more available AGV in the AGV pool, the higher the flexibility and
availability, which can influence the utilization of technological resources caused by the
changeover time. The second part of the matrix production system includes the storages
for tools and components required for the manufacturing. The more the available tool set
for required changeover operation, the higher the flexibility and resource utilization for
technological resources.

Phase 2 includes the routing of AGVs available in the AGV pool. A typical route
of an AGV includes the following tracks: (1) from AGV pool to the warehouse, (2) from
the warehouse to the first cell grid of the scheduled route, (3) tracks among cells grids,
and (4) from the last cell grid back to the AGV pool. The objective function is either resource-
or sustainability-based. Resource-based objective function means the minimization of
numbers of required AGVs, while sustainability-based objective means the minimization of
energy-consumption of material supply operations. The input parameters of the integrated
assignment and routing problem are the followings:

• τ
p
ij is the production lead time of production order i at production cell j, where

i = 1 . . . m and j = 1 . . . n;

• τc
ikj is the changeover time among production orders between production order i and

production order k at production cell j, where k = 1 . . . m, and τc
ikj ≥ 0 if it is possible

to perform a change between production order i and k at production cell j, otherwise
τc

ikj = −1;

• aij is the availability matrix, which takes a value of 1 if the production order i can be
assigned to matrix cell j, otherwise 0.

• ac
ikj is the changeover availability matrix, which takes a value of 1 if it is possible to

change from production order i to production order k at matrix cell j, otherwise 0;

• τlower1
i and τ

upper
i are the lower and upper time limits of finishing operation i in the

first phase (assignment) of the optimization;

• τlower2
i and τ

upper2
i are the lower and upper time limits of finishing operation i in the

second phase (routing) of the optimization;

• supper1
j is the upper limit of operations at production cell j;

• zij is the required toolset for production order i at matrix cell j; and

• rmax
g is the available number of required toolset g.

3.1. Assignment of Production Operations to Matrix Cells

Within the frame of this phase, the assignment problem of required production opera-
tions (production orders) to available standardized flexible production cells is described.
The decision variable of the assignment problem is the assignment matrix xjk, which defines
that operation xjk production order is assigned to the matrix cell j as kth operation.

The objective function of the first phase of the optimization problem is the minimiza-
tion of the total operation time within a predefined timeframe, which can be calculated as
a sum of the production operations and changeover times:

τ = τp + τc, (1)
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where τp is the production lead time, and τc is the changeover time among the various
production operations of the standardized production cells. The first part of the objective
function represents the total operation time, which can be calculated as follows:

τp = ∑n
j=1∑v

k=1τ
p
xjk j, (2)

where vj is the number of assigned production orders to production cell j.
The second part of the objective function describes the changeover time among the

scheduled operation of matrix cells depending on the assignment:

τc = ∑n
j=1∑

vj−1
k=1 τc

xjkxjk+1 j. (3)

As an alternative objective function, it is also possible to take into consideration the
minimization of the required time spans to fulfil all production orders:

τa = max
j
(

v

∑
k=1

τ
p
xjk j +

vj−1

∑
k=1

τc
xjkxjk+1 j)→ min. (4)

Within the frame of the assignment problem, various constraints must be taken into
consideration, like time- and capacity-related constraints. The solution of the assignment
problems is limited by these constraints.

Constraint 1 defines that production orders can be assigned to suitable produc-
tion cells:

∀j, k : axjk j = 1→ xjk > 0, (5)

Constraint 2 describes that there are production operation pairs and matrix cells,
where it is not possible to perform a changeover:

ac
ikj = 1→ τc

ikj ≥ 0 and ac
ikj = 0→ τc

ikj = −1. (6)

Constraint 3 describes that the operation of production orders must be finished be-
tween the lower and upper limit of end time, so it is not allowed to exceed these time-
related constraints:

∀i = xjk : τlower1
i ≤ ∑k

l=1τ
p
xjl j + ∑k−1

l=1 τc
xjl xjl+1 j ≤ τ

upper1
i . (7)

Constraint 4 describes that the number of operations is limited at each production cell,
so it is not allowed to exceed the upper limit of operations at a chosen production cell:

∀j : max
k

(
xjk > 0

)
≤ supper

j . (8)

Constraint 5 describes that one production order can be assigned exactly to one
production cell:

∀j 6= j∗ ∧ k 6= k∗ : xjk 6= xj∗k∗ . (9)

Constraint 6 describes that it is not allowed to exceed the available number of toolsets
within a time frame:

∀t :
n

∑
j=1

zxjk j(t) ≤ rmax
g . (10)

3.2. Routing of AGVs in Cell Grid

Within the frame of this phase, the assignment of production orders to matrix cells
is given (the production plan is defined) and the optimal routing of available automated
guided vehicles must be solved based on the results of the assignment problem. The deci-
sion variable of this routing problem is a matrix including permutation arrays, where one
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permutation array represents the optimal route of an automated guided vehicle. The yab
routing matrix defines that the bth station of AGV a is the matrix cell assigned to production
order yab.

