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Abstract: Power loss and voltage instability are major problems in distribution systems. However,
these problems are typically mitigated by efficient network reconfiguration, including the integration
of distributed generation (DG) units in the distribution network. In this regard, the optimal placement
and sizing of DGs are crucial. Otherwise, the network performance will be degraded. This study is
conducted to optimally locate and sizing of DGs into a radial distribution network before and after
reconfiguration. A multi-objective particle swarm optimization algorithm is utilized to determine
the optimal placement and sizing of the DGs before and after reconfiguration of the radial network.
An optimal network configuration with DG coordination in an active distribution network overcomes
power losses, uplifts voltage profiles, and improves the system stability, reliability, and efficiency. For
considering the actual power system scenarios, a penalty factor is also considered, this penalty factor
plays a crucial role in the minimization of total power loss and voltage profile enhancement. The
simulation results showed a significant improvement in the percentage power loss reduction (32%
and 68.05% before and after reconfiguration, respectively) with the inclusion of DG units in the test
system. Similarly, the minimum bus voltage of the system is improved by 4.9% and 6.53% before
and after reconfiguration, respectively. The comparative study is performed, and the results showed
the effectiveness of the proposed method in reducing the voltage deviation and power loss of the
distribution system. The proposed algorithm is evaluated on the IEEE-33 bus radial distribution
system, using MATLAB software.

Keywords: distributed generation; voltage deviation; power loss minimization; particle swarm
optimization; network reconfiguration; voltage stability enhancement

1. Introduction
1.1. Background

Responding to rising electricity demands is a significant challenge for all energy
utilities. The combustion of fossil fuels provides 75% of global energy demand. Increased
greenhouse gas emissions, global warming, decreased fossil fuels, and increased fuel prices
have demanded a potential energy strategy with regard to renewable resources. Providing
renewable technologies for producing power has been a major concern in many countries
over the past decade. A major challenge encountered by electrical distribution companies
concerns the power losses and voltage instabilities arising from their respective networks.
Owing to these problems, their operating costs increase, and their profits are subsequently
decreased. The utilities have a great interest in the reliability of the system, voltage
regulation, and active and reactive power (PQ) problems owing to the high degree of
penetration of intermittent renewable energy sources (RES) into the distribution networks.
That may pose a danger to the system. Therefore, distributed generation (DG) units are
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expected to follow strict technological and regulatory requirements to ensure the safety,
stability, and efficiency of the distribution network [1].

The current distribution networks face numerous challenges. A voltage profile has
great importance to customers, as it is a primary requirement for quality voltage-controlled
electrical equipment. DGs can provide voltage support at the end of a feeder to increase
the voltage [2]. Owing to the existence of DGs, network reliability, power flow, relay safety,
voltage profile, and stability may have major impacts on distribution grids. The primary
advantages of DG integration in power systems are power stability and enhanced distri-
bution network reliability, as well as a variety of operational and cost-effective benefits.
The benefits for both utilities and customers include better voltage profiles, lower power
loss, peak load shaving, decreased transmissions, and expansion of the distribution net-
work [2–4]. However, the increased injection of DG units into a network may cause several
technical challenges, such as overvoltage, undervoltage, overloading, system protection,
reverse power flows, power quality problems, and thermal overloading of the distribution
lines. Microturbines, fuel cells, and photovoltaic (PV) systems are the core technologies
that have been explored for distributed energy generation. Other DG technologies include
engines for combustion, diesel, and wind. In areas with high energy costs and low relia-
bility (including developing countries), DG technology has greatly increased the market
potential [5]. In the United States alone, nearly 679 power loss incidents occurred from
2003 to 2012 [3]. The Electric Power Research Institute determined that by 2010, DGs
would represent approximately 25% of new power generation, whereas a national gas
foundation survey suggested that DGs would represent approximately 30% of new power
generation [6].

