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Abstract: Automatic ball balancing is a technique adopted in rotordynamics to reduce unknown rotor
unbalance automatically. This technique sounds appealing as it can ease a panoply of balancing issues
considerably. The presence of stiction, however, scatters consistent qualitative balancing and led to a
limited implementation in the industry. Temporary speed reduction, a recent technique, could be used
as a countermeasure for the stiction-induced scattering. Presented in this paper is an in-depth study
detailing how the technique should be implemented to guarantee effective balancing. By analysing
a rotordynamic model of the Jeffcott kind, the influence of a multitude of parameters is studied
such as the initial mass positions, the initial unbalance, the adopted speed profile, shaft damping,
stiction and the speed reduction plateau of the adopted speed reduction strategy. The main findings
of the study are that the adverse effects of stiction can be contained considerably using the speed
reduction technique, especially in the under-excited range where a ball balancer behaves poorly
when adopting a standard run-up profile. Finally, the speed plateau of the speed reduction technique
should be selected carefully, preferably accounting for stiction, shaft damping and even more so the
initial unbalance.
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1. Introduction

Unbalance induced vibrations are an omnipresent issue in rotor dynamics. Several solutions
have been provided in the past [1,2]. One technique to tackle these unbalance issues consists of using
Automatic Ball Balancing. An Automatic Ball Balancer (ABB) comprises a circular retainer fixed
on a rotating shaft holding a set of balls that can move concentrically around the shaft. Above the
fundamental resonance frequency of the rotary system, this device can remove unbalance automatically.

An ABB is often applied when unbalance is varying. Washing machines, optical readers [3], angle
grinders [4], sanding machines or lab centrifuges are typical cases where unbalance loads vary over
time. However, if the unbalance does not vary, an ABB can still be beneficial considering manufacturing
ease. For example, after final assembly, in-situ balancing might be required but not possible. In this
case, Automatic ball balancing could tackle the unbalance issue and reduce manufacturing costs.

From an implementation point of view, an ABB should be a plug-and-play device that allows
quick, safe and repetitive balancing. Unfortunately, the ABB is known to have a balancing capability of
the statistical kind due to the presence of rolling friction [5–9] and becomes a plug-and-pray device.
This major inconvenience led to a restricted implementation of the ABB in industry. A different issue
occurs when nearing resonance as it induces violent bifurcative behaviour that can be described as of
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the Sommerfeld Effect-kind [10–12]. Many research was devoted to analysing the conditions for the
existence of these bifurcations [13–17].

In an attempt to parry the afore-stated unstable behaviour, countermeasures were provided in
the past. For example, adding partitions in the raceway prohibits the balancing masses from swirling
around the shaft when nearing resonance [17,18]. The addition of radial and or tangential springs to
the balancing masses was considered as well [19].

As can be seen, the unstable bifurcative behaviour that occurs when nearing resonance can be
obliterated with effective techniques. The list of practical solution regarding statistical scattering is
however short. Ref. [7] states that “the ball balancer might not be suitable as balancing measure for
appliances demanding very low residual unbalance. Reducing the friction and enlarging the driving
force are the two major ways for further reduction of the residual unbalance”. The use of multiple
raceway tracks or balancing masses is a viable solution [20] as the addition of multiple down-scaled
ball balancers have more freedom to relocate. Considering the one-ball ABB, a shock technique
was presented in [21] whereby a sudden torque shock swirls the balancing mass to a different place.
Another approach [22] consisted of using an observer to estimate the state of the balancer. Application
of torque would allow relocating the sole balancing mass effectively. Unfortunately, the latter technique
can only be applied to the one-ball ABB as the action influences all balancing balls identically.

Research [8] shows, by using Friction Maps, that a slow speed profile is advantageous as the
ball relocation process only occurs near resonance. The use of a smooth raceway, thereby reducing
friction is thus of the uttermost importance. However, this slow run-up strategy has a drawback as
the bifurcative behaviour near resonance is detrimental and preferably avoided, by adopting a short
run-up procedure. This contradiction and the added complexity of the proposed solutions regarding
friction-induced scattering entailed a limited use of the ball balancer.

In a previous publication, we provided an effective means to tackle both of the mentioned issues
above by introducing the Temporary Speed Reduction technique [9]. This minimalist approach works
as follows: By quickly crossing the resonance frequency, unstable behaviour is limited. Reducing the
rotational speed and nearing the resonance supercritically afterwards allows effective balancing safely
and repetitively. The downside of this approach is the necessity of a controllable rotational speed.

The presented study aims to assess for a given rotary model whether the use of an ABB is
auspicious, what its balancing capabilities are and if adopting the temporal speed reduction technique
(TSR) is prolific. By answering these questions, we wish to facilitate and encourage the use of ball
balancers. This will be done with an in-depth sensitivity analysis that accumulates the effect of multiple
parameters to illustrate how friction-induced scattering is affected. Moreover, a sensitivity analysis
regarding the TSR technique is presented.

The paper opens by recalling in Section 2 the working principle of an ABB. In Section 3, we derive
a dynamic model of a Jeffcott rotor comprising an ABB with rolling friction. Section 3.2 will detail the
TSR technique. Section 4 presents the balancing quality of the ball balancer depending on the initial
ball pose, the initial rotor unbalance, the adopted speed profile, stiction and the effect of rotor damping.
These effects will be detailed, adopting a standard run-up profile as well as its TSR counterpart.

