
machines

Article

Finite-Time Output Feedback Control for Electro-Hydraulic
Servo Systems with Parameter Adaptation

Luyue Yin, Wenxiang Deng *, Xiaowei Yang and Jianyong Yao

����������
�������

Citation: Yin, L.; Deng, W.; Yang, X.;

Yao, J. Finite-Time Output Feedback

Control for Electro-Hydraulic Servo

Systems with Parameter Adaptation.

Machines 2021, 9, 214. https://

doi.org/10.3390/machines9100214

Academic Editors: Zheng Chen and

Litong Lyu

Received: 31 August 2021

Accepted: 22 September 2021

Published: 26 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
laurayin@njust.edu.cn (L.Y.); xwyang_njust@njust.edu.cn (X.Y.); yaojianyong@njust.edu.cn (J.Y.)
* Correspondence: wxdeng@njust.edu.cn; Tel.: +86-025-8431-5125

Abstract: Measurement noise, parametric uncertainties, and external disturbances broadly exist
in electro-hydraulic servo systems, which terribly deteriorate the system control performance. To
figure out this problem, a novel finite-time output feedback controller with parameter adaptation
is proposed for electro-hydraulic servo systems in this paper. First, to avoid using noise-polluted
signals and attain active disturbance compensation, a finite-time state observer is adopted to estimate
unknown system states and disturbances, which attenuates the impact of measurement noise and
external disturbances on tracking performance. Second, by adopting a parameter adaptive law,
the parametric uncertainties in the electro-hydraulic servo system can be much lessened, which
is beneficial to averting the high-gain feedback in practice. Then, integrating the backstepping
framework and the super-twisting sliding mode technique, a synthesized output feedback controller
is constructed to achieve high-accuracy tracking performance for electro-hydraulic servo systems.
Lyapunov stability analysis demonstrates that the proposed control scheme can acquire finite-time
stability. The excellent tracking performance of the designed control law is verified by comparative
simulation results.

Keywords: motion control; finite time control; output feedback; parameter adaption; electro-
hydraulic servo valve; modelling

1. Introduction

Hydraulic servo systems have been widely used in modern industry [1–5] due to
their good capabilities such as high power/weight ratio, large output force, etc. However,
the electro-hydraulic servo system is a sort of highly non-linear system with various
model uncertainties which is mainly manifested in the non-linear pressure and flow of the
valve. The model uncertainties of the electro-hydraulic servo system can be divided into
parameter uncertainties and uncertain nonlinearities, such as parameter change, external
disturbances, nonlinear friction and so on. These problems have always restricted the
development of advanced control and the decision-making algorithms for electro-hydraulic
servo systems. The modeling uncertainties will seriously deteriorate the performance of
the designed controller and lead to cycle oscillations and even instability in the system [6].
With the development of the industry, there is increasingly high demanding for the control
speed and accuracy of the hydraulic system. Thus, the traditional linear control methods
have become more and more difficult to satisfy the demand of modern hydraulic servo
systems. In order to solve the above problems, non-linear system controllers have been
expanded in the past few decades, such as robust control [7], H infinity control [8–10], and
adaptive control [11–13]. Among these methods, adaptive control can cope with parametric
variations due to its learning ability.

The adaptive control (AC) [3] was generally used to deal with parameter uncertainties,
but it had little effect on unmodeled disturbances. The adaptive robust control (ARC)
in [14,15] could simultaneously solve the unmodeled disturbances and parameter uncer-
tainties. However, ARC could only guarantee the bounded tracking performance when
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dealing with unmodeled disturbances. In order to solve the unknown nonlinearities that
cannot be presented in the form of linear parameterization, function approximators have
been researched, such as neural networks (NN) [16–19] and fuzzy systems (FS) [20–22].
However, these function approximators might bring heavy computational costs and require
a considerable amount of time to achieve convergence, which was also affected by the
adopted adaptive law and learning gains.

