
machines

Article

Research on Recommendation Method of Product
Design Scheme Based on Multi-Way Tree
and Learning-to-Rank

Boyang Chen, Xiaobing Hu *, Yunliang Huo and Xi Deng
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China;
shanbenyunque8018@163.com (B.C.); huo_yunlliang@163.com (Y.H.); dengxi@stu.scu.edu.cn (X.D.)
* Correspondence: huxb@scu.edu.cn; Tel.: +86-182-2401-8088

Received: 15 April 2020; Accepted: 31 May 2020; Published: 5 June 2020
����������
�������

Abstract: A product is composed of several components, and the number, type, and combination of
components plays a crucial role in the process of product design. It is difficult to get an optimized
scheme in a short time. In order to improve the efficiency of product design, a product design
scheme recommendation algorithm based on multi-way tree and learning-to-rank is proposed. Firstly,
the product solution model, whose nodes are obtained by mapping the product attributes, is generated
according to the design process, and the alternative scheme is obtained by traversing the multi-tree
model. Secondly, considering users’ cognition of the importance of each product attribute, the analytic
hierarchy process (AHP) is applied to assign weight to the product attribute, and then similarity to
ideal solution (TOPSIS) method based on AHP is used to rank alternative solutions. Furthermore,
according to users’ preference for parts’ supplier information, the learning-to-rank algorithm is used
to optimize the list of alternative schemes twice. Finally, taking the design of the hoist as an example,
it was verified that the proposed method had higher efficiency and better recommendation effect
than the traditional parametric design method.

Keywords: product design; multi-way tree model; AHP; TOPSIS; learning-to-rank

1. Introduction

With the continuous development of computer technology, product design patterns and methods
are changing. In order to meet the increasing demand of personalized product design, it has become
the development trend of new product design mode to further shorten the product design cycle, reduce
product cost, and improve product performance [1]. In the face of complex products, design companies
often consider two design ideas: Top-down and bottom-up. Since the top-down design method is
more in line with the designer’s design thinking process, it is more natural to adopt the top-down
design method for the design of complex products [2–4].

The top-down design process is usually divided into three design phases: Requirements’ analysis,
conceptual design, and detailed design. In the process of product design, the functional requirements
are first analyzed and the preliminary conceptual models are proposed. Then, through the evaluation
of the design scheme, the best conceptual model is determined. Finally, each part in the design
scheme is designed in detail [5]. However, the current CAD (Computer Aided Design) software cannot
effectively support the whole process of top-down product design, especially in the transition phase
between conceptual design and detailed design. Most product design systems based on CAD software
(Creo, SolidWorks) are mainly determined by a skeleton model of the main components and the overall
layout of the product by the designer [6]. According to the model, the parts are designed in detail, and
the finished parts are finally assembled into the initial skeleton model to complete the assembly model
of a product [6].
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In order to stay competitive in the industry, enterprises should reduce the manufacturing cost
while maintaining the product quality [7]. However, the proportion of enterprises’ payment for
purchased parts accounts for more than 50% of the total product cost [8]. Therefore, choosing the
right supplier can significantly reduce product cost, improve product competitiveness, and improve
customer satisfaction. It is reviewed that in recent years, most of the optimization models for supplier
selection are established based on each indicator of the supplier, and different algorithms are applied
to get a reasonable plan [9,10]. At present, most product design systems basically use a database
to store the functions, specifications, dimensions, and other information of different suppliers for
purchased parts. The designer completes the selection of each component according to the functional
requirements, and the combination of different series’ numbers of different parts’ suppliers also plays
an important role in the decision of the final plan.

The work of this paper is divided into two parts. A design model based on multi-way tree
structure was proposed. The design scheme is represented by a set of product attributes that are the
main structural parameters of the product and the number and type of each component. The conceptual
design and detailed design of the product are combined by using the principle of multi-way tree to
form a pattern of combining the principles and designing the parts at the same time. After the design
is completed, the product solutions are integrated as a feature of multi-way tree. A certain number of
design schemes can be obtained by traversing multiple trees.

Analytic hierarchy process (AHP) is a decision-making method that decomposes elements related
to decision making into objective, criteria, and plan for qualitative and quantitative analysis at three
levels [11]. Technique for order preference by similarity to an ideal solution (TOPSIS) is a sorting
method that approximates the ideal solution, which evaluates the relative merits and demerits of
the existing objects according to the degree of similarity between the limited evaluation objects and
the ideal target [11]. AHP and TOPSIS are used to evaluate the design scheme. In the second part,
a recommendation method of optimizing component supplier combination based on learning-to-rank
was proposed. According to the preference demand of the designer, the training set is constructed
by the user’s operation log. The learning-to-rank algorithm is used to sort the list of recommended
schemes twice.

The novelty of this paper is as follows:

• The design scheme included not only the principle synthesis of the product but also the selection
and structure information of the corresponding parts. At the same time, the conceptual design of
the product was done by a computer.