2. Basic Concept of an ABB

This section starts by detailing the fundamental of an ABB with one balancing mass. By mounting
this ABB on a Jeffcott rotor [1] the balancing capability of an ABB is then declared.

2.1. Fundamental

A simplified model is sketched in Figure 1 on which a point I representing a balancing ball with
mass m is allowed to move freely in a raceway at given distance r around D, the centre of a rotating
shaft bound to rotate around origin O at given distance z and angular velocity Ω. The angular position
between z and r is denoted by γi.
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As the point mass I orbits origin O with revolution speed Ω and distance l, it experiences a
centrifugal force Fc,i following ~OI. Being bound to its circumferential path around D, a reaction force
impedes any radial movement with respect to D. As tangential movement is allowed, a residual force
Ft,i drives point mass I towards a higher total excentricity l. This force equates

Ft,i = mzΩ2sin(γi). (1)

One can see that the point mass I will tend to move in the same direction as the local deflection z,
towards E (γi = 0, l = z + r). Equation (1) can be seen as the fundamental of the ABB: A single ABB
will tend to add unbalance in the direction of the deflection it perceives.
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Figure 1. Fundamental sketch of a one-ball balancer with emphasis on forces acting on balancing
mass I.

2.2. Automatic Balancing

The working mechanism of an automatic ball balancing device relies on the rotor it is built upon
as the balancer only reacts to the local deflection that is perceived. This will be demonstrated using a
Jeffcott rotor.

The state of the Jeffcott rotor is speed-dependent and can be divided into two main categories:
the subcritical and the supercritical state. The angular position of the rotor deflection with respect
to unbalance excitation in these categories is respectively 0◦ and 180◦. Thus in subcritical regions,
the balancer will amplify the initial unbalance, while at the supercritical state it will counteract this
initial unbalance, giving an ABB its balancing capabilities at supercritical speeds.

As the phase shift of 180◦ occurs gradually around the critical speed, a third state arises, which
is of the unstable kind. The unstable phenomenon originates when the phase lag is near 90◦. As the
balancing mass follows, the lagging eccentricity, its movement shifts the total unbalance, so that the
response of the shaft drifts. This drifting leads to unstable transients and high intermittent vibration
levels. As these bifurcative effects are out of scope for this study, we refer to the literature for more
information on the matter.

By adding more balancing masses, it is possible to remove unbalance effectively, as any unbalance
leads to shaft excentricity soliciting the balancing behaviour of each balancing mass.

The efficacy of the ABB relies on a well-defined phasal position of the shaft it is built-upon.
Moreover, any friction inside the raceway potentially degrades the balancing capabilities of the ball
balancer as nearing perfect balancing conditions weakens the forces acting on the balancing balls
considerably. More specifically, the vibrational level z and the correct ball position γi both decrease the
balancing forces considerably as can be seen in Equation (1). The detrimental effects of friction and
how to mitigate them will be illustrated in Section 4.
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3. Definition of the Rotordynamic Model

In this section, the equations of motion of a Jeffcott rotor and a concentrically mounted ABB
with Coulomb rolling friction will be derived using the Lagrangian approach, provided with nominal
parameter values. Then the TSR technique will be briefly introduced. Finally, the standardised speed
profile used in the simulations will be presented.

3.1. Equations of Motion

Using a relative cartesian base, we describe a concentrically mounted ABB (with n balancing
masses) on a Jeffcott rotor, as shown in Figure 2. In what follows, the non-deflected position of the
shaft will be denoted by O, while the geometrical centre point of the shaft D. The centre of mass of
the shaft G is positioned eccentrically with respect to D at a distance ε, while ball Bi is constrained
concentrically at a set distance R with respect to D. The absolute reference frame (X, Y) has its origin
located in O. The relative reference frame (X′, Y′) has the same origin but uses the direction of the
unbalance DG as reference. ψ denotes the imposed rotation between both frames.

The displacement of the shaft r is defined in the frame (X′Y′) as (r′x, r′y). The relative angular
position of the ith ball i.e., ∠GDBi is labelled φi. Gravity is acting in the negative Y-direction.
The equations of motion will be derived accounting for gravity for the sake of completeness, but it will
be omitted further.

B

B

B
n

1

Figure 2. Coordinate definition for the Jeffcott rotor with a concentrically mounted ball balancer.