Sliding mode control can often be employed to handle bounded modeling uncertain-
ties and to obtain asymptotic tracking performance in hydraulic systems [23]. However, the
discontinuity of the control input will cause the controller chattering, which is not allowed
for the actual hydraulic systems. In order to eliminate chattering in the sliding mode
control, a continuous saturation function instead of a discontinuous sign function was
used in [24], but it could only ensure bounded tracking performance [25]. The high-order
sliding mode controller designed in [26] could obtain asymptotic tracking while ensuring
the continuity of the controller. However, the designing process of the controller required
the derivative of the sliding mode, which was difficult to implement in engineering. Super-
twisting sliding mode control in [27,28] could not only retain the high robustness, but also
solve the high frequency chattering problem. Additionally, as the second-order sliding
mode algorithm, the super-twisting sliding mode control could also obtain finite-time
stability. In 2006, a review article in a book by Dorato explained the strong robustness of
finite-time stability [29], which pointed out the difference between finite-time stability and
the stability under traditional concepts. In the meanwhile, the superiority of this method
in transient response performance was proved. Based on this method, many results have
been achieved [30–35]. Unfortunately, none of the above controllers have considered the
uncertainties of the system parameters. In [36], some researchers proposed the finite time
control with parameter adaptation. However, most of them were for linear systems. An
adaptive finite-time controller for nonlinear systems with parametric uncertainties was
proposed in [37]. This controller based on backstepping methodology could not only
realize the finite-time stability in the nonlinear system, but also synthesize the advan-
tages of parameter adaptation. Nevertheless, the condition that all system states in the
above-mentioned literature need to be known, is not easy to be satisfied in practice.

Backstepping methodology is used in most of the existing electro-hydraulic system
control [38]. In these backstepping designs, the entire system state must be known or
measurable due to the strict backstepping process. However, the velocity and acceleration
signals in hydraulic systems are usually unmeasurable due to lack of sensors. Though they
can be acquired by numerical differentiation on the position measurement, the obtained ve-
locity and acceleration signals are accompanied by strong measurement noise. Therefore, in
order to avoid using these variables in the control design, some output feedback controllers
that only uses measurable output for practical application have been developed. In [39], an
output feedback controller based on extend state observer was proposed to estimate the
unmeasurable state variables through output variables, but it could only guarantee global
uniformly ultimately bounded tracking performance. In [40], an output feedback control
based on a finite-time observer was proposed, but it did not consider parameter adaptation.
In [41], Levant proposed an output-feedback controller based on a higher-order sliding
mode differentiation. Compared with the extended state observer, the finite-time observer
has better transient response performance.

Motivated by the above observations, the following problems are expected to be
resolved in this paper: (1) avoid using the noise-contaminated velocity and acceleration
signals in the control design; (2) eliminate the high-gain feedback issue in the existing slid-
ing mode control methods; and (3) achieve the excellent finite-time tracking performance
with zero steady-state error for the electro-hydraulic servo system. Therefore, a finite-time
output feedback controller with parameter adaptation (FOFA) is proposed for electro-
hydraulic servo systems in this paper. In order to complete this research, a nonlinear model
of the electro-hydraulic servo system considering the parameter uncertainties and external
disturbances is established. Aiming at the stability problem of the electro-hydraulic servo
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system under the condition of parameter uncertainties and system disturbances, this paper
adopts a parameter adaptive law to remove the parametric uncertainties. Then integrating
the backstepping framework and the super-twisting sliding mode technique, a composite
output feedback controller is designed to achieve high-accuracy tracking performance
for electro-hydraulic servo systems. Parameter adaptation and super-twisting sliding
mode are combined in an innovative way, and feedforward compensation is performed
through parameter adaptation, which can effectively prevent system instability caused
by high-gain feedback and achieve finite time stability. Also, an output feedback control
method realized by finite-time observer is combined to achieve the estimations of unknown
system states and to compensate for the unmodeled and external disturbances. Lyapunov
stability analysis demonstrates that the proposed control scheme can acquire finite-time
stability, and the excellent tracking performance of the designed control law is verified by
comparative simulation results.

The organization structure of this paper is as follows: Section 2 presents the problem
formation and dynamic model. Section 3 presents the design process and theoretical
results of finite time observer and adaptive law of the finite time output feedback controller
proposed in this paper. Section 4 provides the simulation settings and comparison of
results. Section 5 discusses the conclusion.