The objective function of the second phase routing problem is the minimization of
vehicle fleet size and the minimization of energy consumption of in-plant supply:

kAGV → min. and c→ min. (11)

where kAGV is the required number of AGVs and c is the calculated energy consumption.
The minimization of the fleet size can be described as the maximum size of fleet within

the frame of the time frame:

kAGV = max
b

(yab > 0)→ min. (12)

The minimization of the energy consumption cannot be defined as the minimization
of the routes, because energy consumption depends on the weight of the load:

c = cI + cI I + cI I I (13)

where cI is the energy consumption of the AGVs from the warehouse to the first station
(matrix cell) of the in-plant supply route, cI I is the energy consumption of the AGVs among
the stations (matrix cells), while cI I I is the energy consumption of the AGVs from the last
station (matrix cell) to the warehouse.

The energy consumption of the AGV from the warehouse to the first station (matrix
cell) of the in-plant supply route can be defined as a function of length of the route and the
weight of the load:

cI = ∑kAGV
a=1 (l0j(ya1)∑

bmax
a

b=1 qyab), (14)

where bmax
a is the number of stations of in-plant supply route a, qyab is the weight of the

load for production order scheduled as station b of route a, and l0j(ya1)
is the length of the

transportation between the warehouse and the first matrix cell of the route.
The energy consumption of the AGV among matrix cells can be defined as follows:

cI I = ∑kAGV
a=1

(
∑bmax

a −1
b=1

(
lj(yab)j(yab+1)∑

bmax
a

d=b qyad

))
, (15)

where j(yab) is the matrix cell ID assigned to the production order, which is scheduled to
route a as station b.

The energy consumption of the AGV from the last matrix cell of the in-plant supply
route and the warehouse can be defined as follows:

cI I I = ∑kAGV
a=1 (lj(yabmax

a
)0qyabmax

a
), (16)

where qyabmax(a)
is the weight of the load for production order scheduled to the last station

of in-plant supply route a, and lj(yabmax
a

)0 is the length of the transportation between the last
matrix cell of route a and the warehouse.

Within the frame of this routing problem, various constraints must be taken into con-
sideration, like time-, capacity- and energy consumption-related constraints. The solution
of the routing problem is limited by these constraints.

Constraint 1 defines that it is not allowed to exceed the maximum number of stations
within one supply route:

∀a : bmax
a = max

b
(yab >max

a ) ≤ vmax
a , (17)

where vmax
a is the upper limit of the number of stations assigned to route a.
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In the case of electric AGVs and heavy loadings, it is important to take into consid-
eration the impact of weight and route length on the energy consumption, because in
the case of heavy loadings the transportation route can be limited. Energy consumption
constraints can be transformed to material flow intensity constraints, because we can
define a proportion of energy consumption and material flow intensity (product of length
and weight).

Constraint 2 defines that it is not allowed (and not possible) to exceed the material
flow intensity, which depends on the weight of loading and length of route:

∀a : qI
a + qI I

a + qI I I
a ≤ qmax

a , (18)

where
qI

a = l0j(ya1)∑
bmax

a
b=1 qyab (19)

qI I
a = ∑bmax

a
b=1 (lj(yab)j(yab+1)∑

bmax
a

d=b qyab) (20)

qI I I
a = lj(yabmax

a
)0qyabmax

a
≤ qmax

a (21)

Constraint 3 defines that it is not allowed to exceed the upper and lower limit of
arrival time at the matrix cells:

∀yab : τlower2
i ≤ ∑b−1

d=0τt
j(yad)j(yad+1)

+ τt
j(yad+1)

≤ τ
upper2
i (22)

where τt
j(yad)j(yad+1)

is the transportation time between matrix cells assigned to the station b

of route a, and τh
j(yad+1)

is the material handling time (loading and unloading) at matrix cell
assigned to the station d + 1 of route a. The lower and upper limit for arrival time depends
on the assignment matrix.

Constraint 4 defines that it is not allowed to exceed the upper limit of capacity (weight
or volume) of automated guided vehicles:

∀a : ∑bmax
a

b=0 qyab ≤ qmax
a (23)

where qmax
a is the upper limit of capacity of route (or vehicle) a.

Constraint 5 defines that supply demands can be transported only with appropri-
ate vehicles:

∀yab : a(yab) ∈ Ξyab (24)

where Ξyab is the set of vehicles appropriate for transportation of required materials and
tools of production order yab from the warehouse to the assigned matrix cell. The descrip-
tion of nomenclatures used in the mathematical model can be seen in Appendix A.

To solve the above-described integrated assignment and routing problem, a multi-
phase optimization algorithm will be described.