The vector of generalized coordinates q can then be defined as

q =

r′x
r′y
φi


i = 1, ..., n

(2)

Using these coordinates, the position of the shaft and the ith ball can be expressed as

r’OG = [r′x + ε, r′y] (3)

and
r’OBi = [r′x + R cos(φi), r′y + R sin(φi)]i = 1, ..., n. (4)
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The characteristics of the Jeffcott rotor are defined by k,c and M which are respectively the
perceived rotor stiffness, the apparent rotor damping and the rotor mass. There are n balancing balls
with mass mi, the ball-raceway interaction is modelled as rolling coulomb friction by µ while the
stabilising effect of the oil in the raceway is modelled as viscous ball damping by Di. Finally, the total
mass of the system, i.e., the shaft and the balancing masses is labelled Mt. The kinetic energy T and
potential energy V of the system are

T =
Mtψ̇

2r′2

2
+

Mt ṙ′
2

2
+ Mtψ̇(r′x ṙ′y − r′y ṙ′x) +

Mε2ψ̇2

2
+ Mεψ̇[r′xψ̇ + ṙ′y] +

n

∑
i=1

miR2

2
(ψ̇ + φ̇i)

2

+
n

∑
i=1

miRψ̇(ψ̇ + φ̇i)[r′y sin φi + r′x cos φi] +
n

∑
i=1

miR(ψ̇ + φ̇i)[−ṙ′x sin φi + ṙ′y cos φi]

(5)

V = k
2 (r
′
x

2 + r′y
2) + Mg[r′x sin(ψ) + r′y cos(ψ) + ε sin(ψ)] + ∑n

i=1 mig[r′x sin(ψ) + r′y cos(ψ) + R sin(ψ + φi)] (6)

A Rayleigh dissipation function F can be expressed as

F =
c
2
[ψ̇2(r′x

2
+ r′y

2
) + ṙ′x

2
+ ṙ′y

2
+ 2ψ̇(r′x ṙ′y − r′y ṙ′x)] +

Di
2

n

∑
i=1

φ̇i
2 (7)

Using the kinetic and potential energies of the system T and V along with the Rayleigh dissipation
function F it is possible to determine the equations of motion following the Lagrangian principle,
which yields:

Mt r̈′x = Mtψ̈r′y + 2Mtψ̇ṙ′y + Mtψ̇
2r′x + Mεψ̇2 − kr′x − c(ṙ′x − r′yψ̇)−Mtg sin ψ

+
n

∑
i=1

miR sin(φi)(ψ̈ + φ̈i) +
n

∑
i=1

miR(ψ̇ + φ̇i)
2 cos(φi)

(8)

Mt r̈′y = −Mtψ̈r′x − 2Mtψ̇ṙ′x + Mtψ̇
2r′y −Mεψ̈− kr′y − c(ṙ′y + r′xψ̇)−Mtg cos ψ

−
n

∑
i=1

miR cos(φi)(ψ̈ + φ̈i) +
n

∑
i=1

miR(ψ̇ + φ̇i)
2 sin(φi)

(9)

miR2φ̈i = −miRψ̈(r′x cos φi + r′y sin φi)− 2miRψ̇(ṙ′x cos φi + ṙ′y sin φi)

+ miRψ̇2(−r′x sin φi + r′y cos φi)− Diφ̇i −migR cos(ψ + φi)− Ff ,iR

−miR2ψ̈ + miR sin(φi)r̈′x −miR cos(φi)r̈′y

i = 1, ..., n, (10)

with Ff ,i in Equation (10) denoting the Coulomb friction force impeding the tangent movement of the
ith ball.

Friction is modelled as Coloumbic with a hyperbolic function, ensuring numerical stability. It is
modelled as

Ff ,i = µFn tanh(
φ̇i

νsat
),

with Ff ,i and Fn respectively the resulting tangent frictive force impeding the tangent movement and
the normal force acting on the i-th ball and µ the Coulomb friction interface value. Care should be
taken when simulating friction forces holding a load over time [23]. In this case, νsat, a sliding speed
constant, has been fit as a trade-off between solver speed and simulation accuracy. A robust value has
been set for νsat = 10−6 rad

s .
The nominal parameter values used in this study are shown in Table 1 and are based on prior

experimental research. More information can be found in [9].
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Table 1. Nominal parameter values of the Automatic Ball Balancer (ABB)—Jeffcott rotor model.

Parameter Value Parameter Value

M 16.53 kg mi 7.6 g
k 5.8 kN mm−1 R 35 mm
cre f 1.510 kN m s−1 n 2
|ε| 19.3 µm 1 µre f 0.002
∠ε 0 rad Di 2.7 N mm s rad−1

1 G20 Following ISO.

3.2. Temporary Speed Reduction

As was mentioned previously, the presence of rolling friction in the ball-raceway interaction
deteriorates the balancing qualities of an ABB. In previous research, we presented a technique called
Temporary Speed Reduction (TSR) that allows us to mitigate the detrimental effects of rolling friction [9].
This research showed that a temporary speed reduction towards resonance frequency allows the
balancing masses of an ABB to relocate towards a preferred position. This is possible as the Jeffcott rotor
becomes sensitive to unbalance near its resonance frequency. This increase of vibration amplifies the
balancing forces acting on the balancing masses (as seen in Equation (1)) and subsequently overcome
friction. The balancing masses can thus relocate for proper unbalance compensation. The use of TSR
allows us to significantly reduce unbalance in a quick, sound and replicable manner.

A standardised test speed profile has been defined encompassing TSR. A single test that lasts 90 s
is detailed in Figure 3 and consists of 2 parts. The first part (0–20%) is a standard run-up. As this model
mimics the real setup parametrised in Table 1, its regime speed of 167 Hz and resonance frequency of
94.2 Hz are used.

In the second phase (20–100%), the TSR technique is applied. Evaluating the balancing quality
at 20% and 100% allows to assess the efficacy of the TSR technique as well. In the upcoming section,
we will see that TSR is an efficient technique to contain frictive unbalance scattering, especially at low
initial unbalance levels.