2. Dynamic Model and Problem Formulation

The equipment considered in this paper is descripted in Figure 1. Our purpose is to
ensure that the tracking output can track the desired trajectory as closely as possible. The
dynamic equation of the inertial load of the servo system can be described as follows:

m
..
y = A(P1 − P2)− B

.
y + L(t) (1)

where y represents the displacement and m represents the inertial mass of load; PL = P1− P2
stands for the load pressure of hydraulic actuator, in which P1 and P2 are the pressures
inside two chambers of the hydraulic cylinders, separately; A denotes the effective area of
ram of the two chambers, B represents viscous friction coefficient, and L(t) represents the
external and unmodeled disturbances of the hydraulic cylinders.
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Figure 1. Schematic diagram of the hydraulic actuator system.

The load pressure dynamics can be written as

Vt

4βe

.
PL = −A

.
y− CtPL + QE + QL (2)

where Vt is the total control volume of the actuator; βe is the effective oil bulk modulus;
Ct represents the internal leakage coefficient of the chambers due to pressure; QE is the
time-varying modeling error caused by complicated internal leakage, parameter deviations,
unmodeled pressure dynamics, modeling error caused by the following flow equation,
and so on; QL = (Q1 + Q2)/2 is the load flow; Q1 is the supplied flow rate to the forward
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chamber; and Q2 is the return flow rate of the return chamber. According to [4], QL is
related to the spool valve displacement of the servo valve, and it can be deduced that

QL = kqxv

√
Ps − sign(xv)PL (3)

where kq = Cdw
√

1/τ represents the flow rate gain, Cd is the discharge coefficient; xv is
the spool valve displacement of the servo valve; Ps is the supply pressure of the fluid with
respect to the return pressure Pr; and sign (·) denotes the standard signum function as

sign(xv) =


1 if xv > 0
0 if xv = 0
−1 if xv< 0

(4)

The effects of servo-valve dynamics have been included by some researchers [42,43].
However, additional sensors are required to obtain the spool position, and only minimal
performance improvement can be achieved for motion tracking. In addition, valve dy-
namics will increase the system order and complicate the controller design. Therefore,
many literatures neglect servo-valve dynamics. Consequently, the control input applied to
the servo-valve is supposed to be directly proportional to the spool position since a high
response servo-valve is used here, i.e., xv = kiu, where ki is a positive constant; u is the
control input voltage.

The flow Equation (3) can be rewritten by

QL = ktu
√

PS − sign(u)PL (5)

where kt = kikq represents the coefficient of the flow rate to the pressure of the hydraulic
servo valve.

(
y,

.
y,

..
y
)

represent the model states, but only y and
.
y are necessary to be

concerned. So, in this paper, the state has been delimited as: x = [x1, x2, x3]
T = [y,

.
y,

..
y]T .

Then the whole system is:

.
x1 = x2.
x2 = x3.
x3 = f1(u, PL)u− f2(x2)− f3(x3) + d(t)

(6)

where 
f1(u, PL) =

4Aβekt
mVt

√
Ps − sig(u)PL

f2(x2) =
4βe
mVt

(
A2 + BCt

)
x2

f3(x3) =
4βe
Vt

Ctx3 +
B
m x3

d(t) = 4Aβe
mVt

QE + 1
m

.
L(t) + 4βe

mVt
CtL(t)

(7)

3. Nonlinear Output Feedback Controller Design

Due to the large changes in hydraulic parameters, the system is always affected by
parameter uncertainties. For example, βe and Ct are typically influenced by temperature
and component wear. Therefore, the parameter uncertainties should be estimate and com-
pensate in the parameter adaption design. Also, the unmodeled and external disturbances
should be processed and compensated in the observer design.
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3.1. Design Model and Issues to Be Addressed

In order to accomplish the above missions, we first define x4 = d(t) and H(t) as the
derivative of x4. Then redefine system states as xob = [x1, x2, x3, x4]

T . Based on Equation (6),
the following equation can be obtained

.
x1 = x2.
x2 = x3.
x3 = f1(u, PL)u− f2(x2)− f3(x3) + x4.
x4 = H(t)

(8)

Define an unknown parameter vector as θ = [θ1, θ2, θ3]T. Utilizing these state variables,
the system can be expressed as

.
x1 = x2.
x2 = x3.
x3 = θ1Ru− θ2x2 − θ3x3 + x4.
x4 = H(t)

(9)

where 
θ1 = 4Aβekv

mVt

θ2 = 4βe
mVt

(
A2 + BCt

)
θ3 = 4βe

Vt
Ct +

B
m

(10)

Some assumptions are presented before designing the controller.