• A simplified and efficient recommendation method was proposed to evaluate design schemes.

In this paper, Section 2 describes previous research and background in top-down product
design and combination of suppliers, and then the proposed method is explained in Section 3.
This paper presents a recommendation method of product design schemes based on multi-way tree
and learning-to-rank. Then, a case study was performed with a hoist to demonstrate the feasibility and
usefulness of the proposed method in Section 4. A conclusion of this study is described in Section 5.

2. Related Research

In the development history of product design, top-down product design has always been an
important issue, and the support of top-down design of a computer aided system is absolutely necessary.
This section outlines some important research work on both top-down product design and supplier
portfolio selection.

Most 3D CAD software can only provide a geometric modeling function for the design/drawing
operation, which cannot completely replace the top-down design process of the product by the
computer [12]. Therefore, many researchers hope to replace CAD systems with more automated,
knowledge-based, and intelligent design systems by expanding CAD systems.
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Aleixo et al. [13] combined the conceptual design with the final product modeling, and verified
the method by testing two CAD software conceptual design tools. He et al. [14] proposed an original
understanding integrated modeling method based on physical quantity model, which connected
functional design, principle concept design, and structure concept design. Nahm et al. [15] combined
the practice of SBD (Schottky Barrier Diode) with parametric modeling and proposed a design model
based on preference set to make the early design stage more flexible. In order to improve the efficiency
of design/redesign, Sharma and Gao [16] proposed a method that combines sequential flowchart
logic with expert system, uses user-defined feature tree as input for analysis, and takes flange as
an example to verify the effectiveness of the method. Kong et al. [17] developed a 3D injection
mold design system integrated with SolidWorks by using Visual C++. Varela et al. [18] proposed
a C++ rapid parameterization system for ship structure based on 3D CAD software. Lin et al. [19]
developed a mold parametric design system based on Pro/engineer. Yang et al. [20] developed a
blade modeling system. On Creo platform, Zhang et al. [21] established a feature information model
based on part feature description by using CAD technology, parametric design, and part model library
technology. Li et al. [22] proposed a full-parameter correlation modeling design system for standard
CAMs (Computer Aided Manufacturing) with different working angles, which simplified the steps of
CAM modeling.

In recent years, scholars have carried out a lot of research on supplier portfolio selection. Most of the
suppliers involved in the product design process are as a multi-objective decision problem. Therefore,
analytic hierarchy process (AHP), mathematical programming, linear programming, data envelope
analysis (DEA), genetic algorithm, and other methods have been proposed. Benyoucef et al. [23]
proposed a supplier selection system based on analytic hierarchy process (AHP) which integrates fuzzy
concepts and empirical data. Balakrishnan et al. [24] constructed a product component portfolio design
scheme and a multi-objective optimization model of suppliers, which was optimized by mathematical
programming method to achieve the optimal product design, which takes both tangible and intangible
factors into consideration when selecting the best supplier, so as to determine the optimal supplier and
order quantity. Toloo et al. [25] constructed a comprehensive data enveloping analysis (DEA) model
that can identify the most effective suppliers from the cardinal and ordinal data, and illustrated the
applicability of the method by taking the specification data of 18 suppliers as an example. Cao et al. [26]
established an optimization model of integrating product family design and supplier selection based
on multiple logit consumer selection rules and using genetic algorithm, which further saved costs and
improved production efficiency.

According to the literature, three problems were identified in terms of computer-aided product
design and supplier portfolio. First of all, it is seldom considered to combine conceptual design and
detailed design, and most product design systems only realize one or the other of computer-aided
product conceptual design or detailed design. Second, the previous product design system requires
designers to interact with the system to determine certain design parameters and parts’ selection by
experience, so the number of design schemes obtained is very few and the schemes are not optimal.
Finally, most supplier combinations need to collect a lot of information to establish mathematical
models to solve problems, which is a complex process. In the next section, we will discuss in detail
how to recommend product design solutions based on multi-way tree and learning-to-rank.

3. The Recommendation Method

3.1. Product Design Model Based on Multi-Way Tree Structure

The design scheme can be represented by the attributes of the product. Since the attributes of a
product are limited, the number of design schemes is also limited by permutation and combination [27].
At the same time, the principle for designers to judge the advantages and disadvantages of a scheme
is to weigh whether the values of several important attributes of the scheme are better on the basis
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of meeting the design requirements. Therefore, given a set of attributes, S = {A1, . . . ,An} describes a
design scheme.

In order to make the design process of the scheme have a clear structure, the product design system
adopts the multi-way tree structure to establish the model, and attributes generate the multi-way
tree nodes in each layer in order of the design process requirements. Among them, the nodes in
this model are divided into two categories: Inherent nodes and generated nodes. The inherent node
corresponds to the inherent attribute that will remain unchanged while design requirements are
changed. The generated node corresponds to the generated attribute that is calculated from the
inherent attribute and other design parameters. A complete path of the structure is a design scheme
for the product. After the design is completed, the structure can be traversed to generate all possible
solutions (alternatives). All possible solutions (alternatives) can be obtained by traversing the structure,
after the design is completed. The attribute structure table is shown in Table 1, and the multi-way tree
structure is shown in Figure 1.