Ω

Ω

Ω

Figure 3. Standardized speed profile, nominal speed = 167 Hz. Total simulation time is 90 s.

4. Simulation Results

The studied parameters influencing the balancing quality of an ABB are

1. The starting position of the balancing masses;
2. The initial unbalance of the rotor;
3. The adopted speed profile;
4. Damping and raceway friction.
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To preserve a coherent approach, the ISO balancing grade G as described by ISO 1940-11:2016
is used. This ISO standard defines rigid rotor balancing quality using a specific quality grade G.
This quantity is defined as the product of the permissible residual shaft eccentricity (in [mm]) and the
highest nominal operational speed of the machine (in [rad/s]), expressed in mm/s. The considered
rotor should qualify the G16 balancing quality standard: the balancing quality is to be inferior or equal
to G16. It is to be noted that the unbalance defined in Table 1 corresponds to G20.

Before performing the aforementioned sensitivity analysis, we will first look at a single test run.

4.1. Single Run

The selected configuration is defined in Table 1, with a given ball start configuration.
This simulation will be compared to a reference run. The difference between both runs lies in the
absence of the balancer.

The simulation is decomposed in Figure 4. Firstly a standard Amplitude graph compares the
vibrational amplitude of the rotor with and without ABB. Then a Ball Position graph illustrates
the movement of the balancing masses during the complete test run. The angular position shows
the location of both balancing masses with respect to the initial unbalance while radial distance
gives a perception of time. Finally the COG location graph (COG = Center Of Gravity) details the
influence of ball movement on the residual unbalance location and thus balancing quality of the rotor.
Hereby, the angular position denotes the location of the COG with respect to the initial unbalance
while radial distance shows how severe the total amount of unbalance is (grade G).

Figure 4. A single run-up following the aforementioned speed profile illustrating the temporal speed
reduction (TSR) technique.

The Amplitude graph compares the vibration amplitude of the rotor with (continuous line) and
without ABB (dashed line). It is noted that the sensitivity of the balancer unit to unbalance intensifies
during resonance, slinging the balancing masses around as can be seen in the Ball position graph
at an early stage. This relocation deteriorates the balancing grade of the shaft as pointed out in the
COG Location graph. Nevertheless, the standard run-up procedure in this case leads to a balancing
grade that varies considerably (G14� G38� G19). The balancing outcome (•) is less than the initial
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unbalance of G20 (◦), although it still exceeds the balancing requirements (G16—dashed in the COG
location graph). TSR mitigates this issue (∗) as illustrated in the Amplitude graph when comparing
both techniques at nominal speed (10,000 rpm).

After the standard run-up procedure (•), the rotor speed is reduced. This reduction increases
the sensitivity of the shaft to unresolved unbalance resulting in a vibration increase. The balancing
forces acting on the balancer grow until the frictive thresholds are exceeded, releasing the balancing
masses. The masses relocate to a configuration reducing the residual unbalance as can be seen in the
Ball Position graph near t = 40 s. Increasing the rotational speed again desensitizes the balancer to
residual unbalance so that both balancing masses remain fixed. Application of TSR (∗) in this case
results in a considerable balancing quality (G5) thus qualifying for the G16 standard.

4.2. Start Position of Balancing Masses

Ball positioning at the start of a run-up has a significant impact on final balance quality. In practice,
their position cannot be chosen by any means. Their position is thus a variable that has to be taken
into account. Therefore, we consider this variability as a first influence by moving the start position
of each ball to 50 equispaced positions over the raceway. Since both balancing masses are identical,
the complete analysis consists of 1275 simulations as nearly half of the computations are omitted.

Figure 5 presents the results of the analysis. In this Figure, the Probability Density Function
(PDF) of both the standard (STD) and TSR procedures are displayed for an initial G20 unbalance (◦).
There is an evident impact of the initial ball position, well-illustrating the non-repeatable aspect of
rolling friction. It follows that the majority of balancing outcomes are G15 for the standard approach
(•) and G11 for TSR (∗). Concerning the afore-stated ISO balancing standard of G16, both methods
qualify in 85% and 80% of the cases for STD and TSR, respectively.

Figure 5. Probability density function of the residual unbalance for an initial unbalance G20 (dashed
line), standard (grey) and TSR (black) procedure.

Summarizing all balancing outcomes with these values obfuscates the variability aspect as it
is clear that in some cases, TSR deteriorates the STD balancing outcomes. Figure 6 illustrates these
peculiar cases, showing each TSR outcome along with its STD counterpart. The graph is divided into
several regions, as defined in Table 2, along with their respective occurrence rate.

Region I is divided into regions I.A (26%) and I.B (67.5%), depending on whether respectively
TSR worsens or improves the STD outcome.

If the ball balancer is well-chosen for the Jeffcott rotor, all balancing outcomes will reside in I.
Both procedures are thus able to limit unbalance within the initial boundary.

The success rate of the STD and TSR methods is respectively 95% and 98%. This means that in the
majority of cases, both methods achieve a balancing class smaller than the initial G20. The analysis can
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be concluded by stating that TSR consistently improves the STD approach for an initial unbalance of
G20. Deciding whether the STD or TSR technique should be applied, however, depends on the adopted
balancing standard. We restrain ourselves from making a suggestion, as the upcoming sections will
alleviate this complex decision.