Assumption 1: The unmodeled disturbances are bounded and satisfy.∣∣∣d(t)∣∣∣≤ δ1,
∣∣∣ .
d(t)

∣∣∣≤ δ2, |L(t)| ≤ δ3 (11)

in which δ1, δ2 and δ3 are unknown positive constants.

Assumption 2: |PL| is sufficiently smaller than Ps, which pledges f1(u, PL) stays far away from
zero. f1(u, PL) is not differentiable at u = 0 because the function sig(u) exists. However, except the
singular point u = 0, f1(u, PL) is always continuous in any place and differentiable in other points,
its left and right derivatives at u = 0 exist and are bounded [14]. Thus, the following assumption
is rational.

Assumption 3: According to Equation (1) and Assumption 1, PL is Lipschitz in regard to x3
and x2, thus the functions f1(u, PL) is Lipschitz in regard to x3 and x2 in its practical range,
which is rewritten as f1(u, x2, x3); f2(x2) and f3(x3) are globally Lipschitz in regard to x2 and
x3, respectively.

Assumption 4: The desired motion trajectory x1d ∈ C3 is bounded; In practical hydraulic systems
under normal working conditions, P1 and P2 are always bounded by Ps and Pr, i.e., 0≤ Pr < P1 < Ps,
0 ≤ Pr < P2 < Ps.

Assumption 5: The unknown parameter set θ satisfies.

θ ∈ Ωθ , {θ : θmin ≤ θ ≤ θmax} (12)

where θmax = [θ1max, . . . ,θ3max]T, θmin = [θ1min, . . . ,θ3min]T are the known upper and lower bounds.

3.2. Projection Mapping

In the following sections, •i denotes the ith element of the vector •, and the operation
for two vectors is performed in terms of the corresponding elements of the vectors.
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Define θ̂ as the estimate of θ and θ̃ = θ̂ − θ as the estimation error. To ensure the
stability of the adaptation law and limit the parameter estimation within the range defined
in Equation (12), a discontinuous projection can be represented as [14,44]

Projθ̂i
(•i) =


0 if θ̂i = θimaxand •i > 0
0 if θ̂i = θiminand •i < 0
•i otherwise

(13)

where i = 1, . . . , 3. Then the following adaptation law is given by

.
θ̂ = Projθ̂(Γτ) θ̂(0) ∈ Ωθ (14)

In which Projθ̂(•) = [Projθ̂1
(•1), . . . , Projθ̂3

(•3)]
T ; Γ > 0 is a positive diagonal adapta-

tion rate matrix; τ is an adaptation function to be synthesized later. For any adaptation
function τ, the discontinuous projection used in Equation (13) satisfies [14]

θ̂ ∈ Ωθ̂ =
{

θ̂ : θmin ≤ θ̂ ≤ θmax
}

θ̃T [Γ−1Projθ̂(Γτ)− τ] ≤ 0, ∀τ.
(15)

3.3. Finite Time Observer Design

To estimate the unknown states xi, i = 2, 3 in system, the following Levant’s observer
is used: [40]

.
x̂1 = −υ1L

1
4 |x̂1 − x1|

3
4 sign(x̂1 − x1) + x̂2

.
x̂2 = −υ2L

1
3

∣∣∣x̂2 −
.
x̂1

∣∣∣ 2
3 sign

(
x̂2 −

.
x̂1

)
+ x̂3

.
x̂3 − ϑ̂Φ = −υ3L

1
2

∣∣∣x̂3 −
.
x̂2

∣∣∣ 1
2 sign

(
x̂3 −

.
x̂2

)
+ x̂4

.
x̂4 = −υ4Lsign

(
x̂4 −

( .
x̂3 − ϑ̂Φ

))
(16)

where x̂i(i = 1, 2, 3, 4) are estimations of all states and x̃i = x̂i − xi are the estimation errors;
Φ = [Ru,−x̂2,−x̂3]

T , L is the Lipschitz constant in the observer, υ1, υ2, υ3, υ4 is the positive
observation coefficient.

