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Abstract: Industrial robots are commonly used to perform interaction tasks (such as assemblies or
polishing), requiring the robot to be in contact with the surrounding environment. Such environments
are (partially) unknown to the robot controller. Therefore, there is the need to implement interaction
controllers capable of suitably reacting to the established contacts. Although standard force controllers
require force/torque measurements to close the loop, most of the industrial manipulators do not have
installed force/torque sensor(s). In addition, the integration of external sensors results in additional
costs and implementation effort, not affordable in many contexts/applications. To extend the use
of compliant controllers to sensorless interaction control, a model-based methodology is presented
in this paper for the online estimation of the interaction wrench, implementing a 6D virtual sensor.
Relying on sensorless Cartesian impedance control, an Extended Kalman Filter (EKF) is proposed
for the interaction wrench estimation. The described approach has been validated in simulations,
taking into account four different scenarios. In addition, experimental validation has been performed
employing a Franka EMIKA panda robot. A human–robot interaction scenario and an assembly task
have been considered to show the capabilities of the developed EKF, which is able to perform the
estimation with high bandwidth, achieving convergence with limited errors.

Keywords: extended kalman filter; wrench estimation; 6D virtual sensor; sensorless cartesian
impedance control; industrial robots; interaction robotized tasks

1. Introduction

1.1. Context

Robots are increasingly involved in daily life activities, which no longer consist of only repetitive
simple tasks, but rather require interaction with an ever-changing environment, while performing
a multitude of different tasks [1,2]. Considering the manufacturing context, the efforts that have
to be deployed to pre-program all the possible tasks and scenarios are excessive; therefore, robots
have to provide a flexible solution, adapting to new tasks/production while guaranteeing target
performance [3,4]. In these complex scenarios the robot is required to learn and suitably modify its
behavior on the basis of the operating conditions [5] and considering interaction tasks (i.e., robot
exchanging forces/torques with the environment) the capability to adapt becomes even more critical [6].
To avoid any unwanted/unstable behavior, the interaction force must be controlled [7,8]. Common
interaction control strategies, however, make use of expensive sensors [9–11], increasing hardware
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costs and implementation efforts not affordable in many contexts/applications. To avoid the use of
such devices, with the robot able to adapt to uncertain interaction, many works are investigating
external wrench estimation algorithms and sensorless control methodologies.

1.2. Related Works

The research community pays much attention to the achievement of a stable interaction
between sensorless robots and the environment, employing efforts in developing force–sensorless
methodologies to estimate the interaction between the robot and its environment. Such research
area is strongly connected with the main aim of this paper, since the proper estimation of the
established interaction between the robot and its environment is required to design a stable and
high-performance interaction controller for a sensorless robot. Some approaches [12] focus on the
derivation of high-accuracy models which are then used to estimate the interaction wrench during
task execution. In the literature, to prevent the use of force sensors, disturbance observers-based
solutions are developed, where the external wrench applied to the manipulator is observed exploiting
the inverse of the robot model. In [13] a nonlinear disturbance observer is proposed to estimate the
external interaction, allowing for the first time the possibility to consider the intrinsic nonlinearities of
systems such as robot manipulators. This method guarantees the stability of the disturbance observer
by properly tuning its design parameters while taking into account the physical parameters and
constraints (e.g., maximum joint velocities) of the robot. A more general approach is developed in [14]
where a disturbance state observer is coupled with a machine learning techniques, which are implement
to identify a task-oriented dynamic model. The use of learning-based approach prevents the modeling
of the robot dynamics terms (such as joints’ friction or Coriolis effects). To eliminate modeling errors,
in [15] a parametric dynamics robot model coupled with machine learning techniques is designed.
In this work a two-layer modeling is implemented with the combination of rigid-body dynamics (RBD)
and a compensator trained with multilayer perception (MLP), ensuring a better model accuracy than
each of the two model taken individually. To perform the interaction force estimation, such a modeled
dynamics is then exploited in a disturbance Kalman filter based on a time-invariant composite robot
model, providing robust estimation against uncertainty. To avoid the use of acceleration measurements
and the computation of the inverse of the robot mass matrix that amplifies measurements noise, in [16] a
sensorless admittance control scheme exploiting a generalized momentum-based disturbance observer
to model a linear environment dynamics is proposed. A radial basis neural networks approach
(RBNN) is used to compensate model uncertainties and, in order to properly manage the control
inputs, actuation saturation is considered. Some state-of-the-art works structure the identification as
an optimization problem. A different methodology that shows a deep connection with the generalized
momentum-based approach, highlighted by simulation and experimental results, is developed in [17]
where the filtered dynamic equations are combined with a recursive least-square estimation algorithm
to provide a smooth external force estimation. Friction models, such as Coulomb friction, show
uncertainties connected with the joint velocity, especially when velocities are close to zero. Solving
in real time a convex optimization problem, the method proposed in [18] estimates the reaction force
taking into account the aforementioned Coulomb friction uncertainties. Different types of virtual
sensors based on high-performance dynamic model calibration have been proposed. A task-oriented
calibrated robot dynamic model, which also includes the thermal state of the robot manipulator,
is designed in [19]. The proposed dynamic model is calibrated by means of a two-stage optimization
which provides suitable paths later combined in exciting trajectories. The estimation of the external
force is obtained, using the residual method, as difference between the modeled and measured torques.
In other works, Artificial Intelligence has been deployed to map the interaction between the robot
and the environment. The designed controller is then based on the learned dynamics. Considering
the scenario of working with soft tissue, in [20] the interaction is modeled as a visco-elastic system
and the design of the force observer used to estimate the interaction force is based on Lyapunov
time-varying equation. The force estimation is then used to develop a robot position controller.