Figure 6. Comparison of the balancing outcome of the standard (STD) and TSR procedure.

Nevertheless, should the balancing outcome be not prolific, there is always the possibility to
restart the appliance. Doing so, the balancing masses will have different start positions that will likely
entail proper balancing in the next run. In the following subsection, a similar analysis will account for
varying initial unbalance.

Table 2. Occurrence of each balancing outcome state.

Region State Occurrence

I.A GSTD < GTSR 6 GINI 26.0%
I.B GTSR 6 GSTD 6 GINI 67.5%
I I GTSR < GINI < GSTD 4.5%

I I I GINI < {GSTD, GTSR} 0.5%
IV GSTD 6 GINI < GTSR 1.5%

4.3. Initial Unbalance

It is clear that by changing the initial ball configuration of the ABB, there is a pronounced scattering
in balancing quality.

Another unknown is the initial unbalance that the system (without ABB) intrinsically has.
The initial unbalance in a real system is statistically scattered as it depends on production, assembly
and operating conditions. Therefore, the influence of the initial unbalance is to be studied next.

The influence of the initial unbalance, in conjunction with the scattering phenomenon illustrated
in Section 4.2, leads to the data portrayed in Figure 7.
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Figure 7. Lines: Influence of initial unbalance on residual unbalance following the standard
configuration of Table 1 and afore-stated speed profile. Area: Valid initial unbalance range for a
given tolerance class.

Figure 7 depicts the residual unbalance outcome of the balancer for a given initial unbalance.
The central dotted line reflects the initial unbalance conditions: data below this reference line shows an
improvement in balance quality, while data above shows balancing quality degradation. The black
dashed lines mark the boundaries in between which the ABB can operate as they correspond to the total
unbalance when both balancing masses are in- or out-of-phase with respect to the initial unbalance.

As the data scattering is highly non-normally distributed, average and variance are no robust
measures of scale to quantify the statistical dispersion. A percentile analysis is thus preferred.
In order to hint a sense of their distribution, the 5-percentile and 95-percentile isoline are depicted for
both techniques. Doing so, a loss of information occurs. For example, a pronounced gathering of
balancing outcomes between these two isolines would go unnoticed. Though, this presentation style is
not erroneous as it still allows us to show the boundaries of the balancing behaviour. The 95 percentile
isoline is therefore convenient as it allows us to quantify the global balancing quality.

We show that initial unbalance has an evident influence on the residual unbalance scattering.
There is a noticeable gathering at higher initial unbalance towards the lower unbalance boundary for
both procedures. At the lower initial unbalance side, more dispersion occurs: as there is few or no
initial unbalance, the ABB has to cancel itself out. Due to rolling friction, the balls tend to scatter in
a wide range as the driving forces (whose magnitude depends on the total unbalance) are limited.
Better results can be achieved using the temporal speed reduction technique. Next, the 5-percentile
isoline of both procedures is nearly identical, which is logical as TSR only influences high residual
unbalance. The temporal speed reduction approach is an improvement, especially at reduced initial
unbalance levels. In general, an important conclusion is to be made: an over-dimensioned ABB will
balance poorly.

Figure 7 can alternatively be interpreted using the concept of balancing area: Given a balancing
standard that has to be met (for example G16, horizontal dash-dotted line), a valid initial unbalance
range can be defined for which 95% of the balancing outcomes are lower than the required balancing
standard. Any initial unbalance in this range will lead to a residual unbalance meeting the balancing
standard at least 95% of the time. By varying the balancing standard, the associated valid initial
unbalance range changes as well. One can see that a balancing area or range can be defined. The STD
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Range in Figure 7 shows a valid initial unbalance range for a given balancing standard. Balancing
outcomes would preferably all reside on the lower operation boundary of the balancer as the complete
unbalance operation range of the balancer would then meet any tolerance. Unfortunately, there is
a considerable discrepancy between STD95 and this lower boundary. The TSR extension improves
this behaviour, particularly in the lower initial unbalance range. In the case of the balancing standard
G16, one can see that there is no initial unbalance that would qualify the balancing standard using the
STD procedure. By applying the TSR approach, a valid range occurs in [G0− G3, G19− G34]. It is
possible to define efficiency by comparing this valid unbalance range and its theoretical maximum.
This maximum unbalance range would occur if the STD95 percentile isoline would lay on the lower
operation boundary so that the valid unbalance range equates [G0− G50]. Comparing the size of both
ranges allows to state that the adopted speed reduction technique can guarantee proper operation of
this specific balancer for the G16 tolerance class in 36% of all cases for nominal damping and stiction.

4.4. Effect of Speed Profile

The effect of the speed profile can be declared by studying the immobility of the balancing masses
in Figure 8.

