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Abstract: This paper proposes a reliable and straightforward approach to mobile robots (or moving
objects in general) indoor tracking, in order to perform a preliminary study on their dynamics.
The main features of this approach are its minimal and low-cost setup and a user-friendly interpretation
of the data generated by the ArUco library. By using a commonly available camera, such as
a smartphone one or a webcam, and at least one marker for each object that has to be tracked, it is
possible to estimate the pose of these markers, with respect to a reference conveniently placed in
the environment, in order to produce results that are easily interpretable by a user. This paper
presents a simple extension to the ArUco library to generate such user-friendly data, and it provides
a performance analysis of this application with static and moving objects, using a smartphone camera
to highlight the most notable feature of this solution, but also its limitations.
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1. Introduction

Recently, the application of mobile robots in indoor environments has increased significantly,
mainly due to the technology trends of service robotics and autonomous vehicles. A core technology
needed for practically any application related to mobile robots or more generally unmanned vehicles
is the localization of the moving agent itself within the environment. From this information, it is
then possible to build several typical applications of mobile robots, such as autonomous navigation,
multiple agents coordination, mapping, pursuit, and many more. A possible application of the tracking
technologies is the study of the dynamic behavior of mobile robots in order to provide further insight.
This knowledge can then be used to derive a dynamic model of these systems to develop a proper
control architecture, in order to implement autonomous navigation capabilities.

Commercially available solutions addressing this issue are varied and adopt several different
technologies. Depending on the particular technology adopted, the tracking system can provide
different performances, but generally speaking, if the tracking system is carefully designed, its results
are excellent. However, these performances come at a cost to initially set up the system, that may be
expensive. Moreover, the setup required to perform the object tracking is highly structured; hence,
a suitable space is required. This paper tries to address these two last issues, proposing a low-cost and
unstructured solution.

In the next section, an overview of the related tracking technologies is presented. The methods
section describes the theoretical methods used to estimate the markers and to evaluate the system
performances. After that, the experimental setups required to evaluate the system are illustrated.
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The experimental results are then presented and discussed. To conclude the paper, the discussion and
conclusion sections collect the comments and final remarks about this paper.

Related Research

GPS is the most widely known technology for localization. However, it is limited only to outdoor
applications, since in indoor scenarios, it may lack the proper satellite coverage to work correctly,
and even if the coverage is enough, its precision is generally inadequate for a mobile agent within an
indoor location [1]. For these reasons, different technologies using infrared, light, radio, and ultrasound
signals have been developed to overcome the critical issue of localization in indoor scenarios [1–4].
Generally speaking, these technologies estimate the location following the same working principle [5]:
several nodes are located in a scenario composing a network, some of them are in a structured and
known location, while the others are fixed to the moving agents to be localized, and signals are sent
and received between them. Thanks to some signal properties, such as time of arrival, time of flight,
angle of arrival and signal strength, it is possible to measure the distance between the node that has to
be located and each of the known ones. Then, performing triangulation from the known distances, it is
possible to estimate the location of the node correctly. The main differences in terms of performance
and costs between these solutions are mainly due to the kind of signal transmitted between the nodes
(Table 1). For example, Wi-Fi based systems are the most common wireless localization systems, simply
because most of the node network is already available in many buildings to provide internet connection
and it is easy to add new nodes to the system. The main downside is that the signals are generally
weak, so to reduce the system inaccuracy, several fixed nodes are required. Lately, ultra wide band
(UWB) systems have become one of the most interesting indoor localization technologies based on
the use of radio signals [6], mainly due to its high accuracy and some interesting physical features
of the short pulses itself, such as obstacle penetration, low noise sensitivity, and high throughput.
On the other hand, this technology requires a suitable infrastructure of nodes, that can be expensive to
implement to work properly.

Table 1. Comparison between typical localization technologies.