Machines 2020, 8, 67 3 of 17

Considering a bilateral tele-operation system, in order to estimate the interaction forces between
the slave manipulator and the environment, in [21] an online sparse Gaussian process regression
(OSGPR) approach is proposed. The described work does not need any previous knowledge of
the slave manipulator dynamic model and it avoids the use of the inverse of Jacobian transpose,
but the generalized model is obtained through offline training with previously acquired dataset.
The interaction force is obtained in real time by means of the design estimator. Other external sensors
can be used instead of force ones to acquire more data useful to assess the interaction force. In [22]
exteroceptive sensing (i.e., a depth camera) is used for the detection of contacts while the residual
method is deployed to evaluate the external joint torques. This approach provides a reliable estimation
of the exchanged force at the contact point even in the scenario of multiple contact points. Optical
Coherence Tomography (OCT) images are classified with a Neural Network in [23]. The network
is trained on images from a Finite Element Method (FEM) simulation of the deformed sclera, while
a Bayesian filter is used to parameterize the model. In [24] Convolutional Neural Networks and
Long-Short Term Memory networks are used to process the spatio-temporal information included in
video sequences and tool data to assess the interaction force.

1.3. Paper Contribution

Extending the work in [25], a model-based methodology is presented in this paper for the online
estimation of the interaction wrench, implementing a 6D virtual sensor. Relying on sensorless Cartesian
impedance control (to give to the controlled robot a compliant behavior while interacting with an
unknown environment), an Extended Kalman Filter (EKF) is proposed for the interaction wrench
estimation. The proposed EKF is capable of estimating the forces and torques acting at the robot
end-effector, making possible to implement a 6D virtual sensor.

The interaction wrench can be considered to be a deterministic variable (i.e., a model of the
interaction between the robot and the environment can be derived and exploited for its estimation).
Although other approaches can be used to model the interaction wrench dynamics (such as sequential
Monte Carlo, unscented Kalman filter, and particle filtering methodologies [26–30]), they require the
measurement (i.e., samples) of the interaction wrench for the training of the algorithm. In many
practical cases, this is not possible or, if a force/torque sensor is available, the sensor is also used
online, i.e., not requiring the implementation of an estimation algorithm. The here presented approach,
instead, exploiting the well-known robot dynamics modeling, is capable of performing the estimation
of the interaction wrench without any use of wrench data for the algorithm training.