4. Results

The multiphase solution algorithm includes the optimization of assignment of pro-
duction orders to matrix cells and the routing of autonomous guided vehicles among
AGV pool, warehouse, and matrix cells. The solution of the assignment problem is based
on a black-hole heuristic, while the routing (which also includes a virtual scheduling of
production orders) is solved with a flower pollination-based heuristic.

4.1. Black-Hole Heuristic for the Assignment Problem

This population-based heuristic can be summarized in five major steps. The first step
is the generation of an initial population of stars representing the initial solutions of the
real problem. The coordinates of the generated stars describe the decision variables of the
optimization problem. The decision variable of the above-described assignment problem is
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the assignment matrix, which defines the assignment of production orders to matrix cells,
so the initial solutions of the black hole algorithm can be defined as follows:

X0α =
[

x0α
jk

]
(25)

where x0α
jk is the ID of the production order assigned to the matrix cell j as kth operation of

the initial solution α. The initial solution matrix has m numbers, where x0α
jk ≥ 1. α = 1...λ,

and λ is the number of initial solutions.
The second step is the evaluation of the initial solutions with the objective function

and calculate the gravity force of the star.

eµα
jk = max

j

(
∑v

k=1τ
p
xjk j + ∑

vj−1
k=1 τc

xjkxjk+1 j

)
(26)

where µ is the iteration step and µ = 0 directly after the initialization of the solution matrix.
We can write that

xµα
jk ≥ 1→ eµα

jk > 0 (27)

The third phase is to find the best solution in this iteration step. This best solution
is dedicated as the black hole of the search space and all other stars representing worst
solutions will move toward this solution. We can also define more black holes, but in this
case the algorithm is like gravity force algorithm [57].

eµ
BH = max

α

(
eµα

jk

)
= max

α

(
max

j

(
∑v

k=1τ
p
xjk j + ∑

vj−1
k=1 τc

xjkxjk+1 j

))
(28)

The fourth phase of the black hole heuristic is to move the stars towards the black
holes. The speed and distance of moving depends on the value of objective function, which
is represented by the gravity force of the star.

xµα
jk = xµ−1,α

jk + round
(

rnd
∣∣∣xµ−1

BH − xµ−1,α
jk

∣∣∣) (29)

Stars reaching the event horizon described by the value of Schwarzschild radius will
be absorbed and a new star will be initialized. After this step, various termination criteria
can be taken into consideration, like computational time or the measure of convergence.

Within the frame of a scenario including 16 production orders and 9 matrix cells, this
paper will demonstrate the described model and the results of the black hole heuristic-
based assignment optimization. We can define both the availability matrix of matrix
cells and the operation time of matrix cells for each production order. Table 2 shows the
operation time of production orders. It is not necessary to describe both matrices, because
the operation time can be defined as a ∞ value if the production order cannot be fulfilled
in the matrix cell.

We can define the changeover time of matrix cells between production orders. This
changeover time is caused by the various required tool sets of production orders. If the
production orders are changed at a matrix cell, the following operations are required:
(1) take down the used tool set of the matrix cell, (2) collect remaining components of
previous production order, (3) transport the old tool set to the tool storage and the remaining
components to the warehouse, (4) transport the new required tool set to the next production
order from the tool store to the matrix cell, (5) transport the required components from the
warehouse to the matrix cell, and (6) set up the new tool set of the production order. These
changeover times for this scenario are summarized as a total changeover time in Table 3.
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Table 2. Operation time of production orders [min].

Production Order ID
Matrix Cell ID

1 2 3 4 5 6 7 8 9

1 2.5 3.3 4.0 5.6 7.9 1.2 9.5 4.8 1.5
2 5.4 4.8 7.4 8.6 6.1 1.3 9.8 9.7 3.6
3 8.0 1.0 9.6 9.9 9.9 1.6 8.8 6.5 5.7
4 9.1 1.1 2.7 2.1 6.9 1.5 9.2 3.9 9.9
5 7.6 1.8 2.0 4.8 5.4 1.3 8.5 4.9 5.5
6 6.8 1.6 7.2 3.8 4.3 1.6 9.3 2.3 5.3
7 9.2 8.0 6.9 8.0 7.5 .17 8.6 1.5 5.6
8 4.5 7.1 8.0 1.7 2.1 1.3 9.0 8.7 8.0
9 6.8 5.3 9.5 4.2 2.6 1.2 8.5 7.2 9.0
10 4.6 6.1 4.1 6.6 2.4 1.2 9.0 6.1 5.0
11 8.3 5.6 5.0 3.9 8.7 1.1 9.6 8.3 5.2
12 7.6 9.1 8.2 8.8 5.6 1.1 9.6 2.5 5.9
13 2.0 4.5 6.3 7.7 3.1 1.1 9.6 3.4 5.8
14 4.4 5.9 3.2 2.7 1.0 1.5 8.8 6.5 2.6
15 7.9 6.9 6.7 8.3 1.8 1.4 9.1 4.6 6.5
16 8.1 4.5 9.0 8.4 8.3 1.4 9.2 8.2 4.9

Table 3. Changeover time between production operations (OID = Production order ID) [min].