Remark 1. If the sensor noise and the parameter adaptive estimation error in the measured outputx1
is bounded to ν> 0; then the estimation errors of (16) will converge to a small set around zero in
finite time tc, i.e., |x̃i| = |x̂i − xi| ≤ `iν

(n−i+2)/(n+1), i = 1, . . . , 3 for t ≥ tc > 0 where `i are
positive constants determined by gains υ1, υ2, υ3, υ4. If the measured output x1 is free from sensor
noise, the observer errors will converge to zero in finite time [40].

3.4. Controller Design

In this section, by using the estimated states and disturbance obtained from the finite
time observer, the nonlinear controller is presented.

Step 1: Before designing the controller, define a set of variables as

z1 = x1 − x1d
z2 =

.
z1 + k1z1 = x2 − x2eq

x2eq =
.
x1d − k1z1

z3 =
.
z2 + k2z2 = x3 − x3eq

x3eq =
.
x2eq − k2z2

e1 = x̂1 − x1d
e2 = x̂2 − x4eq
x4eq =

.
x1d − k1e1

e3 = x̂3 − x5eq
x5eq =

.
x4eq − k2e2

.̂
x3eq =

.
x5eq =

...
x 1d − k1

..
x̂1 + k1

..
x1d − k2

.
x̂2 + k2

..
x1d − k1k2

.
x̂1 + k1k2

.
x1d

(17)
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where x1d is the desired displacement trajectory; k1 and k2 are positive;
.
x1d is the 1th

derivative of;
..
x1d is the 2th derivative of x1d; z1 is the system output tracking error; z2 is the

difference between x2 and x2eq; z3 is the difference between x3 and x3eq; e1 is the difference
between x̂1 and x1d; e2 is the difference between x̂2 and x4eq; e3 is the difference between x̂3

and x5eq;
.
e3 is the 1th derivative of e3; and

...
x 1d is the 3th derivative of x1d. According to

Equation (17), the following equation can be obtained:
e1 = z1 + x̃1
e2 = z2 + x̃2 + k1 x̃1
e3 = z3 + x̃3 + M1 + M2

(18)

where
M1 = (k1 + k2)x̃2, M2 = −k1λ1|x̃1|

3
4 sign(x̃1) + k1k2 x̃1 (19)

Step 2: In order to develop the super-twisting sliding mode controller, define the
sliding mode surface

s = c1e1 + c2e2 + e3 (20)

where the parameters c1 and c2 are Hurwitz and positive.
Therefore, based on Equations (6), (14), (18) and (20), the form of the control input u is

expressed by  u =
θ̂2 x̂2+θ̂3 x̂3−x̂4−c1

.
e1−c2

.
e2+

.̂
x3eq+un−β1sign(s)|s|

1
2

θ̂1R.
un = −β2sign(s)/2

(21)

According to Equations (6), (9), (16), (18) and (20), the dynamic of s is expressed as{
.
s = un − β1sign(s)|s|

1
2 + ϕ(x̃1, x̃2, x̃3, x̃4)− θ̃TΦ

.
un = −β2sign(s)

(22)

where
ϕ(x̃1, x̃2, x̃3, x̃4) = −x̃4 +

.̃
x3eq +

.
x̃3 +

.
M1 +

.
M2 (23)

M1 = (k1 + k2)x̃2, M2 = −k1υ1|x̃1|
3
4 sign(x̃1) + k1k2 x̃1 (24)

According to the results of Remark 1, it can be inferred that |ϕ(x̃1, x̃2, x̃3, x̃4)| ≤ ρ, in
which ρ is a bounded constant.