Table 1. Attribute structure.

Layer Attribute Category [1] [2] [3] . . .

1 A1 inherent A1-v1
1 A1-v2 . . . . . .

2 A2 inherent A2-v1 A2-v2 A2-v3 . . .
3 A3 generated A3-v1 A3-v2 . . . . . .
. . . . . . . . . . . . . . . . . . . . .

1 A-v represents attribute value.
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The specific process of multi-way tree model is shown in Figure 2.

Step 1: Multi-way tree model initialization.

Get the total number of inherent attributes n by reading the number of the product inherent
attributes from product attribute database; set layer i = 1, and start the system.

Step 2: Generation of lower level nodes.

In order to obtain sufficient parameter values, the current multi-way tree model needs to be
judged. If the number of nodes in the node path t that reads the current number of layers meets the
required design parameters, the component design is started; otherwise, the next layer node is loaded:
Layer i = i + 1.

Step 3: The component design.

When the design parameters meet the requirements, the path t is read (t = 1). If the component is
purchased from abroad, the selection is required. According to the evaluation rules, the lower level
nodes are generated from the purchased parts model database; otherwise, the lower level nodes are
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generated by calculating. If m , 0, t = t + 1 and generate the layer (i + 1) of path t; otherwise, the path
t ends.

Step 4: Acquisition of alternatives.

When the multi-way tree model is complete (i > n), alternatives were obtained by depth-first
traversal [28].
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3.2. Design Scheme Ordering Based on AHP-TOPSIS Method

3.2.1. AHP-TOPSIS Method

The analytic hierarchy process (AHP) proposed by Saaty, an American operations research
scientist, in the 1970s, is a decision analysis method combining qualitative and quantitative analysis,
which is widely applicable to the decision analysis of various types of problems. It is decomposed
into the problem of complex constituent factors. These factors will govern how formation is grouped
with hierarchical structure, through comparing the two ways to determine the relative importance
of various factors in the hierarchy, relative weights under single criterion, and the consistency check,
Then human judgment is integrated to decide the total sorts of the relative importance of various
factors. The disadvantage of AHP is that when the judgment matrix is constructed in a qualitative way,
the judgment may be too subjective due to human factors [29]. The basic idea of TOPSIS is to determine
the ideal solution and the negative ideal solution, according to the elements of the decision-making
problem, and to rank each scheme according to the relative closeness degree of the ideal solution of
its elements. That is, the scheme closest to the ideal solution and furthest from the negative ideal
solution is the optimal scheme. The disadvantage of TOPSIS method is that it adopts a one-dimensional
qualitative method to determine the index weight, so it is difficult to determine the index weight in the
case of multi-factor analysis [29].

This paper, on the basis of summarizing the previous research results, applied AHP and TOPSIS
in the evaluation and ranking of design schemes [30]. First, it used AHP to divide all factors into
ordered levels and scientifically assign weights. Then, it constructed the AHP-TOPSIS comprehensive
evaluation model by combining with TOPSIS. TOPSIS can rank the evaluation objects according to
how close they are to the ideal target, but in the case of multi-factor analysis, it is difficult to determine
the index weight, and AHP can effectively overcome this disadvantage to some extent. TOPSIS can
comprehensively consider more than 10 factors of program evaluation, and AHP can objectively give
the weight of each influencing factor. The combination of the two can create conditions for improving
the accuracy of program ranking.

Product life cycle cost includes design phase cost, manufacturing phase cost, sales phase cost,
use and maintenance cost, and recovery and scrap cost [31]. Since more than 70% of the total cost
of product life cycle is borne in the initial stage of design, designers can fully consider the impact of
design decisions on the life cycle, thus greatly reducing the product life cycle cost [32]. Therefore, it is
very important to estimate and optimize the cost as early as possible and as accurately as possible.
In order to achieve the above goals, this part mainly uses typical parameters in the product concept
design phase to estimate the cost of alternative solutions and to sort the solution set. In order to achieve
the above purposes, this part mainly uses typical parameters [33] of the product concept design stage
to estimate the cost of alternative schemes and to sort the scheme set. Typical parameters mainly
refer to the cost of each component that affects the product cost. Sometimes the cost of the product
parts is not clear, and other parameters of the parts can be used to group the evaluation indicators
for the evaluation of the scheme. According to the evaluation objects, the role of each indicator
in the comprehensive evaluation is not equally important, and the weight of traditional TOPSIS is
generally set artificially to take the average value, which cannot reflect the preference and personality
of experts [34]. Therefore, according to the characteristics and requirements of the product, experts
establish the evaluation index system. In order to calculate the overall cost of the product scientifically,
the weight of components is taken as the evaluation index, and AHP is applied to determine the
weight of each index in the evaluation index system of the product. TOPSIS is used to determine the
relative proximity of each index value of the alternative solution to the ideal solution, so as to rank
the advantages and disadvantages of the product design alternatives for subsequent processing by
comparing the relative proximity [35].
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3.2.2. Scheme Ranking Process