1.2. Literature Review

Researchers are working on incorporating DGs into networks to minimize power
loss, improve power efficiency, minimize line current, improve voltage profiles, improve
system stability, and boost load performance. They use different algorithms and optimiza-
tion techniques to integrate DGs into the network [7]. They have investigated different
algorithms for DG placement in a radial distribution system, including approaches based
on a heuristic optimization [8], and metaheuristic algorithms [9]. Moreover, the location
and sizing were determined by nature-inspired algorithms [10], genetic algorithm (GA)
from the array of artificial intelligence [11], whale optimization algorithm [12,13], par-
ticle swarm optimization (PSO) [14], unified PSO [15], and PSO for optimal placement
of STATCOM [16]. A multi-objective optimization problem based on a Pareto frontier
differential evolution algorithm [17], a hybrid method based on the imperialist competitive
algorithm and GA [18], in addition to analytical approaches [19] and simplified analytical
approaches [20], are presented. A salp swarm algorithm [21], sensitivity methods and
quadratic curve-fitting technique [22], and ant lion optimization, such as a novel meta-
heuristic algorithm [23], are used for placement and sizing of DGs. A continuation power
flow and modal analysis [24], analytical technique [25], optimal power flow algorithm [26],
and clonal selection algorithm [27] were used to optimal allocation and sizing of DGs in
the distribution system. Some authors have used a smart inverter for voltage control in a
distribution system [28]. Reference [29] measured the voltage stability of buses in a system
based on a novel voltage stability factor. RES will allow regulating the voltage challenges
owing to their high penetration into grids. The voltage should be within the ANSI C84.1
limit [30], which allows a ±5% voltage deviation from the nominal value at the customer
connection.

The power production of DG units faces considerable uncertainty owing to their
intermittent nature and unreliability [31,32]. In [33], both grid-connected and off-grid
scenarios, planning and control schemes have been developed for allocating surplus
PV energy according to variable ratios. A novel fuzzy-PID controller is introduced to
enhance the frequency stability of the power system. It utilized a novel nature algorithm
called multi-verse optimizer to tackle the optimal frequency regulation [34]. Blockchain
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technology was used to improve cyber security, physical safety of energy networks and
provide clean energy for customers [35]. A smart cyber physical multi-source device is
implemented for applications in electric vehicles. This model is designed to improve
the vehicle’s charge efficiency along with self-energy dispatch system [36]. In Ref. [37],
the internet of things system was used to monitor the power grid system. In [38], the
authors described an economic evaluation of smart solar PV inverters with a unique
control system (based on watt-var) to improve PV penetration into distribution networks in
Taiwan, including a study of cost advantages and sensitivity. In [39], the authors proposed
new DG size and location approaches for autonomous microgrids and structural changes.
High power losses in a distribution network are generally reduced by an optimal network
reconfiguration (NR), and by improving the voltage profiles in the electrical distribution
networks. Researchers have investigated and implemented novel algorithms for solving
problems related to NR with DGs. They have aimed to reduce the true power loss and boost
the distribution network voltage profile by using a harmony search algorithm (HSA) [40],
GA [41], a hybrid algorithm of PSO and ant colony optimization [42], and the firefly
algorithm (FA) [43,44] to obtain near-optimal solutions for the network reconfiguration.

In this paper, a multi-objective PSO-based approach has been applied for the place-
ment and sizing of multi-DG units to obtain maximum power loss reduction, limiting
branch current, and voltage stability improvement before and after reconfiguration of
the distribution network. The integration of multi-DGs enhances the performance of the
network to a certain level in terms of the bus voltage magnitude, limiting of line current,
minimize voltage deviation, and energy losses. Further reconfiguration of the distribution
system can increase the performance of an autonomous microgrid. The factor named as
the penalty factor is also taken into account in case of voltage and power loss violation
occurs in the system. It compels the voltage from violating the limits so as to the voltage
stability and minimize power loss of the system. The major constraints voltage profile,
voltage deviation, current, and power losses are considered for investigating the impacts
of the DG units. The standard IEEE-33 bus distribution system is used for validation of the
proposed methodology, developed and implemented by MATLAB coding.

The rest of the paper is arranged as follows. Section 2 provides the problem formu-
lation. In Section 3, the system description and constraints are presented. In Section 4, a
description is provided of the PSO and a procedure for selecting suitable locations for DGs
using the PSO method. In Section 5, the simulation results are investigated, and different
scenarios are presented. Finally, conclusions are drawn.