OID
OID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1.8 3.0 3.5 2.9 8.3 2.0 7.5 7.0 1.1 1.0 2.1 4.3 6.5 7.7 7.8
2 7.3 0 4.1 7.2 5.0 8.3 8.9 8.7 7.5 4.0 9.5 3.4 8.2 9.7 9.7 2.6
3 1.1 9.6 0 2.6 1.1 6.8 7.9 5.9 4.1 5.8 8.2 7.4 8.1 6.5 1.7 7.2
4 5.5 1.1 7.1 0 7.1 6.1 9.1 8.4 7.6 8.3 7.1 5.4 2.7 4.3 9.3 2.1
5 8.3 4.4 1.2 7.9 0 4.9 7.8 1.2 8.7 4.2 9.1 8.5 8.2 7.1 9.3 9.9
6 5.6 2.5 3.4 8.2 4.4 0 1.9 2.9 6.5 6.8 4.8 9.2 9.0 7.9 5.5 4.0
7 5.4 3.9 9.4 9.6 5.4 5.2 0 1.5 9.7 5.6 2.5 2.8 6.2 5.4 2.1 9.9
8 5.3 8.1 2.8 5.6 5.4 9.8 4.5 0 1.5 2.0 4.0 3.1 2.6 8.8 8.2 3.6
9 9.4 6.1 9.0 4.2 6.0 2.4 7.6 1.2 0 8.6 9.1 2.5 8.4 2.7 1.0 5.1

10 1.5 4.7 7.7 8.8 1.6 8.2 1.5 9.0 3.1 0 3.5 6.2 1.8 3.9 2.6 5.4
11 4.4 5.1 1.1 8.6 3.1 8.6 5.7 6.2 5.5 3.3 0 3.8 2.2 5.7 1.9 3.9
12 6.4 4.0 2.2 5.6 1.6 8.0 5.0 5.2 7.8 3.2 5.0 0 1.8 5.8 8.2 3.6
13 3.0 3.6 1.0 8.8 3.6 8.6 9.2 2.0 9.5 7.0 8.1 6.8 0 3.0 9.0 8.3
14 1.2 1.5 4.4 8.0 6.3 6.9 4.4 6.9 5.4 5.2 1.9 5.6 4.2 0 2.8 4.6
15 7.4 1.2 4.6 1.7 9.2 7.2 8.3 9.9 2.3 9.6 9.4 9.0 4.2 5.9 0 5.5
16 2.1 6.7 5.8 6.8 2.2 7.9 5.3 9.2 1.0 8.9 8.4 3.7 4.4 6.0 1.3 0

The time constraints can be defined as the lower and upper limits of the beginning and
finishing of production order-related operations. Table 4 shows the time-based constraints
of the scenario. The ∞ value of upper time limit defines that there is no time limit for this
production order.

Table 4. Time constraints of production time (PTC = production time constraints. OID = Production order ID. BMIN = be-
ginning time lower limit. BMAX = beginning time upper limit. FMIN = finishing time lower limit. FMAX = finishing time
upper limit) [min].

PTC
OID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bmin 0 2.6 6.3 0 0 0 0 2.2 0 2.2 0 4.4 7.1 0 0 0
Bmax 2.3 5.3 ∞ ∞ ∞ 9.4 2.2 7.2 8.7 3.9 5.5 7.3 9.1 ∞ ∞ 2.1
Fmin 2.1 5.6 3.4 2.2 8.1 3.2 1.1 5.5 4.1 7.6 4.2 6.1 6.6 2.4 8.1 1.1
Fmax 3.2 ∞ ∞ ∞ 9,8 ∞ 5.5 8.8 8.9 9.1 6.3 7.9 ∞ ∞ ∞ 3.8
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Figure 3 shows the result of the black hole heuristic-based solution algorithm. The value
of the objective function is 9.1 min, which means that the last production order will be
finished in 9.1 min, which is the cycle time of the 16 production orders. This numerical
result shows that the described optimization algorithm can take the time-related constraints
into consideration and the algorithm makes it possible to find an optimal solution for the
in-plant supply optimization problem. As Figure 3 shows, in the case of the first scenario
the algorithm takes a wide range of the predefined constraints into consideration, including
the production time (or lead time) constraint, and the upper and lower limit of beginning
and ending time for the production process. At first glance, it may seem that the changeover
time in matrix cell 6 could be relocated to the matrix cells 3 or 5, thereby reducing the total
manufacturing time, but this is not the case as changeover operations and idle times are
not freely moveable due to technological limitations.

Figure 3. Gantt chart of the working process resulting from the optimal assignment of production
orders to matrix cells in scenario A.