The described approach has been validated in simulations, taking into account four different
scenarios. In addition, experimental validation has been performed employing a Franka EMIKA
panda robot. A human–robot interaction scenario and an assembly task have been considered to show
the capabilities of the developed EKF, which is able to perform the estimation with high bandwidth,
achieving convergence with limited errors.

2. Sensorless Cartesian Impedance Control

The Cartesian impedance controller guarantees a compliant behavior during interaction.
Such controller must be implemented to design the proposed Extended Kalman Filter. The following
manipulator dynamics is considered [31]:

B(q)q̈ + C(q, q̇) + g(q) + τf (q̇) = τ − J(q)Thext, (1)

where q is the joint position vector, B(q) is the inertia matrix, C(q, q̇) is the Coriolis vector, g(q) is the
gravitational vector, τf (q̇) is the joint friction vector, J(q) is the Jacobian matrix, and hext = [f, C]T

is the external force/torque vector, τ is the joint torque vector. Based on Equation (1), the sensorless
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Cartesian impedance controller with dynamic compensation [31] is designed, defining the joint torque
vector τ as:

τ = B(q)γ + C(q, q̇) + g(q) + τf (q̇), (2)

where γ is the sensorless Cartesian impedance control law. Translational p̈ and rotational ϕ̈cd (described
by the intrinsic Euler angles representation) accelerations of the sensorless Cartesian impedance
controller γ can be written as:

p̈ = M−1
t (−D tṗ−Kt ∆p) ,

ϕ̈cd = M−1
r (−Dr ϕ̇cd −Kr ϕcd) .

(3)

These equations describe, respectively, the translational part and the rotational part of the
sensorless Cartesian impedance control. Regarding the translational part, Mt represents the mass
matrix, Dt the damping matrix, Kt the stiffness matrix, the actual Cartesian positions vector and the
target position vector are, respectively, p and pd, while ∆p = p− pd. Instead, concerning the rotational
part, Mr represents the inertia matrix, Dr and Kr are again the damping matrix and the stiffness matrix
respectively, Rc is the compliant frame at the end-effector, Rd is the target frame, and the mutual
orientation between these two frames is represented by Rd

c = RT
d Rc, from which the set of Euler angles

ϕcd is extracted. Considering the rotational part of the sensorless Cartesian, it is possible to compute
the angular accelerations ω̇cd:

ω̇cd = T(ϕcd)
(

M−1
r (−Dr ϕ̇cd −Kr ϕcd)

)
+ Ṫ(ϕcd)ϕ̇cd, (4)

where matrix T(ϕcd) defines the transformation from Euler angles derivatives to angular velocities
ωcd = T(ϕcd)ϕ̇cd, and ω = Reeωcd (with Ree the rotation matrix from the robot base to its end-effector)
[31]. By defining M̃r = (ReeT(ϕcd))

−1 Mr and D̃r = Dr − M̃rReeṪ(ϕcd), Equation (4) can be written as:

ω̇ = M̃−1
r

(
−D̃r ϕ̇cd −Kr ϕcd

)
. (5)

The formulation resulting from Equations (3)–(5), can be written in a compact form as follows:

ẍimp = −M−1 (D ẋ + K ∆x) , (6)

where ẍimp = [ẍt; ẍr] = [p̈; ω̇] is the target acceleration computed by the sensorless Cartesian
impedance control. M = [Mt 0; 0 M̃r], D = [Dt 0; 0 D̃r], K = [Kt 0; 0 Kr] are the sensorless Cartesian
impedance mass, damping and stiffness matrices composed by both the translational and rotational
parts, and ∆x = x− xd = [∆p;ϕcd]. x is the current robot end-effector pose vector including both
translational and rotational components, while xd is the reference robot end-effector pose vector
including both translational and rotational components. The sensorless Cartesian impedance control
law γ can then be written as follows:

γ = J(q)−1
(

ẍimp − J̇(q, q̇)q̇
)

. (7)

In general, matrix J(q)−1 can be substituted with the pseudo-inverse of the Jacobian matrix
J(q)# [32]. Substituting Equation (2) in (1), under the hypothesis that the manipulator dynamics is
known (such identification can be performed with state-of-the-art techniques [33]), the controlled robot
dynamics results in:

q̈ = γ− B(q)−1J(q)Thext, (8)
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where hext = [f, TT(ϕcd) µd] (considering the external forces f and torques µd - referred to the target
frame Rd—acting on the robot related to the interaction with the environment). The substitution of
Equation (7) into (8) leads to:

J(q)q̈ + J̇(q, q̇)q̇ = ẍ = ẍimp − J(q)B(q)−1J(q)Thext, (9)

with ẍ = J(q)q̈ + J̇(q, q̇)q̇ the resulting Cartesian acceleration of the robot end-effector resulting from
the implementation of the proposed sensorless Cartesian impedance controller. Finally, substituting
Equation (6) into (9), the controlled robot dynamics resulting from the design of the sensorless Cartesian
impedance control is described by the following equation:

Mẍ + Dẋ + K∆x = −L(q)hext, (10)

where L(q) = MJ(q)B(q)−1J(q)T . The resulting dynamic equation is therefore coupled in the
Cartesian degrees of freedom (DoFs) by the matrix L(q).

Remark 1. The sensorless Cartesian impedance control is therefore resulting in a coupled controlled robot
dynamics. Matrix L(q) redistributes interaction forces along all the Cartesian DoFs. Although the decoupled
robot behavior cannot be achieved implementing such controller, the sensorless Cartesian impedance control
strategy allows implementation of a tunable compliant robot behavior, ensuring a safe and stable interaction with
the target environment.

3. Extended Kalman Filter for External Wrench Estimation

In this Section, the Extended Kalman Filter (EKF) for interaction wrench estimation is designed.
The authors defined an augmented filter state which comprehends translational and rotational
components of position and velocities of the robot, respectively x and ẋ, and the external interaction
wrench hext:

xa = [ẋ, x, hext]
T . (11)

The augmented filter state xa is then substituted in the interaction dynamics Equation (10) to
write the state-space interaction dynamics:

ẋa =

−M−1D −M−1K −M−1L(q)
1 0 0
0 0 0

 xa +

M−1K
0
0

 xd = Aspxa + Bspxd, (12)

where Asp is the state-space matrix and Bsp is the input matrix.
To account for the uncertainties in the model, a variable νa = [νx, νẋ, νhext ] is included in the filter

dynamics. The resulting equations represent the filter dynamics:

f(xa, νa) =

 ẍ
ẋ

ḣext

 =

M−1
(
−Dẋ−Kx− L(q)hext + Kxd + νx

)
ẋ + M−1νẋ

νhext

 , (13)

Therefore, calling x̂a the augmented state estimate, Ca the observation matrix for the robot velocity
ẋ and the robot position x, and KEKF the gain matrix, the EKF is defined as:{

˙̂xa = f(xa, νa) + KEKF(y−Cax̂a),

ŷ = h(xa, w),
(14)

where the gain matrix KEKF is computed as follows:
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KEKF = PCaR−1. (15)

R represents the measurements noise covariance matrix:

R = HE{wwT}HT = HWHT . (16)

The observation function h linearly maps the sample inaccuracies, due to measurement noise w,
through the matrix H:

H =
∂h
∂w

∣∣∣∣
x̂a

. (17)

The covariance matrix P and its rate:

Ṗ = AaP− PCT
a R−1CaP + Q + PAT

a , (18)

are based on the dynamics of the state and on the model uncertainties. Matrices Aa and Ga are defined,
respectively, as:

Aa =
∂f

∂xa

∣∣∣∣
x̂a

; Ga =
∂f

∂νa

∣∣∣∣
x̂a

. (19)

Matrix Q, used for the estimation of the parameters, is defined as:

Q = GaE{νaνT
a }GT

a = GaVGT
a . (20)

It has to be mentioned that it is possible to neglect the evaluation of the time-derivative L̇(q) in
Equation (19). Instead, q = q is updated as soon as the values of the Jacobian J(q) and the inertia
matrix B(q) are affected by the modifications of the joint configuration. This assumption is justified
by the small change in the joint configuration when the robot interacts with the environment while
performing a task, such as assembly, or at least such modification dynamics is much slower than the
dynamics of the interaction. Therefore, Equation (13) can be modified accordingly:

f(xa, νa) =

 ẍ
ẋ

ḣext

 =

M−1
(
−Dẋ−Kx− L(q)hext + Kxd + νx

)
ẋ + M−1νẋ

νhext

 . (21)

Remark 2. The proposed EKF has been discretized for its implementation and online usage [34].