The sequence of design schemes based on AHP-TOPSIS is as follows [36] (AHP is summarized in
step 1, TOPSIS is summarized in steps 2–8):

Step 1: Experts select m typical parameters C1, C2, . . . , Cm from the program attributes based on
empirical knowledge to establish the evaluation index system of the product. AHP method was used
to calculate the weight of each evaluation index ω. The five-scale method was adopted to compare
and assign values, and then the corresponding judgment matrix A was constructed according to the
assignment criteria, as shown in Table 2.

A =


C11 C12 · · · C1m

C21 C22 · · · C2m
...

...
. . .

...
Cm1 Cm2 · · · Cmm

 (1)

Step 2: Set the scheme S = {S1, S2, . . . , Sn) and each scheme evaluation index R = {r1, r2, . . . , rm}.
The evaluation index rij represents the j evaluation index of the i scheme, where i∈[1, n], j∈[1, m].
The initial judgment matrix can be expressed as:

S =


r11 r12 · · · r1m

r21 r22 · · · r2m
...

...
. . .

...
rn1 rn2 · · · rnm

 (2)

Step 3: The initial judgment matrix S = (rij)n ×m is normalized to get the matrix Z = (zij)n ×m,
where the elements are:

zi j = ri j/

√√ n∑
i=1

r2
i j (3)

Step 4: By multiplying the column vectors of the matrix and the weights of evaluation indicators
determined by AHP method, the weighted standardized decision matrix B = (bij)n ×m can be obtained,
where the elements are:

bi j = ωizi j (4)

Step 5: The positive and negative ideal solutions are obtained. That is, the optimal value and the
worst value of each index constitute the positive ideal solution B+ and the negative ideal solution B−:

B+ = (b+1 , b+2 , · · · , b+m) (5)

B− = (b−1 , b−2 , · · · , b−m) (6)

b+j = max(b1 j, b2 j, · · · , bnj)

j =1, 2, · · · , m
(7)

b−j = min(b1 j, b2 j, · · · , bnj)

j =1, 2, · · · , m
(8)

Step 6: Calculate the n-dimensional Euclidean distance Qi
+ and Qj

+ of each design scheme from
B+ and B− using the following equations:

Q+
i =

1
2

√√√ m∑
j=1

(bi j − b+j )
2 (9)
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Q−i =
1
2

√√√ m∑
j=1

(bi j − b−j )
2 (10)

Step 7: Calculate the relative proximity of each design scheme to the ideal solution Di:

Di = Q−i /(Q+
i + Q−i ) (11)

Step 8: Sort each design scheme according to the size order of Di, and select the first n1 schemes
for the designer to choose.

Table 2. Value-determined standard of the importance of index weight.

Standard Values Definition

2 Ci is intense or extremely more important than Cj
1 Ci is slightly or significantly more important than Cj
0 Ci is as important as Cj
−1 Ci is slightly or significantly less important than Cj
−2 Ci is intense or extremely less important than Cj

3.3. Optimization of Component Supplier Combination Based on Learning-to-Rank

The list of solutions generated based on AHP-TOPSIS did not reflect the designer’s preference
for the component supplier combination. In order to solve this problem, a component supplier
combination recommendation algorithm based on user behavior feedback was proposed to further
optimize the recommendation list.

3.3.1. Problem Statement

Our problem can be formalized as follows: Given a set of product suppliers and serial
numbers S = {S1, S2, . . . , Sn} describing these products’ attributes’ combination based on the designer’s
preference, our goal was to induce a function f that scored design schemes in S according to the degree
to which they satisfy the specific requirements of a designer, given as an n-tuple (s1, s2, . . . , sn)

3.3.2. Formulation as a Learning-to-Rank Problem

Learning-to-rank [37] method uses machine learning method in an information retrieval problem
to automatically learn the final sorting function for retrieval based on feature set. The classic
learning-to-rank framework is shown in Figure 3.

In this framework, first extract the characteristics of the document to get eigenvector xj
(i).

The eigenvector and annotation constitute a training example of the document pair (xj
(i), y(i)). Then,

choose the appropriate ranking algorithm to learn and get the ranking model h. Finally, a new query q
(test data) outputs the relevance score of the query and the documents to be sorted according to the
ranking model h and then outputs according to the score. Its formal description is as follows:

Suppose the eigenvector space of the ranking object is X = {x1,x2, . . . ,xm} ⊆ Rn, where n is the
dimension of the eigenvector xi and m is the number of samples in the training data set. Each eigenvector
corresponds to a label yi ∈ Y and dimspace Y = {y1,y2, . . . ,ym}. Y consists of discrete variables and
there is an order relationship between them. The purpose of learning-to-rank is to find an optimal rank
function f* from the solution space F = {f : Rn

→Y} to minimize the risk function, R(f) =
∫

X × Y
l(x, y,

f(x))dp(x, y). Then, rank function f* for all of the output Y′ of the training data sample (X, Y) maximum
close to mark Y.
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Figure 3. Learning-to-rank framework.