The total idle time of the matrix cells within the time window of the fulfilment of the
16 production demands is 18.4 min. The distribution of the idle time among the matrix
cells is shown in Figure 4.

Figure 4. Idle time distribution among matrix cells within the cycle time of the 16 production orders
in scenario A.



Machines 2021, 9, 220 15 of 25

The technological and logistics resources of the matrix production system are usually
state-of-the-art technologies and have expensive operation costs; therefore, it is important
to optimize their idle time in order to increase their utilization. In the case of an even
distribution of idle time, the production time could be reduced in this case as well, however,
as in the case of the changeover time, the time-related constraints and the availability of
technological resources do not allow this. The distribution of idle time and the changeover
time depends on the flexibility and availability of matrix cells. Higher availability and
flexibility makes it possible to produce a wider range of products, which can lead to
increased changeover time.

Figure 5 shows the results of a second scenario, where the same operation and
changeover times were used, but the number of available matrix cells was reduced to
six and the solution was not limited by the time constraints of the previous scenario.
The value of the objective function is 13.8 min, which means that the last production order
will be finished in 13.8 min. As Figure 5 shows, the number of available standardized
configurable productions or assembly cells has a great impact on the results of in-plant
supply processes from a time and capacity point of view. However, in the matrix produc-
tion system, the processes of technology and logistics are separated, but the decreased
number of available technological resources influences the required logistics resources and
the computation result shows a higher time span for the working process. In this case,
the technological resources must have an increased flexibility and availability for the same
manufacturing time. If the availability and flexibility of matrix cells does not increase,
the decreased number of technological resources will result in a longer time period being
required to complete production, even with a better distribution of idle times.

The total idle time of the matrix cells within the time window of the fulfilment of
the 16 production demands is 9.6 min. The distribution of the idle time among the matrix
cells is shown in Figure 6. The result shows that the decreased available technological
resource influences also the idle time. In this case, the distribution of idle time is more
even, but this change in the distribution of idle time has no positive impact on the required
manufacturing time because of the decreased number of technological resources.

Figure 5. Gantt chart of the working process resulting from the optimal assignment of production
orders to matrix cells in scenario B.
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Figure 6. Idle time distribution among matrix cells within the cycle time of the 16 production orders
in scenario B.

4.2. Flower Pollination Heuristic for Routing Problem

The first step of the optimization algorithm is the initialization steps, where the basic
parameters of the algorithm regarding the real problem and the process of optimization
will be defined. The parameters of the real problem are the size and dimension of the
search space, as well as the impact of constraints on the search space. The parameters
of the algorithm are the followings: switching process between global and local search
(biotic and probiotic pollination), termination criteria (computation time, iteration steps,
or convergence), and the number of initial solutions (pollen grains).

The second step is the initialization of the solutions, which means the definition of the
pollen grains in the search space (pastureland).

Y0α =
[
y0α

ab

]
(30)

where y0α
ab is the ID of the matrix cell assigned to route a as bth station as the initial solution

α. The initial solution matrix has m numbers, where y0α
ab ≥ 1. α = 1...λ, and λ is the number

of initial solutions.
The next step is the evaluation of the pollen grains, which is based on the objective

function of the routing problem describing the minimization of the energy consumption of
the routes defined by solution α in iteration step µ:

eµα
ab = ∑kAGV

a=1

(
∑bmax

a −1
b=1

(
lj(yab)j(yab+1) ∑bmax

a
d=b qyad

))
+

+∑kAGV ∑
a=1 (l0j(ya1) ∑bmax

a
b=1 qyab) + ∑kAGV

a=1 (lj(yabmax
a

)0qyabmax
a

)
(31)

where µ is the iteration step and µ = 0 directly after the initialization of the solution matrix.
We can write that

yµα
ab ≥ 1→ eµα

ab > 0 (32)

The third phase is the initialization of a decision number that defines the switch-
possibility between biotic and probiotic pollination. The fourth step is the pollination
depending on the type of search. In the case of global search, a biotic pollination is
performed:

yµ+1,α
ab = yµ,α

ab + L(λ)
(

ybest,α
ab − yµ,α

ab

)
(33)

where L(λ) is the Levy-distribution.
In the case of local search, an abiotic pollination is performed:

yµ+1,α
ab = yµ,α

ab + ϑ
(

yµ,α
r1r2 − yµ,α

r3r4

)
(34)



Machines 2021, 9, 220 17 of 25

where yµ,α
r1r2 and yµ,α

r3r4 are random solutions in the iteration step µ, and ϑ is a random number
between 0 and 1. To transform the continuous representation to a discrete permutation
representation, the smallest position value rule was used.

Within the frame of a scenario including 15 production orders and 9 matrix cells, this
paper demonstrates the described routing model of the matrix production and the results of
the flower pollination-based routing optimization. The optimal assignment of production
orders is given, so we can define the lower and upper time limits of production orders,
as shown in Table 5.