4. Simulation Results

In this Section, the results of the interaction wrench’s estimation are evaluated, deploying the
proposed Extended Kalman Filter in different simulations. The Robotics Toolbox [35] is used to
implement the kinematics and dynamics of Franka EMIKA panda.

The robot is controlled through the sensorless Cartesian impedance control described in Section 2.
The impedance control matrices have been imposed as diagonals and the parameters are selects as
follows: the mass parameters of the diagonal matrix M have been selected equal to 10 kg while the
inertia parameters have been imposed equal to 10 kg/m2; the translation and the rotational parameters
of the diagonal stiffness matrix K have been selected respectively equal to 1000 N/m and 5000 Nm/rad;
the diagonal matrix h is composed of damping ratio parameters equal to 2. The damping ratio can be
exploited in order to compute the damping matrix as D = 2h

√
MK.

Since the Franka EMIKA panda robot is redundant, its null-space configuration must be managed.
In the proposed robot control implementation, a pure damping behavior is exploited for the null-space
configuration management, damping the null-space motion:
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τR = B(q)
((

I− J(q)#J(q)
)
(−Dnq̇)

)
, (22)

where τR is the null-space control torque, I is the identity matrix, J(q)# is the pseudo-inverse of the
Jacobian matrix, and Dn is the null-space damping diagonal matrix. The term

(
I− J(q)#J(q)

)
is the

null-space projection matrix. The term −Dnq̇ allows the dampening of the null-space motion. The
control law Equation (2) is, therefore, modified as follows:

τ = B(q)γ + C(q, q̇) + g(q) + τf (q̇) + τR. (23)

The control torque τR acts in the null-space of the manipulator, i.e., not affecting the Cartesian
motion of the robot. Indeed, the Cartesian controlled robot behavior in [10] is not affected by this term,
together with the proposed estimation provided by the EKF in Section 3.

Four simulation scenarios have been implemented: #1 constant external wrench applied to the robot; #2
variable-sinusoidal external wrench applied to the robot; #3 probing task in a full-coupled robot-environment
scenario; #4 sliding task on a stiff environment. In the following, such scenarios are analyzed.

4.1. #1 Constant External Wrench

A constant external wrench is imposed after 0.5 s from the starting of the simulation, with a
magnitude of 20 N for the interaction forces f, and 5 Nm for the interaction torques C. In Figure 1
shows the estimated interaction forces f̂ and interaction torques Ĉ vs. the applied interaction forces f
and torques C are represented. In Figure 2, the force estimation error ê f and the torque estimation error
êC are shown. As it can be seen from the provided plots, a fast dynamics is achieved (bandwidth of the
implemented EKF of 5 Hz, an order of magnitude higher than the one implemented by the sensorless
Cartesian impedance controller). A zero steady-state estimation error is achieved. The obtained
performance shows the capabilities of the algorithm to perform the estimation in the proposed scenario.
The rms has been also computed for each force and torque error component to show the limited
generalized mean estimation error.
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Figure 1. Estimated interaction forces f̂ and torques Ĉ (continuous line) vs. real interaction forces f and
torques C (dashed line) for the #1 simulation scenario.
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Figure 2. Estimated interaction forces ê f and torques êC errors for the #1 simulation scenario.