We define immobility as the ratio between the amount of all ball configurations that are not able
to relocate at all and the total amount of ball configurations possible, for a given initial unbalance
and rotating speed. This ratio is calculated with the balancing masses having no speed. In Figure 8,
the initial unbalance is set as presented in Table 1. As a Jeffcott rotor is sensitive to unbalance near
resonance, it is to be expected that the immobility drops, indicating that effective balancing can
occur. The width and depth of this valley are influenced by damping and stiction with respect to
the amount of initial unbalance as will be shown in Section 4.5. It is now clear that a steep speed
profile prohibits effective balancing. By using the TSR technique, acceleration rate becomes less of an
issue as immobility is lowered as long as needed, without compromising balancing stability. In this
aspect, a gradually increasing speed profile as proposed in [8] seems effective, albeit omitted due to
the violent intermittent vibrations occurring near resonance. This can be seen in Figure 9 whereby
the 95% percentile isoline of the STD strategy using a 3x slower run-up is compared with the prior
STD and TSR outcomes when adopting the regular speed profile. From this graph, it is clear that
better balancing conditions can be attained and that a slower run-up seems advantageous. However,
the unstable behaviour occurring near resonance slings the balancing masses, potentially aggravating
their balancing outcome. This artefact can be perceived in the unbalance range [G10, G21] whereby
outcomes are even worse than their STD counterpart. The balancing inconsistency along with the
prolonged detrimental operation near resonance favours steep profiles, resulting in a poor balancing
quality. It is thus beneficial to adopt the TSR technique as it allows us to swiftly cross over resonance
and balance effectively in a repetitive manner.

Ω Ω

Figure 8. Immobility in function of rotational speed for an initial unbalance of G20.
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Figure 9. Influence of the speed profile on balancing range. A slower speed profile tends to mimic TSR.
Intermittent vibrations when crossing resonance however annihilate this improvement.

4.5. Influence of Damping and Static Friction

We have seen that the initial ball starting positions and the initial unbalance level do influence
the balancing behaviour of an ABB considerably. Other important parameters are the rolling friction
and damping of the system. How these affect the global balancing quality will be investigated next by
considering immobility.

In Figure 10, immobility is shown for a reference initial unbalance of G20 (as defined in Table 1).
Reference values for stiction µre f and damping cre f are defined in Table 1 as well. These are scaled
using the following amplification factors:{

cr =
c

cre f
= {0.5; 0.6; 1; 1.4}

µr =
µ

µre f
= {0.25; 0.5; 1; 2; 5}

It is in this range that the impact of damping and stiction is analysed. It is to be expected that
both the STD and TSR techniques are impacted, albeit the influence of both parameters is dissimilar.
The areas depicted in Figure 10 correspond to a given stiction value. Darker shading denotes an
increase of stiction thus immobility. The thickness of these areas indicates the contribution of damping.
The central line in each area illustrates immobility for nominal damping (cr = 1). The vertical dashed
black lines denote the two characterising speeds of the adopted speed profile.

A detrimental aspect of increased damping is the reduction of stability in the mobility valley as
the phase lag of the Jeffcott rotor occurs over a wider speed range. It is to be noted that this instability
limit is influenced by the amount of initial unbalance and is most severe for limited initial unbalance
values. A severe increase of damping in combination with restricted stiction will thus impact the
lowest stable subcritical speed that can be attained. For the sake of simplicity, the lower speed plateau
of the TSR procedure has been selected to guarantee stable and effective balancing reduction in the
majority of cases.
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Figure 10. Influence of damping and rolling friction on balance immobility for a nominal initial
unbalance of G20. Damping cr = {0.5; 0.6; 1; 1.4}. Friction µr = {0.25; 0.5; 1; 2; 5}.

Immobility is the lowest near resonance due to the vibration increase as dynamic stiffness is
absent. Therefore damping has a significant impact on immobility near resonance. By increasing
damping, the balancing capabilities of the balancer deteriorate as immobility increases drastically.
In contrast, an excessive amount of stiction withstands any relocation attempt although some stiction
facilitates stable balancing in the overcritical region.

The influence of stiction on balancing capability is shown in Figure 11a. The results for the STD
approach are ambivalent. In the under-excited region, i.e., for an initial unbalance lower than the
total ball unbalance G34, a sweep up occurs that limits the valid unbalance range for low stiction.
This is because stability of operation is only ensured in a narrow upper speed segment of the adopted
speed profile. Therefore in this initial unbalance range, the balancing outcomes are more spread than
otherwise. The TSR counterpart is detailed in Figure 11b.

(a) (b)
Figure 11. An increase of friction leads to a global deterioration of balancing capabilities for the
STD and TSR technique. (a) STD, (b) TSR. Sweep-up and haziness of the balancing outcomes occur
respectively for STD and TSR as stability is only guaranteed in a narrow upper part of the adopted
speed profile for a low initial unbalance range.
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The valid ranges in function of friction that can be attained are shown in Table 3 for the STD and
TSR method respectively, assuming the G16 standard. The efficacy assessment shows the advantage
of TSR as this method allows to operate more effectively. As raceway stiction is not easily affected,
application of the TSR technique is a viable solution to enhance the efficacy of the ball balancer,
provided that a variable speed drive is at hand. However, the lower speed plateau should be selected
as such as to not compromise stable operation in the lower initial unbalance range.

We would like to recall as well that the way balancing capability is portrayed, such as in Figure 11a
attempts to represent unbalance variability globally. This technique fails to discern any local behaviour,
such as the gathering of balancing outcomes.

To conclude, reducing stiction is mainly favourable but its effect might not be prolific in the
under-excited range as stability can be limited, both for the STD and TSR counterparts. Determining
this stability limit lies outside the scope of this study.