Table 5. Optimal assignment of production orders to matrix cells and their lower and upper time limits as input parameters
if there is a routing problem in the matrix grid (OID = production order ID. AMC = assigned matrix cell ID. MHT = material
handling time of the production order at the matrix cell. BMin = beginning time lower limit. BMax = beginning time
upper limit).

OID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

AMC 3 2 7 4 6 5 8 1 6 9 1 9 5 6 2
MHT 0.8 1.3 0.85 0.9 0.45 0.4 1.2 1.1 0.45 0.3 1.1 0.3 0.4 0.45 1.3
Bmin 1.1 0.3 1.1 4.2 5.1 3.2 2.2 0.4 1.1 2.2 6.5 4.5 5.1 3.7 7.8
Bmax 3.4 3.4 5.4 8.5 6.9 8.4 6.2 3.3 4.4 5.1 10.3 6.7 7.5 6.5 9.9

The distances among matrix cells, warehouses, and storages are shown in Table 6.

Table 6. Distances in the matrix grid [10 m].

Production Order ID
Matrix Cell ID

WH/ST 1 2 3 4 5 6 7 8 9

WH/ST 0 0.65 0.65 0.65 1.3 1.3 1.3 1.95 1.95 1.95
1 0.65 0 0.65 1.3 0.65 1.3 1.95 1.3 1.95 2.6
2 0.65 0.65 0 0.65 1.3 0.65 1.3 1,95 1,3 1,95
3 0.65 1.3 0.65 0 1.95 1.3 0.65 2.6 1.95 1.3
4 1.3 0.65 1.3 1.95 0 0.65 1.3 0.65 1.3 1.95
5 1.3 1.3 0.65 1.3 0.65 0 0.65 1.3 0.65 1.3
6 1.3 1.95 1.3 0.65 1.3 0.65 0 1.95 1.3 0.65
7 1.95 1.3 1.95 2.6 0.65 1.3 1.95 0 0.65 1.3
8 1.95 1.95 1.3 1.95 1.3 0.65 1.3 0.65 0 0.65
9 1.95 2.6 1.95 1.3 1.95 1.3 0.65 1.3 0.65 0

Figure 7 shows the optimal routing in the matrix grid. There are three routes in the
matrix cell within the time span of routing. Six production orders are assigned to route 1
(blue), five production order are assigned to route 2 (red), and three production orders are
assigned to route 3 (green). This computational result shows that more AGVs are required
in the matrix production system. As presented in the chapter discussing the optimization
algorithm, clusters must be formed from the manufacturing tasks. It can be seen in Figure 7
that the clustering algorithm, when designing the clusters of the production task forming
each route, try to form clusters with an even number of production tasks, taking into
account the time- and capacity-related constraints. The increased number of available
AGVs can lead to decreased cluster, which influences the required manufacturing time and
lead time.
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Figure 7. Three optimized in-plant supply routes in the matrix grid optimized with flower pollination-
based heuristics.

Figure 8 shows the efficiency of the flower pollination-based heuristics. The scheduled
production orders are between the predefined lower and upper time limits. The results
show that time-related constraints also can be taken into consideration. It is especially
important from the production orders point of view, because the predefined time limits,
which are based on ERP data, are assumptions of the high service level in matrix pro-
duction system. The time frame defined by the lower and upper limits influences the
solution. In the case of a narrow time frame defined for the manufacturing of production
orders, both the availability of technological resources and the availability of logistics
resources must be increased to minimize the total required time frame for manufacturing
all production orders.

Figure 8. The distribution of scheduled production order between the related lower and upper
time limits.
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The assignment of production orders to matrix cells and the routing of production
orders led to an optimal in-plant supply of matrix cells. The energy consumption, as the
objective function of the design problem, can be calculated based on Equation (13) and
is shown in Figure 9. As the computed energy consumption rates show, the energy con-
sumptions of the in-plant supply routes are quasi-uniform, because the state-space of the
heuristic optimization model representing the potential solutions of the real problem makes
it possible. In the case of a decreased number of AGVs, this uniform distribution is not
possible. The energy consumption has a great impact on both the operation cost and on
the environmental impact. Depending on the energy generation source (oil, wind, photo-
voltaic, water, nuclear, biomass, etc.), we can define the emission, and this emission can be
taken into consideration as a virtual emission of the manufacturing process. The energy
consumption of AGVs influences the required loading of batteries, therefore, the even
distribution of energy consumption makes it possible to make a more transparent loading
process for the AGVs.

Figure 9. The distribution of energy consumption in each in-plant supply route (TEC = total en-
ergy consumption).