4.2. #2 Variable-Sinusoidal External Wrench

A variable-sinusoidal excitation is applied to the robot to verify the capabilities of the proposed
EKF within a dynamic scenario. The applied external wrench is in the following form:

hext = A cos
(

2πf1

(
1 +

1
20

cos(2πf2t)
)

t + φ

)
. (24)

The diagonal matrix A contains the magnitudes of the applied forces/torques ([20, 25, 30] N have
been considered for the interaction forces f, and [5, 7.5, 10] Nm for the interaction torques C). f1 and f2

define the frequencies of the variable-sinusoidal profile, and the related parameters have been imposed
to 0.25 Hz for f1, and 0.85 Hz for f2. φ contains the random phases of the variable-sinusoidal profile.
In Figure 3 the estimated interaction forces f̂ and interaction torques Ĉ vs. the applied interaction forces
f and torques C are represented. In Figure 4, the force estimation error ê f and the torque estimation
error êC are shown. As it can be seen from the provided plots, the estimation provided by the proposed
EKF is capable of following the profile of the applied wrench. The obtained performance shows the
capabilities of the algorithm to perform the estimation in the proposed scenario. The rms has been
also computed for each force and torque error component to show the limited generalized mean
estimation error.

4.3. #3 Probing Task

A probing task has been simulated, with the robot approaching a target environment along the z vertical
direction. Once the environment is reached, a full-coupled robot-environment scenario is simulated, modeling
the target environment as a pure elastic system with a stiffness matrix with the following parameter values:
stiffness along translational DoFs: [10, 000, 15, 000, 40, 000] N/m; stiffness along rotational DoFs: [100, 100, 100]
Nm/rad. In Figure 5 the estimated interaction forces f̂ and interaction torques Ĉ vs. the applied interaction
forces f and torques C are represented. In Figure 6, the force estimation error ê f and the torque estimation
error êC are shown. As it can be seen from the provided plots, a fast dynamic is achieved. A zero steady-state
estimation error is achieved. Limited transition errors are shown. The obtained performance shows the
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capabilities of the algorithm to perform the estimation in the proposed scenario. The rms has been also
computed for each force and torque error component to show the limited generalized mean estimation error.
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Figure 3. Estimated interaction forces f̂ and torques Ĉ (continuous line) vs. real interaction forces f and
torques C (dashed line) for the #2 simulation scenario.
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Figure 4. Estimated interaction forces ê f and torques êC errors for the #2 simulation scenario.
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Figure 5. Estimated interaction forces f̂ and torques Ĉ (continuous line) vs. real interaction forces f and
torques C (dashed line) for the #3 simulation scenario.
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Figure 6. Estimated interaction forces ê f and torques êC errors for the #3 simulation scenario.

4.4. #4 Sliding Task

A sliding task has been simulated, with the robot in contact along the z vertical direction and sliding on
the surface of the environment along x and y directions. Friction forces have been simulated ( f f ,x = −ẋt,xFx,
f f ,y = −ẋt,yFy, with Fx = 30 Ns/m, and Fy = 50 Ns/m). A stiffness parameter Ke,z = 40, 000 N/m has
imposed to model the elastic contact between the robot and the environment. In Figure 7 the estimated
interaction forces f̂ and interaction torques Ĉ vs. the applied interaction forces f and torques C are
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represented. In Figure 8, the force estimation error ê f and the torque estimation error êC are shown.
As it can be seen from the provided plots, a fast dynamic is achieved. A zero steady-state estimation error
is achieved. Limited transition errors are shown. The obtained performance shows the capabilities of the
algorithm to perform the estimation in the proposed scenario. The rms has been also computed for each
force and torque error component to show the limited generalized mean estimation error.
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Figure 7. Estimated interaction forces f̂ and torques Ĉ (continuous line) vs. real interaction forces f and
torques C (dashed line) for the #4 simulation scenario.
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Figure 8. Estimated interaction forces ê f and torques êC errors for the #4 simulation scenario.
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5. Experimental Results

In this Section, experimental results related to the evaluation of the proposed EKF for the
estimation of the interaction wrench are shown. A Franka EMIKA panda robot has been employed as
a test platform. The wrench estimation provided by the EKF has been compared with the measured
wrench obtained from the robot (exploiting its joint-level torque sensors).

The sensorless Cartesian impedance control in Section 2 has been employed to control the robot.
The impedance control matrices have been imposed as diagonals and the parameters are selects as
follows: the mass parameters of the diagonal matrix M have been selected equal to 10 kg while the
inertia parameters have been imposed equal to 10 kg m2; the translation and the rotational parameters
of the diagonal stiffness matrix K have been selected respectively equal to 1000 N/m and 5000 Nm/rad;
the diagonal matrix h is composed of damping ratio parameters equal to 1.