RankSVM [38] is an effective learning-to-rank algorithm. It uses pair-wised samples as training
samples. The optimization objective of learning is that, in the sorting function of samples, the number
of reverse pairs of samples is the least.

Following Joachims [39], we formalized the task as a ranking problem. We defined a designer
requirement as a tuple r = (s1, s2, . . . , sn), and, if si was more in line with the requirements specified in
r than sj, then si > sj. Then, our goal was to induce a ranking function f shown in Equation (12):

si > s j ⇔ f (si) > f (s j) (12)

We approached this problem using the framework of RankSVM provided by Joachims [39].
The function f was assumed a linear model parametrized by a weight vector ω that assigned a weight
to all features shown in Equation (13):

f (s) = 〈ω, s〉 (13)

The loss function of RankSVM algorithm is shown in Equation (14).

min
ω,ε

1
2 |ω|

2 + C
∑

i j εi j

s.t. yi(ω, Pi − P j) ≥ 1− εi j
(14)
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The ω is the parameter of the hyperplane, εij is the slack variable in the case that there is an outlier
in the training set, and C is the error penalty factor. The larger C is, the fewer outliers can be tolerated,
that is, the higher the requirement for error reduction.

3.3.3. Evaluation Method

Because the ultimate goal of the algorithm was to make the predicted project ranking as close as
possible to the preference of experts, rather than the rating prediction, the evaluation method selected
NDCG (normalized discounted cumulative gain) [40] as the measurement. NDCG is often used as an
evaluation index to evaluate the ranking accuracy. NDCG@K refers to taking Top K recommended
projects for effect evaluation. The value range was between 0 and 1. The larger the result is, the more
the ranking conforms to the expectation. NDCG is more sensitive to the ranking of higher ranked
items [38].

In recent years, NDCG has been widely used in information retrieval. First of all, the calculation
formula of DCGK (discounted cumulative gain) is shown as follows:

DCGK =
k∑

i=1

2reli − 1
log2(i + 1)

(15)

The reli is the correlation of the recommendation results at position i, and k is the size of the list of
recommendations to be examined. In order to normalize DCG, we need to compare DCG with ideal
DCG as follows:

NDCGK =
DCGK

IDCGK
(16)

3.3.4. Construction Method of Training Data

This algorithm requires users to mark the query results according to the positive or negative
correlation between the scheme result returned by the system and the user’s design intention, and then
the system uses the user’s feedback information to improve the scheme sorting. However, most users
are unwilling to spend the time and energy to give feedback to the system, so it is difficult for the
system to obtain sufficient user feedback [41]. Therefore, in order to obtain sufficient user feedback
to construct training data, user clicking and browsing are regarded as implicit user feedback [42].
By referring to the usage of the existing shopping software, the system will refer to the user feedback
behavior, as shown in Table 3:

Table 3. Analysis of user behaviors.

User Feedback Behavior Priority Criteria

Reading behavior The time of reading the proposal recommendation list page
The time of reading the scheme details page

Click behavior
Number of clicks on the scheme title

Add the scheme to the “shopping cart” (alternatives)
Select the final scheme

Negative feedback behavior Delete the scheme

The recommended system constructed training data as follows: Through the collection of the
designer’s behavior of browsing the scheme interface, the scheme set was reordered according to the
following priority rules, and then the training data needed by the algorithm were constructed.

The priority rules are as follows:

• Finally determine plan > alternative plan > clicked plan > unclicked plan > deleted plan
(“>” means priority over, the same as later).
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• Alternatives of the same level are further prioritized by reading the detailed page time of the
scheme, that is, the scheme with a long reading time has a high priority.

• Click schemes of the same level are further prioritized by the number of clicks, that is, the schemes
with more clicks have higher priority.

3.3.5. Optimization of Component Supplier Combination Process

The specific process of optimization of component supplier combination is shown in Figure 4.

Step 1: Preparation of data set.

Select the first n alternatives sorted by AHP-TOPSIS. The eigenvector space (data set) of the
ranking object is formed by extracting the manufacturer, series number, and other features of the parts
in the scheme. The data set of the ranking object is obtained by selecting the first n alternatives sorted
by AHP-TOPSIS, which is formed by extracting the manufacturer, series number, and other features of
the parts in the scheme.

Step 2: Construction of training data.

If it is the first time to design, the designer will choose the best design scheme based on experience.
According to the above priority rules, the data set is reordered to form the training data. If not, the data
set is sorted by a trained sorting model, and then the above operation is performed.