4.3. Challenges and Applicability in Real Industrial Environment

The above-described methodology is applicable in a real industrial environment,
but there are challenges that may be faced while applying this proposed model in reality.
The application is based on data from the ERP and from the digital twin. The conven-
tional ERP data sets and real-time digital twin-enabled information for simulation-based
scenario analysis and forecasting are available using standard interfaces, because standard-
based interoperability is an important challenge for large, complex manufacturing systems.
The optimization module for in-plant supply design can be implemented either as a part
of the ERP or MES, or as an add-on software using standardized channels for informa-
tion sharing. The implementation cost of these solutions can vary, add-on solutions are
cheaper, but ERP-integrated optimization can lead to a more robust and stable solution.
The validation of input data for digital twin is also a challenge, because the smart sensor
network must have stringent dependability, especially from a reliability and availabil-
ity point of view, as sensor failures can cause bad data, which influences the results of
digital twin-enabled simulation and influences real time decisions. In the case of a con-
ventional manufacturing system, the development of digital twin solutions requires new
business models considering expected costs and profit as well as the design, operation,
and maintenance requirements. These aspects are summarized in Figure 10.

Figure 10. Challenges regarding the proposed model and method.
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The practical application of the above-described methodology can be performed in
many ways, depending on the available IT environment (ERP, sensor networks, simulation
software). As an example, Figure 11 shows a possible solution focusing on the integration
of SAP and Technomatix Plant Simulation. Technomatix Plant Simulation is a discrete event
simulation software, which makes it possible to use SAP data and integrate real time data
from the digital twin of the physical processes in the manufacturing system [62]. The SAP
can generate a data file using Advanced Business Application Programming (ABAB)
and this data file can be used by the Technomatix Plant Simulation for scenario analysis,
especially in the field of production planning. The transformation of a conventional
manufacturing system into a cyber-physical manufacturing system using IoT technologies
makes it possible to mirror the physical manufacturing system, and the real time data
including failure data and status information from the smart sensor network makes it
possible to create a digital twin, which is available for the Technomatix Plant Simulation
using ODBC or SQL for Oracle. The SAP data is also available as an Excel file export using
Dynamic Data Exchange (DDE), Visual Basic Script (VBS) or Component Object Model
(COM). The Technomatix Plant Simulation provides a built-in optimization library (BiOL)
for stochastic optimization problems, and it is possible to use this heuristics-enabled solver
to perform the proposed optimization tasks.

The above-described scenarios validated the presented in-plant supply model in a
cyber-physical production environment and justify the fact that the matrix production, as a
new production concept, is suitable for the efficient production of diversified customers’
demands; not only the technology but also the logistic processes must be optimized. In
this relation, efficiency means that the matrix production system makes it possible to fulfil
diversified customers’ demands near to the efficiency of mass production. KUKA defines
this efficiency in the following context: “It (matrix production) will thus become possible to
implement the manufacture of customized series as an integral part of Industry 4.0 without
limitations in the context of industrial mass production [12]”. The validation includes the
following aspects: (1) the proposed functional model is suitable to support the in-plant
supply optimization in a matrix production system; (2) the mathematical model includes
time-, capacity-, and energy-related objective functions and constraints, and these objectives
have a great impact on the cost-efficiency, availability, performance, energy consumption,
and sustainability of the matrix production system; the computational results shows that
the optimization algorithm resulted in valid solutions in the matrix production system,
where time-, capacity- and energy-related constraints are taken into consideration.

Figure 11. Practical applicability of the proposed methodology for integrating SAP and Technomatix
Plant Simulation.

To summarize, the proposed model based on assignment and routing problems of
matrix production makes it possible to analyze the impact of assignment of production
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order to matrix cells and the routing of automated guided vehicles in the matrix grid on
the energy efficiency, availability, and required resources of material handling.

As the findings of the literature review show, the articles that addressed the analysis
of in-plant supply are focusing on a conventional production environment, but only a
few of them aimed to identify the optimization aspects of in-plant supply solutions in
matrix production.

The comparison of the results with those from other studies shows that the optimiza-
tion of material handling processes in cyber-physical systems still need more attention
and research. The reason for this is that, in the case of cyber-physical systems, where
Industry 4.0 technologies make possible the realization of flexible and efficient operation,
the improvement of in-plant supply solutions and the optimization of their processes must
be taken into consideration.

5. Discussion and Conclusions

The efficiency of manufacturing systems influences the efficiency of value chains,
including purchasing and distribution processes; therefore, it is important to analyze the
influencing factors of manufacturing systems and transform them into smart manufacturing
systems using IoT technologies [58–60]. Within the frame of this research work, the authors
developed an integrated model of in-plant supply based on the matrix production concept
of KUKA. This model makes it possible to optimize the assignment and routing tasks of this
new cyber-physical solution in the era of Industry 4.0. More generally, this paper focused
on the mathematical description of the in-plant supply solutions in matrix production,
including the assignment of technology and logistics (matrix cells as production resources
and production order) and routing of autonomous guided vehicles. Why is so much
effort being put into this research? Conventional production environments have been
transformed into cyber-physical production, and this new production environment needs
more attention both from a technology [61] and logistics point of view. A comparative
table contrasted the proposed methodology in front of related analyzed research works,
where the relationship between this solution and past literature was discussed. The existing
studies include the optimization of both conventional and cyber-physical manufacturing
systems, while only a few of them consider the sustainability-related aspects in matrix
production and other cyber-physical manufacturing environments.