Table 3. Efficacy assessment of both approaches for the G16 standard for various stiction parameters.
Efficiency is defined as the ratio of valid unbalance range and total unbalance range for said tolerance
class [G0–G50].

STD Eff. [%] TSR Eff. [%]

µr = 1 / 0 [G0–G3, G19–G34] 36
µr = 0.5 [G21–G43] 44 [G0–G17, G21–G44] 80

µr = 0.25 [G0–G14, G23–G47] 76 [G0–G47] 94

The influence of damping on the attainable tolerance class is shown in Figure 12 for both run-up
strategies. Determining the damping limit necessary for ensuring stable working conditions lies
outside the scope of this study as well.

The valid ranges in function of system damping that can be attained are shown in Table 4 for the
STD and TSR method respectively, assuming the G16 standard.

System damping ought to be chosen carefully (if applicable) as it restricts stability for the lower
initial unbalance range. This can be seen in Figure 12a for low initial unbalance for cr = {0.5; 0.6} as
these values entail a marked deterioration of balancing outcomes in the range [G0, G20].
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(a) (b)
Figure 12. An increase of damping leads to a global deterioration of balancing capabilities for the STD
and TSR technique. (a) STD, (b) TSR.
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This section focused on the impact of stiction and damping on the complete initial unbalance
range. Finding the most efficient combination of both parameters and applying these, in reality, is a
daunting task but is outside the scope of this study. We wish to state again that TSR should be applied
while ensuring that local stability is not void. The latter condition has an impact on the adopted
temporary speed reduction as will be seen in the finalising subsection.

Table 4. Efficacy assessment of both approaches for the G16 standard for various damping parameters.
Efficiency is defined as the ratio of valid unbalance range and total unbalance range for said tolerance
class [G0–G50].

STD Eff. [%] TSR Eff. [%]

cr = 1 / 0 [G0–G3, G19–G34] 36
cr = 0.6 [G20–G41] 42 [G0–G10, G20–G42] 64
cr = 0.5 [G21–G43] 44 [G0–G9, G21–G43] 62

4.6. Temporary Speed Reduction Plateau

As was mentioned previously, the lower speed of the TSR technique is a crucial parameter that
should be matched to the global system stability operation boundaries. This value needs to be selected
as such that

1. Effective unbalance reduction can occur to improve the balancing outcome of the STD approach;
2. Stable operation is guaranteed.

The range of lower speed plateau values that fulfil both requirements depends on the amount of
initial unbalance as well, which is unfortunate since the initial unbalance is a priori unknown. Proper
selection of the lower speed plateau remains therefore cumbersome. The valid speed range should,
in practice, be selected by studying its influence on the complete scattering phenomenon in order to
ensure the most effective approach.

The practical consequences of setting the lower speed plateau can be seen in Figure 13 for nominal
damping and friction values (µr = cr = 1) and initial unbalance G5. In this graph, a standard run-up
procedure was performed, up to nominal speed. Then, a gradual speed reduction occurred from
nominal speed (Ω = 1.5Ωn) to the undercritical speed Ω = 0.9Ωn. The balancing outcomes are
scattered for high speeds. Completing the TSR procedure occurs from right to left as the speed is
decreased. Doing so leads to a prompt unbalance reduction near Ω = 1.1Ωn. Unstable working occurs
when nearing resonance which deteriorates some of the balancing outcomes. For illustration purposes,
the lower speed plateau of the adopted speed profile (Ω = 100 Hz

94.2 Hz Ωn = 1.06Ωn) is denoted by the
vertical dotted line. The operational boundary of the ball balancer is denoted as well by the horizontal
dashed line. This boundary is attained by combining the initial unbalance (G5), and the total ball
unbalance (G34). We assume that increasing the speed again does not influence the balancing outcome
as doing so increases immobility, provided acceleration is not harsh. For completeness, a panoply of
percentile values is provided, ranging from 5% to 95%.

From this graph, it is clear that an exaggerated speed reduction annihilates any improvement made
so far. It should be noted from this graph that assessing the speed reduction limit by solely analysing
the behaviour of the 95% percentile isoline is convenient as it takes into account all balancing outcomes.
In order to simplify the upcoming discussion, only the 95% percentile isoline will be retained.
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STANDARD TSR LOWER LIMIT

Figure 13. Effect of the lower speed plateau on the global balancing outcomes for Gini = 5, µr = cr = 1.

4.6.1. Effect of Initial Unbalance on Valid Speed Plateau Range

The effect of the initial unbalance will be shown in the [G0, G34] range as the TSR technique
only influences this range. On Figure 14, the effect of the initial unbalance in combination with the
selected lower speed plateau of the TSR technique is shown using a greyscale colour bar. The colour
represents the residual unbalance attained in 95% of the cases, such as before. It serves as bound
to all balancing outcomes. Darker shades denote higher residual unbalance bounds, while lighter
shades denote a narrow and thus low-level bounding of the balancing outcomes. We can discern a
pale mountain-like shape occurring near resonance, denoting where the TSR technique is effective.
The TSR technique is only effective for low initial unbalance as an ABB operates efficiently for
high initial unbalances. The left flank of the so-called mountain is grainy and dark as unstable
behaviour prohibits steady operation. Only at a distance, far enough left or right of the mountain
guarantees stable operation. We can discern in this Figure the three primary states of a ball balancer:
Supercritical balancing behaviour, undercritical unbalancing behaviour aggravating initial unbalance
and an unstable central transition around resonance.
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Figure 14. Effect of the initial unbalance on the valid lower speed plateau range, µr = cr = 1. The ideal
speed plateau is 1.02.