2. Problem Formulation

The major concern of this study is the optimal integration of distributed energy
resources (DER) and NR in microgrids to optimize energy losses and reduce voltage drops.
A PSO algorithm is proposed to solve the multi-objective optimization problem. The
distribution network is usually radial, and the ratio of R/X is extremely high in comparison
to that for a transmission system. The Newton–Raphson load flow method is suitable
for resolving the load–flow problems of the distribution system. The main objective of
the load flow is to calculate the bus voltage, line current, and PQ losses at each bus. Our
proposed methods managed DG sizing and placement to improve voltage profile and loss
minimization in base and reconfigured distribution system. Considering the penalty factor
to find more accurate and actual results of the voltage profile and power loss. For example,
one can assume a line section between k and k + 1 with an impedance of Rk + jXk and loads
at bus k and k + 1, as shown in Figure 1. Pk and Qk are the real and reactive power flows
from bus k to k + 1, respectively, and Vk and Vk + 1 are the complex voltages. The power
loss in the feeder section between buses k and k + 1 can be computed as follows [40]:

PLoss(k, k + 1) = Rk

(
P2

k + Q2
k

)
|Vk|2

(1)
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Figure 1. Two-bus distribution system for load flow analysis.

The total active power losses of the distribution network PT,Loss can be calculated by
summing all losses of the line segments of each, as follows [40]:

PT,Loss =
n

∑
k=1

PLoss(k, k + 1) (2)

2.1. Reconfiguration of Distribution System

The distribution system comprises sectionalizing switches. This makes the best uti-
lization of network resources for a specific loading state. We proposed an active and
reactive power loss minimization in the reconfigured network by placing and sizing DGs
through restructuring the feeder. The feeder makes the decision to keep the switch states
open or closed. The process of altering the topology of the distribution network using
different states of switches is known as NR. It changes the switching states to transform a
network from its original configuration into an optimal form. Therefore, the aim of NR is to
reduce the total power losses and voltage deviation of the distribution system. The optimal
configuration of this system, shown in Figure 2, is obtained by opening switches, such as
07–9–14–28–32. However, in switching, the radial nature of the distribution system must
be maintained. During NR and DG placement, our proposed method attempts to reduce
voltage deviations to near zero and enhance the voltage stability and network performance.
A single-line diagram of the IEEE-33 bus reconfigured distribution network is shown in
Figure 3. The active power losses from previous research on NR, such as those based on a
refined genetic algorithm (RGA) at 139.55 kW [45], improved tabu search at 145.11 kW [46],
HSA at 146.39 kW [47], and fireworks algorithm (FWA) at 139.98 kW [48]. The distribution
system is reconfigured to optimize the issue in which the variables are considered as a
switch. The main objective of the NR for the distribution network is to reduce power
losses, and the operating constraint should remain within limits. P′k and Q′k are the real and
reactive power flows from bus k to k + 1, respectively, and V′k and V′k+1 are the complex
voltages of the reconfigured system. The power loss of the reconfigured system in the
feeder section between buses k and k + 1 can be computed as follows [47]:

P′Loss(k, k + 1) = Rk

(
P′k

2 + Q′k
2
)

∣∣V′k ∣∣2 (3)
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The total active power losses of the reconfigured distribution system P′T,Loss can be
calculated by summing the losses of all of the line sections of each feeder, as follows [47]:

P′T,Loss =
n

∑
k=1

P′Loss(k, k + 1) (4)

2.2. Percentage Loss Reduction

The total net power loss reduction in the entire distribution network ∆PR
Loss is the

difference in total power loss before and after reconfiguration [40].

∆PR
Loss =

n

∑
k=1

PLoss(k, k + 1)−
n

∑
k=1

P′Loss(k, k + 1) (5)

2.3. Voltage Deviation

Minimizing the bus voltage deviation is one of the most important security and
power-quality indices, and can be stated as follows:

VD =
n

∑
k=1

|Vi −Vk|
Vi

, k = 1, 2, . . . ., n (6)

In the above, VD is the voltage deviation, n is the number of buses, Vi is the nominal
voltage, and Vk is the real voltage up to the kth bus.

3. System Description

The IEEE-33 bus radial system examined in this study has 33 nodes, total 37 lines,
32 loads, 32 PQ buses, 1 feeder, and 1 slack bus. Normally, 32 closed switches and 5 open
switches are used. The source of supply in the network is substation bus 1, with a constant
voltage of 12.66 kV. The line and load data of the 33-bus test system are taken from [49].
The IEEE-33 bus network before and after reconfiguration is shown in Figures 2 and 3,
respectively. All loads are considered a constant load of active and reactive power at
3715 kW and 2300 kVAr, respectively. Four factors (voltage profile, voltage deviation,
current, and power losses) are considered for investigating the impacts of the DGs.