Technology Precision [m] Max. Range [m] Cost

Bluetooth 1–10 30 Low
IR 10−2–1 1–5 Medium

RFID 10−1–1 1–10 High
Ultrasound 10−2 2–10 High

UWB 10–2 1–20 High
Wi-Fi 1–10 20–50 Low

A different kind of localization system is based on image processing and feature recognition.
In these systems, it is possible to estimate the pose of a moving agent processing a video, looking
for some particular features to map the 2D image of the frames to the 3D environment. By knowing
a priori the dimensions of the features and how the camera transforms points between the image plane
and the real environment (the so-called camera model), it is possible to estimate the position and
the orientation of the feature and, therefore, of the related agent. What precisely the feature can be,
may vary: it can be an easily identifiable moving agent local feature (e.g., SIFT-based systems [7,8]), but,
usually, it is a set of artificial markers easily that are recognizable in the scene. Typically, these markers,
also known as fiducial markers, are simple geometric figures with bright colors or a black and white
pattern encoding a binary matrix. Among the several kinds of fiducial markers proposed in the
literature [9–11], the square markers are the most widely used, because it is possible to estimate
their pose from their four corners (Figure 1). For these reasons, several square fiducial markers
have been developed [12–15], but in this article, ArUco markers [16–18] are used, because they were
designed for the fast processing of high-quality images and because the core library is open-source [19].
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ArUco marker detection uses an adaptive threshold method to increase robustness with different
lighting conditions. It also proposes an approach to generate customizable marker sets with high error
detection capabilities. ArUco also includes a marker code generation based on mixed integer linear
programming, that produces the codes with the highest error detection and correction capabilities in
the literature and can even guarantee optimality for small dictionaries.
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Figure 1. Examples of square fiducial markers.

Fiducial markers, however, are mainly used in augmented reality applications, or more generally,
camera-based systems (i.e., a camera mounted on a robot), so that all the information that can be
estimated is available in the camera reference frame. Data represented in this reference frame are not
always convenient and easy to understand by a user that desires to track a robot or a vehicle trajectory,
in particular if the moving agent is not related at all to the camera. For example, in order to track
a mobile robot in a room, it is more useful to estimate the pose about a reference frame fixed to the
floor, or, more generally, to the plane of motion of the robot. By doing so, data interpretation by the
users is much more immediate and easily interpretable. Moreover, the location of this reference frame
could also be a relevant point of interest in the environment itself, so it could be interesting to track a
moving agent with respect to (w.r.t. from now on) a relevant point. So, the objective of this study is to
develop a system capable of estimating the pose of a robot w.r.t.; a known and convenient reference
frame where the trajectory of the robot can be represented intuitively. This approach allows pose
estimations to be obtained independently from the camera location, also giving the possibility to let the
camera move within the environment while tracking the moving agents. The ArUco core library [19] is
used as the starting point, and then it is extended to estimate the pose of the marker w.r.t.; a relevant
reference frame instead of the camera one. This article gives a brief introduction about how detection
works, then the developed algorithm to localize a moving agent w.r.t.; the desired reference frame is
shown. The researchers’ primary objective is not to implement a simple SLAM system, but, instead,
a trajectory tracking system able to provide intuitive insight regarding mobile robots’ dynamics for a
user, in case a more expensive, structured and sophisticated setup is not available. Some other potential
applications of this system are discussed in the discussion section.

The developed system is then tested to evaluate its performance with static and moving markers.
In particular, tests are done with a smartphone camera to evaluate the system performance with
a minimal and readily available setup, to prove, or not, if a low-cost solution like that can provide
a good preliminary trajectory analysis of the moving objects.

Since this paper is an extended version of [20], it provides further insights regarding both the
theoretical and experimental parts. Moreover, the system is evaluated with an actual mobile robot
performing some trajectories.

This research topic has been developed to track robotic platforms with a setup adaptable to
various fields of application, such as a precision agriculture UGV [21], a search and rescue UGV [22],
or a stair-climbing wheelchair [23].
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2. Materials and Methods

In this section, the original ArUco markers’ localization algorithm developed in [16,18,19] is
briefly introduced and explained; then, the developed feature that enables the estimation of the pose
of a marker w.r.t., the desired reference frame, is illustrated. At the end of the theoretical analysis,
the experimental setups used to evaluate the developed system are presented.

2.1. Methods

The ArUco library can generate a calibration board that is, as shown in Figure 2, a chessboard
composed of black squares and square markers. Thanks to this board, it is possible to perform
the camera calibration to obtain all the required parameters, to perform a geometric transformation
between the image plane of the camera to the actual environment, and vice versa. The calibration
process is relatively straightforward: many pictures of the calibration board are taken with different
perspectives, trying to cover all the possible scenarios the camera could be placed. It is important to
note that the camera settings (mainly its lenses and its focus setting) must always be the same, and the
same camera settings must be used during the following pose estimation process. By post-processing
all of the pictures collected with the ArUco library, it is possible to get the camera parameters.
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Figure 2. Camera calibration process. The camera takes several pictures of the calibration board
from different perspectives. By Post-processing all these images, it is possible to get the camera
calibration parameters.