3.5. Main Results

Theorem 1. Based on Assumption 1~5, the Equations (21) and (22), and satisfying the following
conditions:

(1) β1 >
[4ε2+λ+2ερ]

2

8ελ +
ρ(4ε2+λ)

2λ
(2) β2 = 2εβ1

(3) τ = Φ
[
χ1
(
λ + 4ε2)− 4χ2ε

]
Then it can be guaranteed that there exists 0 < T0 ≤ 2

√
V(t0)/r such that the sliding mode

surface s converges to an arbitrary small region around zero, in which β1, β2, λ and ε are all
arbitrary positive constants [23].

Proof of Theorem 1. See Appendix A. �

Remark 2. The result of Theorem 1 shows that the proposed finite-time output feedback con-
troller with parameter adaption has finite-time convergence performance. This method ensuring
transient performance and final tracking accuracy is very important for precise motion control of
hydraulic systems.
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4. Simulation Results and Discussion

In order to verify the dynamic tracking performance of the controller proposed in this
paper, linear output feedback control with parameter adaptation (LOFC) and PID control
method are compared separately.

The simulation model parameters of hydraulic manipulation system are chosen
as follows: Ps = 7 MPa, Pr = 0 MPa, A1 = A2 = A = 2 × 10−4 m2, Vt = 2 × 10−3 m3,
m = 40 kg, β = 200 MPa, Ct = 7 × 10−12 m5/N/s, kt = 9.25× 10−8 m4/(s ·V ·

√
N). The

initial estimates of θ are chosen as θ̂0 = [0.1, 200, 1]. The bounds of θ are chosen as
θmax = [10, 1 × 104, 100]T, θmin = [−1, 100, −10]T. The simulation step size is set to 0.5ms
and the applied disturbance is d(t) = 2sin(t). The following three controllers are compared:

(1) FOFA: This is the finite-time output feedback controller with parameter adaptation
proposed in this paper. The following control gains are utilized: k1 = 120, k2 = 700.
Γ = diag{8, 1 × 108, 1 × 107}, L = 5000, β = 10, ε = 1 × 10−4, λ = 1 × 10−3.

(2) LOFC: To compare with the FOFA control method, an ESO based linear output
feedback control with parameter adaptation controller has been adopted. Linear
feedback control and parameter adaption have been applied to this output feedback
controller based ESO. The desired compensation of the controller is also solved via
observer estimation and parameter adaption, similar to FOFA. The LOFC controller
is utilized as u = − 1

θ̂1

(
θ̂2 ϕ2 + θ̂3 ϕ3 −

.
x5eq

)
− kLe3 − x̂4, where kL is positive constant.

The gains of the linear output feedback control with parameter adaptation controller
is Γ = diag{2, 3920, 200}, k1 = 8, k2 = 5, kL = 5.

(3) PID: To compare with the traditional control method, Proportional-Integral-Derivative

(PID) controller is utilized as u = kp(x1d − x1) + ki

t∫
0
(x1d − x1)dt + kd

d(x1d−x1)
dt in this

servo system. The control parameters are selected as kp = 4000, ki = 2000, kd = 4500.

4.1. Comparison and Analysis of Sine Tracking Performance

In order to further verify the dynamic tracking performance of the proposed FOFA
controller, the desired curve was designed as sine curve with two different frequency con-
ditions.

Case 1. The desired tracking command and the tracking result of FOFA is shown
in Figure 2, namely, 0.5sin(πt)·(1−e−0.05t) rad. The simulation results are shown in
Figures 2–5.

The estimation of the unknown system parameters of the FOFA controller is shown in
Figure 3. It can be seen that the estimations of the parameters θ1, θ2 and θ3 have converged
effectively. In Figure 4, it can be seen that the estimated position value and actual position
value are consistent well in (a), and the estimated values of the signal x2 and x3 and the
unmodeled disturbances can also be accurately obtained in (b) and (c), which proves the
effectiveness of the observer. The unmodeled disturbance term estimated by the observer
is shown in (d). As shown in Figures 2 and 5, the FOFA controller shows excellent tracking
performance, and the magnitude of its steady-state tracking error is about 3 × 10−4 m at
the maximum at the beginning and quickly converges to about 2.1 × 10−5 m. It can be
seen that the tracking error of the FOFA controller is relatively large at the initial stage, but
under the action of the parameter adaptation law and the finite time control, the estimated
values of the unknown parameters of the system gradually converge, and the tracking
error gradually decreases, which verifies the asymptotic tracking performance of the FOFA
controller. In comparison, the amplitude of the steady-state tracking error of the LOFC
controller is basically stable at about 3.5 × 10−4 m. The tracking error of the PID controller
is maintained at about 4.9 × 10−4 m. Due to the large gain selected for the PID controller,
the tracking error of PID controller produces slight chattering, which is not conducive to
the stable operation of the actual system.
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Case 2. The desired tracking command and the tracking result of FOFA is shown in
Figure 6, namely 0.5sin(0.5 × πt)·(1−e−0.05t) m.