3.1. DG Units Placement

The reduction of energy resource assets, increments in load demand and need for clean
power generation are the prime inspirations behind the integration of DER into distribution
networks. DGs could play a crucial role in the transformation of the traditional distribution
network into active distribution networks [50]. The transformation of a traditional radial
distribution system into an autonomous microgrid network involves the optimal sizing
and placement of DGs. Simultaneously, the operating constraints to minimize the network
power loss and regulate the voltage deviations in each bus (within defined limits), current
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capacity of the feeder, and voltage profile of the system should be satisfied. When a DG
unit is allocated to bus k in the form of a binary variable µk, the value will be 1, otherwise,
it is zero, as defined by (7).

µk =

{
1, if DG is integrated at bus k
0, otherwise

(7)

3.2. Voltage Profile Improvement

The voltage variance at each bus should have been within the upper and lower limits
to ensure voltage stability and power quality. Voltage limits are considered, within ±5% of
the rated voltage for the load buses, as follows:

Vmin ≤ Vk ≤ Vmax (8)

Here, Vk is the Vth node voltage, and Vmin and Vmax are the minimum and maximum
voltage limits, respectively. Thus, we need to enhance the voltage stability level and reduce
the power loss in the distribution system by using DG units. The voltage drops per unit
are calculated using (9), (9) is modified to (10) when a DG injects power at node k, whereas
R and X are resistance and reactance of line connecting bus k and bus k + 1.

Vk −Vk+1 = P(k,k+1)R(k,k+1) + Q(k,k+1)X(k,k+1) (9)

Vk −Vk+1 = (Pload
k+1 − PDG k+1)R(k,k+1) + (Qload

k+1 −QDG k+1)X(k,k+1) (10)

3.3. Power Loss Minimization

The total active power loss Ploss
(k, k+1) and reactive power loss Qloss

(k, k+1) of the network

are calculated using (11) and (12), respectively. The total power loss of the network Sloss
(k,k+1)

is evaluated by summing up the active Ploss
(k, k+1) and reactive Qloss

(k, k+1) losses as given by
(11) and (12), respectively.

Ploss
(k, k+1) =

n

∑
k=1

n

∑
k+1=1

(α(k,k+1)(PkPk+1 + QkQk+1) + β(k,k+1)(QkPk+1 − PkQk+1)) (11)

Qloss
(k, k+1) =

n

∑
k=1

n

∑
k+1=1

(γ(k,k+1)(PkPk+1 + QkQk+1) + δ(k,k+1)(QkPk+1 − PkQk+1)) (12)

Sloss
(k,k+1) = Ploss

(k, k+1) + jQloss
(k, k+1) (13)

3.4. Line Current

The current capacity limits of all branches are considered as 200 A, except for branches
1–9, which have a capacity of 400 A. Every branch should have a current flow below the
thermal permissible limits, as follows:

Ik ≤ Imax (14)

In the above, Ik is the kth branch current, and Imax is the limit of the maximum current
flows.

3.5. Fitness Function

In this study, we focused on voltage regulation, power loss minimization, and a penalty
cost is also considered during a constraint violation. Violations of voltage limitations and
total power losses are considered in the fitness function. The penalty factor compels the
voltage from violating the limits so as to the voltage stability and minimize power loss
of the system. Multi-objective PSO algorithms have been used for the optimal siting and
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sizing of DGs with objective function (15), with constraints based on Equations (5)–(8), (13),
(14), and (16).

min F =
n

∑
k

CDG
k µk +

n

∑
k

n

∑
k+1

Closs
(k,k+1) Sloss

(k,k+1) +
n

∑
k

Cviol
k Vk (15)

The penalty cost for violating voltage limits is high as compared to the penalty cost
of the total power loss, as given by (16). Therefore, our voltage values are more accurate
and efficient. A fitness function includes the total power losses and the voltage drop limit
penalty values and current limit violation. The main purpose of the proposed approach is
to reduce the total DG deployment cost (CDG), cost of the penalty for a total power loss of
the system (Closs), and costs of penalties for violations of limits in the distribution system
(Cviol).