Step 3: Generation of ranking model.

An appropriate learning-to-rank algorithm is selected to train the data set to obtain the model.

Step 4: Evaluation.

In order to evaluate the effect of different algorithms on this problem, the metric of NDCG is
adopted to evaluate the ranking result.
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4. Case Study

4.1. The Data Set

In order to verify the efficiency of the above comprehensive recommendation algorithm, it was
used to design the “fixed winch hoist” of a water conservancy and hydropower machinery company.
The properties of fixed winch hoist are shown in Table 4. The project information parameters of the test
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set of the hoist are shown in Table 5, the system structure of the hoist multi-way tree was constructed
according to the attributes in Table 4, and the corresponding alternative combination for generating
each instance was calculated.

Table 4. Attribute structure of hoist.

Attribute [1] [2] [3] [4] [5] [6] [7]

The number of lifting points 1 2 / / / / /
The number of reels 1 2 / / / / /

Simplex/Duplex 1 2 / / / / /
Pulley block‘s ratio 2 4 6 8 10 12 14

The number of reel layer 1 2 3 / / / /
The number of motors 1 2 4 8 / / /

Reducer shaft form parallel vertical / / / / /
The number of reducers 1 2 4 8 / / /
The number of coupling 1 2 4 8 / / /

The number of brakes 1 2 4 8 16 / /

Table 5. Test set.

Project Information Parameter Test Set

No. 1 2 3 4 5 6 7 8 9

Hoisting capacity (kN) 1000 3600 1500 1800 2500 1300 5000 4500 3500
Holding capacity (kN) 0 1000 500 650 1000 200 3500 3000 1500

Orifice length (mm) 3600 3500 2870 2600 3400 1800 2500 3000 2700
Orifice width (mm) 3600 2500 1580 1900 2000 980 2100 1500 1800

Head (m) 60 57 62 51 49 53 55 55 60
Upper limit of size (mm) 4000 3600 5800 5000 4700 3800 6000 5600 4200

Load multiple 1.25 1.25 1.30 1.25 1.30 1.25 1.30 1.30 1.25
Transmissions type Open Open Close Open Close Open Close Close Open

Safety brake With With Without Without With Without With Without Without
The number of alternatives 4288 4352 4504 3756 5423 5976 6120 4766 5382

4.2. Ranking of Design Schemes Based on AHP-TOPSIS Method

4.2.1. Determination of Evaluation Index Weight

First of all, the experts of the water conservancy and hydropower machinery company were
invited to screen out a number of attributes that affect the selection of hoist design scheme. According
to the attribute importance decided by experts, the evaluation index system of hoist design scheme,
as shown in Table 6, could be established, and the pairwise comparison judgment matrix could be
constructed to obtain the characteristic vector. On the basis of Table 6, the judgment decision matrix of
indicator layer C1, C2, . . . , C7 for criterion layer B1 was constructed. The feature vectors obtained by
Matlab program were as follows: ω = (0.0102, 0.2602, 0.0633, 0.2602, 0.0198, 0.0198, 0.3664).

Table 6. Technical index system of scheme of hoist.

Object Layer A Criterion Layer B Indicator Layer C

Hoist scheme cost Selection cost B1

Wire rope diameter C1

Reel diameter C2

Motor weight C3

Reducer weight C4

Coupling weight C5

Service brake weight C6

Safety brake weight C7
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Judgment decision matrix

A =



0 −2 −1 −2 −1 −1 −2
2 0 1 0 2 2 0
1 −1 0 −1 1 1 −2
2 0 1 0 2 2 0
1 −2 −1 −2 0 0 −2
1 −2 −1 −2 0 0 −2
2 0 2 0 2 2 0


4.2.2. The Alternatives’ Ranking Based on TOPSIS

No. 1 of the test dealt with AHP-TOPSIS algorithm, the positive and negative ideal solutions were
obtained, and all alternatives were sorted as follows.

(1) No. 1 generated 4288 schemes, shown in Table 7. Matrix Z was obtained by normalizing the
decision matrix S, which was constituted by the attribute values.

Table 7. Scheme set for instance 1.

Program Features Scheme Set

1 2 3 . . . 4286 4287 4288

Wire rope diameter (mm) 22 22 22 . . . 38 38 38
Reel diameter (mm) 957.34 957.34 957.34 . . . 1335.8 1335.8 1335.8
Motor manufacturer MM-1 MM-1 MM-1 . . . MM-2 MM-2 MM-2
Motor serial number MS-1 MS-1 MS-1 . . . MS-2 MS-2 MS-2

Motor weight (kg) 390 390 390 . . . 402 402 402
Reducer manufacturer RM-2 RM-2 RM-2 . . . RM-2 RM-2 RM-2
Reducer serial number RS-4 RS-4 RS-4 . . . RS-1 RS-1 RS-1

Reducer weight (kg) 380 380 380 . . . 180 180 180
Service brake type wheeled wheeled wheeled . . . disc disc disc