As shown in Figures 6 and 7, the FOFA controller shows superior tracking perfor-
mance, and the magnitude of its tracking error is about 1.4 × 10−4 m at the maximum at
the beginning and quickly converges to about 3.1 × 10−5 m. In comparison, the magnitude
of tracking error of LOFC is about 2.43 × 10−4 m at the maximum, and the amplitude of
the steady-state tracking error of the LOFC controller in is stable at about 1.02 × 10−4 m.
The tracking error of the PID controller in is maintained at about 5.28 × 10−4 m.
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4.2. Comparison and Analysis of Point to Point Curve Tracking Performance

In order to further verify the tracking performance of the FOFA controller proposed in
this paper, the desired tracking command is designed as point to point curve. the desired
tracking command and the tracking result of FOFA are shown in Figure 8. The simulation
results are shown in Figures 8 and 9.

Figure 8 shows the tracking process and tracking error of the of the FOFA controller.
Due to a sudden change in the expected instruction, it can be seen that the tracking error
of the FOFA controller is about −3.6 × 10−5 m at the maximum, which is relatively large
at the initial stage. The final tracking error stabilizes at 2.9 × 10−6 m. The tracking error
of the LOFC controller is about −3.9 × 10−4 m at the maximum and the final tracking
error of LOFC stabilizes at 6.7 × 10−5 m. It can be seen that slight chattering with an
amplitude about 4 × 10−5 m is obtained in the final steady state by PID controller, due to
the high-gain feedback selected, which is not conducive to the stable operation of the actual
system. The LOFC controller takes advantage of the robustness of linear feedback control,
and parameter adaptation that can estimate and compensate unknown system parameters,
as well as Extended-State-Observer that attains feed-forward compensation for unmodeled
and external disturbances in the system. Therefore, the transient and steady-state tracking
performance of the LOFC controller is much better than the PID controller. The finite
time control method combined with parameter adaption in FOFA controller can ensure
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that the system tracking error achieves finite time convergence through the analysis of
Lyapunov function. While the control method used in LOFC controller is linear feedback
method, which can only ensure that the system tracking error achieves a bounded stability.
Therefore, the robustness of FOFA controller is stronger than that of LOFC controller. In
addition, the finite time observer can achieve finite time convergence, while the ESO can
only achieve exponential convergence, so the observation performance of the finite time
observer is better than ESO. From Figure 9, it can be seen that although both controllers
use parameter adaptation for feedforward compensation, the tracking performance of the
FOFA controller is better than that of the LOFC controller.
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5. Conclusions

In this paper, a finite-time output feedback control with parameter adaptation is
proposed for hydraulic servo system. This control strategy takes into account the non-
measured states, parametric uncertainties and unmodeled disturbances. Based on the
output position signal, the finite-time Levant observer is first employed to estimate the
unmeasured states and unmodeled disturbances, which can eliminate the impact of mea-
surement noise and disturbances on control performance in a finite time. Then, based on a
parameter adaptive law, the parametric uncertainties in the system can be much relieved,
which can effectively reduce the high-gain feedback. In addition, in order to suppress