Cviol
k > Closs

(k,k+1) (16)

4. Particle Swarm Optimization

In [51], a brief overview was provided on using a particle swarm algorithm for
the optimization and advancement of DG placement and sizing. The PSO algorithm is
developed through an iterative process and results in swarming to find the best solution
from a group of problems. Increasing the number of iterations corresponds to a better
convergence of the problem (from experience). An individual is known as a particle, and
the individual updates their position at each iteration. A fitness function that provides
an interface between the problem of optimization and functional problems magnifies the
correctness of a precise solution from a group of particles. We calculated the fitness function
for each particle using (15). The control system variables are evaluated by calculating the
fitness function of the problem given by (15), with the objective of attaining a reduced global
optimum, i.e., gbest. The PSO algorithm starts with the random generation of particles
in the search space within the function domain. The current position and velocity of the
particle are denoted by x and v, respectively. The algorithm finds the personal best position
in the search group for every individual particle i. We can represent the location of particle
i in the N-dimensional space vector mathematically, as shown in (17). Likewise, the particle
velocity V can be shown as in (18). The location and velocity of each particle will be
changed after each iteration. The initial particle velocities and positions are generated
randomly and modified in accordance with (17) and (18).

Xi = (xi,1 , xi,2 , . . . , xi,N) (17)

Vi = (vi,1 , vi,2 , . . . , vi,N) (18)

The particle locations initialized at random are based on the limits of the basic control
parameters. In [52], the optimum six parameters of the PSO (c1, c2, ωmax, ωmin, N, and
itermax) are shown to be highly effective in the system during convergence. Therefore,
we need to select apposite values to achieve better efficiency. In this study, the values
of self and social accelerating coefficients c1 and c2 are taken as 2. The weights ωmax
and ωmin for the particle velocities are taken as 0.4 and 0.9, respectively. The maximum
number of iterations (itermax) 100, with 100 number of particles (N) are used for PSO. PSO
convergence criteria are iter = itermax, or Xk+1

i − Xk
i < ε. PSO is implemented on IEEE-33

bus system in base and after NR to analyze their effects on minimizing power losses and
voltage profile improvement. The flow chart of the PSO algorithm is shown in Figure 4. In
the minimization problem, Pbest is the personal best position in the search space, which will
lead to the smallest error and can be calculated using (19). Likewise, the global best position
gbest is the best particle in the search space among all of the particles in the group by using
(20). The particle that provides accurate personal best results will show the minimum error.

Pbesti = (Pbesti ,1 , Pbesti ,2 , . . . , Pbesti ,N) (19)
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Gbesti = (gbesti ,1 , gbesti ,2 , . . . , gbesti ,N) (20)
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Each particle in the swarm updates its location with its own Pbest, gbest, and previous
velocity vectors using (21), and the current position Xk

i of particle i can be changed based
on (22). Additionally, c1 and c2 determine how fast a particle of the PSO proceeds towards
Pbest and gbest.

Vk+1
i = ωiVk

i + c1r1

(
Pbesti − Xk

i

)
+ c2r2

(
gbesti − Xk

i

)
(21)

Xk+1
i = Xk

i + χ
(

vk+1
i

)
k = 1, 2, . . . ., N (22)

where, χ is the constriction factor, k is the iterative number. The inertia weights control
the convergence behavior of PSO. A proper choice of the inertia weight provides a strong
balance between global and local explorations, as shown in (23) [53].

ωi = ωmax −
(ωmax − ωmin)

itermax
iter (23)
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The PSO showed a steady and fast convergence, with a global searching ability to
provide Pbest and gbest.

5. Results and Discussion

The development of DG systems plays a crucial role in power production. This allows
the delivery system to withstand high loading, eliminate losses, and enhance the voltage
profile. Even if DG units help to reduce losses, certain bus voltages do not reach the
minimum voltage limit. Identifying the location and sizing of DGs to reduce the real
power loss of a radial electric distribution system is a difficult task. These challenges can
be mitigated by reconfiguring the network. The results show that the optimal placement
and sizing of multi-DGs with reconfiguration can be identified. This gives the minimum
power loss, while keeping the bus voltage magnitudes within acceptable limits. PSO
algorithms are used to find suitable locations and sizes for multi-DG units placement. The
PSO algorithm is tested on an IEEE-33 bus radial distribution system before and after
reconfiguration. Four scenarios are investigated below.