As it is not possible to know the initial unbalance beforehand, it is interesting to look at the
ideal lower speed plateau that guarantees for any initial unbalance on average the lowest spread of
balancing outcomes. In this study, this initial unbalance range is [G0, G34] as above this range,
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TSR is no longer required. It is to be noted that by knowing a narrower initial unbalance range,
one can benefit from this knowledge by fine-tuning the adopted speed plateau.

It makes sense now to posit that the rotational speed at which major relocation occurs depends
on the initial unbalance. By analzing the average effect of the low speed plateau for under-exciting
initial unbalance, i.e.,: Gini ≤ G34, we can state that the ideal plateau is 1.02 ( for µr = cr = 1). This is
however not the rotational speed that was selected when presenting the former results of this study
(the standard speed plateau is Ω = 1.06Ωn). This higher speed was used as an attempt to ensure
stable behaviour for different damping and friction values as well. This selection leads to the results
presented in Figures 11 and 12. It is thus important to state that the lower plateau should be selected
carefully as not to jeopardize stable operation while ensuring effective unbalance reduction. This ideal
plateau depends on the amount of damping and stiction.

To finalize this section, a suitable lower speed value will now be selected for the worst conditions
presented in Figure 12, for µr = 1, cr = 0.5 whereby the standard lower speed plateau was used.
With these stiction and damping values, we discern in Figure 15 a similar mountain-like pattern.
We discover that the lower speed plateau that was selected is too high as in the initial unbalance range
of [G10–G20], the relocation process did not occur yet. Further reducing the rotational speed up to
Ω = 1.03Ωn reduces the unbalance outcomes in the initial range of [G10–G20] considerably. However,
extreme speed reduction will entail unstable operation in the initial unbalance range of [G20–G25].
This stability boundary prohibits further unbalance reduction. The ideal speed plateau, in this case,
is 1.03. The resulting balancing outcome is presented in Figure 16 along with the STD outcome and
the TSR results with the standard lower speed value of 1.06. Selecting the proper lower speed plateau
affects the balancing behaviour profoundly. Spiking occurs near G20 for the ideal plateau selection.
This happens as the response of the shaft to unbalance starts shifts due to the presence of the resonance.
This effect shifts the preferred unbalance location towards a higher residual unbalance while still being
stable. Further reducing speed will compromise global stability which is to be avoided at all costs.

It is clear by comparing Figures 14 and 15 that the shape of the effective TSR range can be altered.
However, as the applicability of TSR relies on the system sensitivity, it is linked to the stable operation
boundaries of the system as well. Care should thus be taken when tailoring the TSR technique for a
specific rotordynamic setup.

This subsection can be concluded by stating that the effective range of TSR considerably depends
on the lower speed plateau. This selection depends on the amount of damping, stiction and mainly the
initial unbalance present. As this initial unbalance is in practice unknown, we have chosen to conduct
our study as such to encompass this undetermined parameter as is. Knowing its variability will allow
for adapting the lower speed plateau conveniently.
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Figure 15. Effect of the initial unbalance on the valid lower speed plateau range, µr = 1, cr = 0.5.
The ideal speed plateau is 1.03.
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Figure 16. The balancing outcomes for µr = 1, cr = 0.5 whereby the lower speed plateau was
altered from 1.06 (standard) to 1.03 (ideal). The STD balancing outcome is presented as well for
illustration purposes.

5. Conclusions

This paper started by explaining how a 1-ball ABB mounted on a Jefcott rotor fundamentally
works. Then, a rotordynamic model has been devised for a multi-ball ABB on a Jeffcott rotor using
the Lagrangian approach, using relative cartesian coordinates. Rolling friction has been modelled
hyperbolically. This model was used to perform a parametric study on the temporary speed reduction
technique. The observations of this study summarise as follows:

1. Raceway friction has a significant impact on balancing scattering (Section 4.2)
2. An over-dimensioned ABB will balance poorly (Section 4.3).
3. TSR (temporary speed reduction) is an effective means for enhancing the balancing capabilities

of an ABB.
4. The used speed profile severely affects the balancing outcome of a system, considering both

overall balancing quality and transient resonant vibrations. TSR tackles this matter in a safe and
consistent manner (Section 4.4).

5. System damping and friction should be evaluated carefully seen their complex impact on the
lower unbalance range for a given tolerance class (Section 4.5).

6. The lower speed plateau of TSR should be selected for given damping and stiction values while
taking into account the effect that the initial unbalance has on the stable operation conditions
(Section 4.6).

We have shown that an ABB may be a peculiar balancing device due to its balancing scattering.
However, the addition of this device is beneficial provided the system damping or rolling friction are
contained. The provided tools allow for quantifying design parameters in order to facilitate the design
procedure. We conclude that the TSR technique is a promising tool that should be considered when
speed control is applicable.
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