Machines 2021, 9, 214 13 of 16

the residual error of disturbances and further achieve excellent transient and steady-state
tracking performance, a finite time output feedback super-twisting sliding mode controller
has been presented. Through the stability analysis based on Lyapunov theory, it can be
concluded that the developed controller has the finite-time stability. The comparative
simulation results verify the effectiveness of the proposed control strategy. However, the
proposed control method was only verified via numerical simulation. In the future, it is
of great significance to further verify and testify the advantages of this new controller in
practical experimental platform.
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Nomenclature

m Inertial mass of load
xd, y Desired and actual displacement of the cylinders
P1, P2 Pressures inside two chambers of the hydraulic cylinders
PL Load pressure of hydraulic actuator
A Effective area of ram of the two chambers
L(t) External and unmodeled disturbances
Vt Volume of the actuator
βe Effective oil bulk modulus
Ct Internal leakage coefficient
QE Time-varying modeling error
Q1, Q2 Supplied flow rate and return flow rate
QL Load flow
Cd Discharge coefficient
w Spool valve area gradient
τ Density of oil
Ps, Pr Supply pressure and return pressure
xv, u Spool valve displacement and control input voltage
kq Flow rate gain
kt Coefficient of the flow rate

Appendix A

Proof of Theorem 1

According to Equation (22), define a new state vector

χ = [χ1, χ2]
T = [sign(s)|s|

1
2 , un]

T
(A1)

Then
.
χ = Aχ + ψ + W (A2)

where A = 1
2|χ1|

[
−β1 1
−β2 0

]
is Hurwitz; ψ =

[
ϕ/2|χ1|

0

]
W =

[
ϑ̃TΦ

0

]
.
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A Lyapunov function is expressed by

V =
1
2

χT P1χ +
1
2

ϑ̃TΓ−1ϑ̃ (A3)

Vo =
1
2

χT P1χ (A4)

where P1 and Γ is a positive definite matrix.

P1 =

[
λ + 4ε2 −2ε
−2ε 1

]
(A5)

First, the derivative of V is written as follows

.
V = 1

2

( .
χ

T P1χ + χT P1
.
χ
)
+ ϑ̃TΓ−1

.
ϑ̂ = χT P1(Aχ + ψ−W) + ϑ̃TΓ−1

.
ϑ̂

= 2χT P1(Aχ + ψ)− 2χT P1

[
ϑ̃TΦ

0

]
+ ϑ̃TΓ−1

.
ϑ̂

≤ − χT Qχ
2|χ1|

− 2χT P1

[
ϑ̃TΦ

0

]
+ ϑ̃TΓ−1

.
ϑ̂

(A6)

where the symmetric matrix Q =

[
Q11 Q12
Q21 Q22

]
with


Q11 = 2(β1 − ρ)(4ε2 + λ2)− 4εβ2
Q12 = Q21 = β2 − (4ε2 + λ2)− 2ε(β1 + ρ)
Q22 = 4ε

(A7)

Considering the minimal eigenvalue of Q satisfies λmin(Q) ≥ 2ε, then [23]{
β1 >

[4ε2+λ+2ερ]
2

8ελ +
ρ(4ε2+λ)

2λ
β2 = 2εβ1

(A8)

where β1, β2, λ and ε are all arbitrary positive constants.
According to Equations (A6)–(A8), it can be acquired that

.
Vo ≤ −

λmin(Q)‖χ‖2

2|χ1|
(A9)

Noting that
λmin(P1)‖χ‖2 ≤ Vo ≤ λmax(P1)‖χ‖2 (A10)

|χ1| ≤ ‖χ‖ ≤
√

Vo

λmin(P1)
(A11)

Then Equation (A9) can be converted into the following form:

.
Vo ≤ −r

√
Vo (A12)

where r = λ1/2
min(P1)λmin(Q)/2λmax(P1). The derivative of V is rewritten as

V ≤ −r
√

Vo − 2χT P1

[
ϑ̃TΦ

0

]
+ ϑ̃TΓ−1

.
ϑ̂ (A13)

The adaption law can be obtained as follow:

.
ϑ̂ = ΓΦ

[
χ1

(
λ + 4ε2

)
− 4χ2ε

]
(A14)
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Then Equation (A6) can be rewritten as follows by substituting Equation (A14) into
Equation (A13):

.
V ≤ −r

√
V (A15)

According to [32], the controller can converge in finite time T0 ≤ 2
√

V(t0)/r.
Theorem 1 is proven. �
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