To manage the redundancy of the robot, the controller in Equation (23) has been implemented.
The friction compensation has been performed as proposed in [36].

Two experimental scenarios have been tested: #1 a human–robot interaction scenario; #2 an
assembly task. In the following, such scenarios are analyzed.

5.1. #1 Human–Robot Interaction

In the here proposed scenario, the robot is controlled exploiting the proposed sensorless Cartesian
impedance controller, maintaining a fix setpoint. The human interacts with the manipulator along its
kinematic chain, applying forces and torques. In Figure 9 the estimated interaction forces f̂ and interaction
torques Ĉ vs. the applied interaction forces f and torques C are represented. In Figure 10, the force estimation
error ê f and the torque estimation error êC are shown. As it can be seen from the provided plots, a fast
dynamic is achieved. Limited errors are shown during the human–robot interaction. In particular, most
of the estimation errors are shown around zero forces/torques. Such estimation errors are related to the
non-perfect friction compensation, resulting in fictitious external wrench. The obtained performance shows
the capabilities of the algorithm to perform the estimation in the proposed scenario. The rms has been also
computed for each force and torque error component to show the limited generalized mean estimation error.
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Figure 9. Estimated interaction forces f̂ and torques Ĉ (continuous line) vs. measured interaction forces
f and torques C (dashed line) for the #1 experimental scenario.
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Figure 10. Estimated interaction forces ê f and torques êC errors for the #1 experimental scenario.

5.2. #2 Assembly Task

The proposed task consists of an assembly of a gear into its shaft. The target task is shown in
Figure 11. The main task direction is z and, therefore, a reference force f d

z = 30 N has been defined to
perform the insertion task. A PI controller has been implemented in order to track such a reference
force, exploiting the estimated force f̂z to close the control loop. In Figure 12 the estimated interaction
forces f̂ and interaction torques Ĉ vs. the applied interaction forces f and torques C are represented.
In Figure 13, the force estimation error ê f and the torque estimation error êC are shown. As it can be
seen from the provided plots, a fast dynamic is achieved. A limited steady-state estimation error is
achieved (around 3 N for forces, around 0.3 Nm for torques). Limited transition errors are shown.
The obtained performance shows the capabilities of the algorithm to perform the estimation in the
proposed scenario. In addition, the proposed experiment was able to show the possibility to exploit
the wrench estimation for control purposes. The rms has been also computed for each force and torque
error component to show the limited generalized mean estimation error.
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Figure 11. Experimental assembly task, including the Franka EMIKA panda manipulator and the
target gear to be installed.
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Figure 12. Estimated interaction forces f̂ and torques Ĉ (continuous line) vs. measured interaction
forces f and torques C (dashed line) for the #2 experimental scenario.
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Figure 13. Estimated interaction forces ê f and torques êC errors for the #2 experimental scenario.

6. Conclusions

The presented paper proposed a sensorless model-based methodology (exploiting sensorless
Cartesian impedance control and Extended Kalman Filter) to estimate the interaction wrench.
The applied methodology is therefore capable of implementing a 6D virtual sensor for the estimation of
both interaction forces and torques. The described approach has been validated in both simulations and
experiments, employing a Franka EMIKA panda manipulator. Simulation and experimental results
show fast dynamics performing the proposed estimation and limited estimation errors. Estimation
errors are shown mostly at zero interaction (i.e., where friction becomes critical) and at transitions
(where the proposed filter dynamics is not able to track the real interaction). The proposed filter
can therefore be applied to such robotics applications with dynamics slower than the achieved one,
where the interaction forces/torques are needed to close a control loop (such as assembly tasks).
Current/future work is devoted to improve the estimation accuracy of the proposed EKF developing
local high-performance friction compensation algorithms based on learning techniques [37]. The design
of a sensorless force control exploiting the proposed 6D virtual sensor is under investigation, exploiting
SDRE control [38] for the tuning of both impedance matrices and setpoint. The optimization of the
EKF gains is under investigation, making use of machine learning techniques.
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