Scenario 1: Base distribution system.
Scenario 2: Reconfigured distribution system.
Scenario 3: Base distribution system with DGs.
Scenario 4: Reconfigured distribution system with DGs.

5.1. Base Configuration

The standard IEEE-33 bus distribution system is considered as the base system for
evaluation of this work. Newton–Raphson based power flow technique is used for power
flow analysis. The total peak load consumption on the distribution system is 3715 kW
and 2300 kVAr. In scenario 1, the total real and reactive power losses for the initial base
configuration are computed by the Newton–Raphson load flow method as 203.17 kW and
135.17 kVAr, respectively. The minimum voltage on bus-18 is 0.9022 p.u. A significant re-
duction in power loss is observed when three DG units are placed into the base distribution
system. The PSO algorithm is used to optimal locate and sizing of the multi-DG units.

In scenario 3, PSO algorithm is used to find optimal DG size and location in base
system. DG1 is installed at bus 6, DG1 and DG2 at buses 6 and 16, and DG1, DG2, and
DG3 at buses 6, 16, and 25, respectively. A DG rated at 2331 kW is installed in a single DG
scheme in bus 6. In the 2 DG scheme, DG units with ratings of 3133.5 and 365.1 kW are
installed in buses 6 and 16, respectively. For 3 DG units scheme, DG units with ratings
of 2164.2, 365.1, and 738.6 kW are installed in buses 6, 16, and 25, respectively, as shown
in Table 1. In scenario 3, when 3 DG units are installed in the distribution system, the
active and reactive power losses are reduced to 82.77 kW (59.26%) and 58.39 kVAr (56.80%),
respectively. The bus voltage is improved by 4.9% after the addition of the multi-DG units.
The integration of a DG is used to inject active power into a system locally. As a result, the
net power from a substation is decreased by multi-DGs integration. In this study, owing to
the integration of the 3 DGs, the power losses are decreased to 82.77 kW, and the minimum
bus voltage is 0.9464 p.u. at bus 33.
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Table 1. Effects of DG units placement on power loss minimization and voltage profile enhancement.

Base System Configuration

Base System DG1 DG1 and DG2 DG1, DG2, and DG3

Active power loss (kW) 203.17 110.2 105.7 82.77

Reactive power loss (kVAr) 135.17 79.43 74.81 58.39

Min. voltage magnitude (p.u.) and location 0.9022, 18 0.9484, 18 0.9573, 32 0.9464, 33

DGs size (MW) and location 3.1335, 6 3.1335, 6
0.3651, 16

2.1642, 6
0.3651, 16
0.7386, 25

After System Reconfiguration

Active power loss (kW) 138.14 120.5 71.47 64.91

Reactive power loss (kVAr) 99.85 83.66 50.68 47.03

Min. voltage magnitude (p.u.) and location 0.9281, 32 0.9287, 32 0.9585, 32 0.9611, 32

DGs size (MW) and location 1.0641, 16 1.0641, 16
1.2155, 29

1.0641, 16
1.2155, 29
0.6745, 26

5.2. Reconfiguration with DGs

The PSO algorithm is implemented in the test system to find the optimal locations
and sizing for the multi-DG units after reconfiguration. In scenario 2, after the optimal
reconfiguration of the test system, the active power losses are reduced to 138.14 kW—an
active power loss reduction of approximately 32%. The voltage magnitude is enhanced by
2.87%. Figures 5 and 6 show the voltage profile improvement and power loss reduction
of the base and reconfigured test system, respectively. The lowest values of the voltage
magnitude are measured as 0.9022 p.u. at bus-18 and 0.9281 p.u. at bus-32 for the system
before and after reconfiguration, respectively.
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In scenario 4, when the three DG units are placed in the reconfigured distribution
system, an outstanding reduction in power loss is observed. Multi-DG units with different
sizes are installed at different locations. DG1 (1064.1 kW) is installed at bus 16, and DG1
and DG2 (1064.1 and 1215.5 kW, respectively) are installed at buses 16 and 29, respectively.
Likewise, DG1, DG2, and DG3 (1064.1, 1215.5, and 674.5 kW, respectively) are installed at
buses number 16, 29, and 26, respectively, as shown in Table 1. Owing to the reconfiguration
and DG installation in the network, the voltage profile increased by 6.53%, and the percent
of loss reduction increased by 68.05%. The minimum voltage deviation is obtained by
scenario 4. According to Table 2, four scenarios (1–4) for the IEEE-33 bus distribution
system are presented.