Service brake manufacturer SEM-1 SEM-1 SEM-2 . . . SEM-1 SEM-2 SEM-2
Service brake serial number SES-1 SES-1 SES-2 . . . SES-3 SES-4 SES-4
Service brake weight (kg) 105 105 104 . . . 135 103 103
Safety brake manufacturer SAM-1 SAM-2 SAM-1 . . . SAM-2 SAM-1 SAM-2
Safety brake serial number SAs-1 SAs-2 SAs-1 . . . SAs-2 SAs-1 SAs-2

Safety brake weight (kg) 1100 1120 1100 . . . 1120 1100 1120
Coupling manufacturer CM-1 CM-1 CM-1 . . . CM-1 CM-1 CM-1
Coupling serial number CS-1 CS-1 CS-1 . . . CS-1 CS-1 CS-1

Coupling weight (kg) 29.5 29.5 29.5 . . . 29.5 29.5 29.5

S =



22 957.34 390 380 105 1100 29.5
22 957.34 390 380 105 1120 29.5
22 957.34 390 380 104 1120 29.5
· · · · · · · · · · · · · · · · · · · · ·

38 1335.86 402 180 135 1120 29.5
38 1335.86 402 180 103 1100 29.5
38 1335.86 402 180 103 1120 29.5



Z =



0.0184 0.0209 0.0276 0.0175 0.0239 0.0254 0.0103
0.0184 0.0209 0.0276 0.0175 0.0239 0.0258 0.0103
0.0184 0.0209 0.0276 0.0175 0.0236 0.0254 0.0103
· · · · · · · · · · · · · · · · · · · · ·

0.0318 0.0291 0.0284 0.0083 0.0307 0.0258 0.0103
0.0318 0.0291 0.0284 0.0083 0.0234 0.0254 0.0103
0.0318 0.0291 0.0284 0.0083 0.0234 0.0258 0.0103
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(2) Generate AHP weighted decision matrix B.

B =



0.000188 0.0054 0.0017 0.0046 0.000473 0.000502 0.0038
0.000188 0.0054 0.0017 0.0046 0.000473 0.000511 0.0038
0.000188 0.0054 0.0017 0.0046 0.000468 0.000502 0.0038
· · · · · · · · · · · · · · · · · · · · ·

0.000324 0.0076 0.0018 0.0022 0.000608 0.000511 0.0038
0.000324 0.0076 0.0018 0.0022 0.000464 0.000502 0.0038
0.000324 0.0076 0.0018 0.0022 0.000464 0.000511 0.0038


(3) Find the positive ideal solution B+ and the negative ideal solution B−:

B+ = (0.000324 0.0084 0.0024 0.0105 0.000608 0.000511 0.0191)

B− = (0.000188 0.0052 0.00027 0.0017 0.000464 0.000502 0.0038)

(4) Calculate the distance from each design scheme to the positive and negative ideal solutions C+

and C−:
C+ = (0.0252 0.0252 0.0252 · · · 0.0251 0.0253 0.0253)T

C− = (0.0046 0.0046 0.0046 · · · 0.0047 0.0045 0.0046)T

(5) Calculate the relative proximity D of each design scheme to the ideal solution:

D = (0.1548 0.1511 0.1546 · · · 0.1574 0.1523 0.1526)T

(6) Sort each design scheme according to the order of Di. The scheme set sorted by example 1 is
shown in Table 8.

Table 8. Scheme set based on AHP-TOPSIS.

Program Features. Scheme Set

1 2 3 . . . 4286 4287 4288

Wire rope diameter (mm) 26 26 26 . . . 38 38 38
Reel diameter (mm) 913.2 913.2 913.2 . . . 1335.8 1335.8 1335.8
Motor manufacturer MM-1 MM-1 MM-1 . . . MM-1 MM-1 MM-1
Motor serial number MS-1 MS-1 MS-1 . . . MS-2 MS-2 MS-2

Motor weight (kg) 60.7 60.7 60.7 . . . 287 287 287
Reducer manufacturer RM-1 RM-1 RM-1 . . . RM-1 RM-1 RM-1
Reducer serial number RS-1 RS-1 RS-1 . . . RS-2 RS-2 RS-2

Reducer weight (kg) 140 140 140 . . . 876 876 876
Service brake type disc wheeled wheeled . . . wheeled disc disc

Service brake manufacturer SEM-2 SEM-2 SEM-1 . . . SEM-1 SEM-1 SEM-1
Service brake serial number SES-4 SES-2 SES-1 . . . SES-5 SES-3 SES-3
Service brake weight (kg) 103 104 105 . . . 105 135 135
Safety brake manufacturer SAM-1 SAM-1 SAM-1 . . . SAM-2 SAM-1 SAM-2
Safety brake serial number SAS-1 SAS-1 SAS-1 . . . SAS-2 SAS-1 SAS-2