The added value of the paper is in the description of the autonomous guided vehicles-
based in-plant supply in a cyber-physical environment, where production is based on
standardized flexible manufacturing resources. The scientific contribution of this paper for
researchers in this field is the mathematical modelling of in-plant supply in cyber-physical
production including assignment, routing, and virtually scheduling. The results can be
generalized because the model can be applied for different production environments. Man-
agerial decisions can be influenced by the results of this research, because the described
method makes it possible to analyze various supply strategies and make decisions regard-
ing the size of AGV pool or strategy of warehousing of components or storage of tools
and toolsets for the standardized flexible production cells. This managerial impact results
from the fact that the above-mentioned algorithm takes different values of the size of the
AGV pool as well as available tools required for changeovers into consideration, and the
optimization results show whether or not the in-plant supply process can be performed
with the given parameters.

However, there are also limitations of the study and the described model, which pro-
vides direction for further research. Within the frame of this model, stochastic parameters
were not taken into consideration. In further studies, the model can be extended to a more
complex model including Fuzzy sets to describe stochastic processes.
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Appendix A. Description of Nomenclatures

Table A1. Description of nomenclatures used in the mathematical model.

Nomenclature Description Dimension

i Production order, i = 1 . . . m [-]
j Production cell in the matrix grid, j = 1 . . . n [-]

k

Production order, which can be defined either as a
unique order, or as a lot, depending on the customers’
demand. The customers’ demand is available from the
ERP. k = 1 . . . m

[-]

τ
p
ij

Production lead time of production order i at
production cell j [min]

τc
ikj

Changeover time, which is the required time for the
process of converting a matrix cell from the initial
production process generated by the production order i
to another generated by production order k at
production cell j.

[min]

aij

Availability matrix, which takes value 1 if the
production order i can be assigned to matrix cell j,
otherwise 0. The availability depends on technological
and logistic conditions and parameters.

[-]

ac
ikj

Changeover availability matrix, which takes value 1 if it
is possible to converting matrix cell from production
order i to production order k at matrix cell j, otherwise 0

[-]

τlower1
i

Lower time limit of finishing operation i in the first
phase (assignment) of the optimization. [min]

τ
upper1
i

Upper time limit of finishing operation i in the first
phase (assignment) of the optimization. [min]

τlower2
i

Lower time limit of finishing operation i in the second
phase (routing) of the optimization. [min]

τ
upper2
i

Upper time limit of finishing operation i in the second
phase (routing) of the optimization. [min]

supper1
j

Upper limit of operations at production cell j. [-]

zij

Required toolset for production order i at matrix cell j.
The toolset is available from the tool storage and it
includes tools and equipment for production and
related measuring.

[-]

rmax
g Available number of required toolset g. [pcs]
τp Production lead time. [min]

τc Changeover time among the various production
operations of the standardized production cells. [min]

vj
Number of assigned production orders to production
cell j. [pcs]

kAGV Required number of AGVs. [pcs]
c Calculated energy consumption.
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Table A1. Cont.

Nomenclature Description Dimension

cI Energy consumption of the AGVs from the warehouse to
the first station (matrix cell) of the in-plant supply route. [kWh]

cI I Energy consumption of the AGVs among the stations
(matrix cells). [kWh]

cI I I Energy consumption of the AGVs from the last station
(matrix cell) to the warehouse. [kWh]

bmax
a Number of stations of in-plant supply route a. [pcs]

qyab

Weight of the load for production order scheduled as
station b of route a. [kg]

l0j(ya1)
Length of the transportation between the warehouse and
the first matrix cell of the route. [m]

j(yab)
Matrix cell ID assigned to the production order, which is
scheduled to the route a as station b. [-]

qyabmax(a)

Weight of the load for production order scheduled to the
last station of in-plant supply route a. [kg]

lj(yabmax
a

)0
Length of the transportation between the last matrix cell
of route a and the warehouse. [m]

vmax
a Upper limit of the number of stations assigned to route a. [pcs]

τt
j(yad)j(yad+1)

Transportation time between matrix cells assigned to the
station b of route a. [min]

τh
j(yad+1)

Material handling time (loading and unloading) at matrix
cell assigned to the station d+1 of route a. [min]

qmax
a Upper limit of capacity of route (or vehicle) a. [kg]

Ξyab

Set of vehicles appropriate for transportation of required
materials and tools of production order yab from the
warehouse to the assigned matrix cell.

[-]
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