Table 2. Performance of proposed method on IEEE-33 bus radial distribution network.

Methods Base
Network

Reconfigured
Network

Base Network
with DGs

Reconfigured
Network with DGs

Active power loss (kW) 203.17 138.14 82.77 64.91
Reactive power loss (kVAr) 135.17 99.85 58.39 47.03

Min. voltage magnitude (p.u.) 0.9022 0.9281 0.9464 0.9611
Active power loss reduction (%) 32.00 59.26 68.05

Reactive power loss reduction (%) 26.13 56.80 65.20
Voltage deviation (VD) 0.0878 0.0619 0.0436 0.0289

Voltage enhancement (%) 2.87 4.9 6.53

When we injected power, the active power losses were reduced in scenarios 1–4 by
203.17, 138.14, 82.77, and 64.91 kW, respectively, whereas the reactive power is also reduced
from 135.17, 99.85, 58.39, and 47.03 kVAr, respectively. The percentage of active power loss
reduction increased in scenarios 2–4 by 32%, 59.26%, and 68.05%, respectively. Similarly,
the minimum bus voltage of the system in scenarios 2–4 improved by 2.87%, 4.9%, and
6.53%, respectively. This reveals that the NR and allocation of multi-DG units in scenario 4
are better than those in the other scenarios in terms of the voltage profile improvement and
loss reduction. Figures 7–9 show the voltage profile improvement, line current reduction,
and total power loss reduction, respectively, by using the PSO algorithm to locate and size
for multi-DG units before and after reconfiguration of the test system.
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The performance of the proposed work is compared with that from the available litera-
ture in the form of active power loss, i.e., the HSA (73.05 kW) [40], GA (75.13 kW) [40], RGA
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(74.32 kW) [40], FA (73.048 kW) [44], 2-stage algorithm (92.91 kW) [54], FWA (67.11 kW) [55],
and direct graph (112.19 kW) [56]. Our proposed method provides 64.91 kW. Thus, our pro-
posed method shows better results than those of previous research in terms of minimizing
power loss and enhancing voltage stability, as shown in Table 3 and Figure 10.

Table 3. Comparative results for the configured IEEE-33 bus distribution system with DG units.

Methods Active Power Loss
(kW)

Min Voltage
(p.u.) Tie Switches DGs

(MW) Buses

HSA [40] 73.05 0.9700 7, 14, 10, 32, 28 1.6684

GA [40] 75.13 0.9766 7, 10, 28, 32, 34 1.9633

RGA [40] 74.32 0.9691 7, 9, 12, 27, 32 1.774

FA [44] 73.048 0.97352 8, 9, 28, 32, 33

0.8414 31

0.3408 32

0.5916 33

Two-stage algorithm [54] 92.91 0.9541 7, 9, 14, 30, 37

0.250 16

0.250 17

0.250 18

FWA [55] 67.11 0.9713 7, 14, 11, 32, 28

0.5367 32

0.6158 29

0.5315 18

Directed graph [56] 112.19 0.9465 7, 9, 14, 25, 32

Proposed method 64.91 0.9611 7, 9, 14, 28, 32

1.0641 16

1.2155 29

0.6745 26
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6. Conclusions

In this study, the major issues investigated are the location and sizing of DGs to
mitigate the total power loss, reduce line current, and boost the voltage profile of a radial
distribution system. The multi-objective PSO algorithm is implemented to find the optimal
locations and sizes for multi-DG units in an IEEE-33 bus radial distribution network before
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and after reconfiguration. In scenario 1, the power loss was 203.17 kW, and after the
reconfiguration of the test system in scenario 3, the power loss decreased to 138.14 kW.
PSO algorithm provided the best location and sizes for multi-DG units installation, and the
active power losses were reduced from 82.77 to 64.91 kW before and after reconfiguration
of the system, respectively. There were also significant improvements in the voltage profile
and power loss reduction was achieved. The minimum voltage was 0.9022 p.u. at bus 18
for the base case. After adding 3 DGs with reconfigured system, the minimum voltage was
enhanced to 0.9611 p.u. at bus 32. The overall simulation results showed that the proposed
technique is comparatively efficient in terms of reducing the active and reactive power
losses, voltage deviation, and boost-up voltage profile in the system.
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