Safety brake weight (kg) 1100 1100 1100 . . . 1120 1100 1120
Coupling manufacturer CM-1 CM-1 CM-1 . . . CM-1 CM-1 CM-1
Coupling serial number CS-1 CS-1 CS-1 . . . CS-2 CS-2 CS-2

Coupling weight (kg) 29.5 29.5 29.5 . . . 150.1 150.1 150.1

In No. 1, the 3D model of the hoist was generated in Inventor by the design scheme selected by
the experts, shown in Figure 5.
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4.3. Part Combination Results Based on Learning-to-Rank

According to the importance, experts chose 7 attributes of purchased parts as training parameters:
Motor manufacturer, motor series number, reducer manufacturer, reducer series number, service brake
type, service brake manufacturer, safety brake manufacturer. RankSVM method was used to solve the
model, which was part of SVMrank toolbox, with standard parameters (C = 0.01) and a linear kernel
function. We compared the performance of the RankSVM method with the other three learning-to-rank
methods: RankNet [43], Coordinate Ascent [44], and ListNet [45]. The versions of these learners
implemented in RankLib library version 2.5 was used, which also had standard parameters.

The expert operated on the program decision interface of the hoist design system for nine tests.
The first 50 schemes were selected each time, and 10 schemes were displayed on each page of the
interface, with a total of five pages. It was important that the optimal scheme could be presented on
the homepage as far as possible to improve the efficiency of scheme decision. Therefore, NDCG@10
was selected as the evaluation index for the algorithm. The test results are shown in Figure 6.

The performance of NDCG@10 for the supplier combination of hoist was very high, with values
above 0.86 (see Figure 6), which strongly correlated with the preference ranking provided by the expert.
Compared with the results of other methods, RankSVM always performed well: With the increase
of training times, the performance values of RankNet and Coordinate Ascent fluctuated strongly,
while ListNet showed an upward trend in the first seven training times, but significantly decreased
in the eighth training time. In contrast, the performance values of RankSVM slightly oscillated and
NDCG@10 remained around 0.9. This was the best outcome for all learners. Therefore, the conclusion
that the rankings produced by the RankSVM approach contained the relevant product schemes at the
top of the ranked list was drawn.
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4.4. Results and Discussion

By using the proposed method, the hoist was designed for nine times, and thousands of alternative
schemes were obtained in each time. As shown in Figure 7a, designers used the empirical design
system [46] to complete the design process from the determination of structural form to the design
of various parts such as reel and motor and finally to the driving model. As shown in Figure 7b,
designers used the improved design system that generated a multi-way tree model supported by a
TreeView control.

Under the same conditions, the scheme A was designed by the proposed method, and the scheme
B was designed by the company’s designers using an empirical design system of the company. From the
economic perspective, the evaluation indicators of the hoist were all negative indicators: The smaller
the indicator, the lower the cost. As shown in Table 9, the scheme A had a total of five indexes, namely,
wire rope diameter, reel diameter, reducer weight, working brake weight, and safety brake weight,
that were less than that of scheme B, and the reduction rate was 7.14%, 0.63%, 78.9%, 22.2% and 1.8%.
The remaining indicators were all the same as scheme B. It was concluded that the proposed method
reduced the product cost.

Table 9. Scheme comparison.

Scheme
Wire Rope
Diameter

(mm)

Reel
Diameter
(mm)

Motor
Weight

(kg)

Reducer
Weight

(kg)

Service
Brake

Weight
(kg)

Safety
Brake

Weight
(kg)

Coupling
Weight

(kg)

Scheme A 26 913.2 60.7 140 103 1100 29.5
Scheme B 28 986 287 180 135 1120 29.5

Reduction ratio 7.14% 0.63% 78.9% 22.2% 23.7% 1.8% 0
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The empirical design system and the method proposed in this paper were compared synthetically
from the aspects of occupation, design cycle, number of alternatives, reliability of results, and economy.
The results are shown in Table 10.
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Table 10. Performance comparison.

Project Occupation Design
Cycle

Number of
Alternatives

Result
Reliability Economy Total

Current
design
method

Empirical
design
system

2–3 h 1 Reliable General General

Method of
this Paper Computer 0.5 h Thousands Reliable Well Great

Improved Greatly Little Greatly Little Good Greatly

This time, we took the data of a water conservancy and hydropower company as an example
to prove the feasibility of this method, which can be extended to more product design fields in the
future. From the point of view of method, the overall layout of the product model can be added into
the evaluation index system of the product in the program ranking to make the process of program
evaluation more reasonable.

5. Conclusions

This paper proposed an efficacy product design method. The main contributions are summarized
as follows:

• Through a simplified evaluation model, the scheme that best conformed to the designer’s
preference was obtained.

• It was proven that RankSVM had better ranking performance than other learning-to-rank methods
in NDCG@10.

• Taking the design of the hoist as an example, the feasibility and efficiency of the method were
verified and, compared with the empirical expert system, the design cycle was greatly shortened.
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