When the camera calibration is completed, the marker localization process begins. The process,
visually represented in Figure 3, is commonly used in computer vision applications, with some minimal
variations depending on the particular algorithms adopted. First of all, an image is opened (a); it can
be a still image, or it can be a frame extracted from a video, and it is converted in a grayscale picture
to improve the results of the next step, the adaptive thresholding process (b). At this point, all the
contours, or at least all the contours related to a sufficient change of color, should be available; however,
all the contours that are not closed and approximated by four sides are filtered out by a contour
detection algorithm (c). All the remaining contours may form a square marker, so for each of them, it is
done a process of perspective removal (d) and a binary code encoding (e), to verify if the contour is a
marker or not. The binary encoding step consists of converting the unique pattern of black and white
squares into a binary matrix of zeros (for the black squares) and ones (for the white ones) that encode
the unique marker ID. If a marker is identified, its ID and its four corners’ coordinates in the image
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plane are stored. When all the possible candidates have been checked, the sequence is completed.
The whole process is summarized in Algorithm 1.
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Algorithm 1: Automatic marker detection and localization algorithm

while Frame of the video is available do
begin Automatic Markers Detection Process

Get frame from video;
Convert frame to grayscale;
Apply adaptive thresholding to frame;
Find contours;
Remove contours with low number of points;
Approximation of contours to rectangles;
Remove rectangles too close
Remove prospective to get frontal view
Apply Otsu’s threshold algorithm
Identify marker from its binary code;
if marker is identified then

Refine corners;
end
Provide list of corners and IDs;

end
begin Marker Pose Estimation Process

For each ID do
Apply transformation from 2D to 3D to corners;
Produce list of poses w.r.t. camera;

end
end

end

When at least one marker has been identified, it is possible to estimate its pose thanks to the
camera parameters obtained by the calibration process. These parameters define the pinhole camera
model required to perform the geometric transformation between the projected image plane and the
actual 3D environment (Figure 4). A simple pinhole camera model can be represented as follows:
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 (1)

where u and v are the 2D image coordinates,xc,yc and zc are the 3D camera coordinates, K is the intrinsic
matrix of the camera composed by some parameters obtained by the camera calibration, such as fx,
fy (the focal lengths), u0 and v0 (the origin of the image plane), and α (the skew factor). The camera
calibration process also provides some distortion factors to compensate for the lens distortion.
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projection to be represented in the 3D environment, or vice-versa.

At this point, from the known 3D coordinates of the four corners, it is trivial to get the center of
the square marker and its orientation, carrying out the pose estimation w.r.t.; the camera reference
frame. To introduce some notation that is used in this article, from now on, the pose of a generic point i
in the reference frame j is represented as follows

T j
i =

 R j
i 3x3 t j

i 3x1

01x3 1

 (2)

p j
i = (xi, yi, zi, 1) jT = T j

i (xi, yi, zi, 1)iT = T j
i p

i
i (3)

where the homogeneous transformation T j
i contains the rotation matrix R and the translation vector t

needed to represent a generic reference frame or point i in a reference frame j.
All these operations are repeated for each marker identified in the previous steps, then a new

video frame is loaded, and the algorithm is repeated until the last frame.
At this stage, all the homogeneous transformations TC

n , with n = 0, . . . , Nmarker, between the camera
and all the identified markers are known. While these kinds of data can be useful and convenient for
augmented reality or camera-centered applications, or more generally, for an algorithm, they are not so
intuitive for a human user whose task is to track one or more mobile agents in order to study their
trajectories. For this reason, an additional step to the core functionalities has been developed, with the
intent to represent these poses w.r.t.; a convenient reference frame that can be physically placed where
required, for example, in a relevant point of the plane of motion, so the user has a physical reference in
the environment to which it is more intuitive to associate the trajectories of the moving objects.

As a convention defined here, this reference frame is represented by the ArUco marker with
ID = 0, and it will be referenced as the “fixed reference frame,” even if it does not need to be static.
Therefore, from the previous algorithm, it is possible to estimate the pose of this marker w.r.t. the
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camera reference frame TC
0 , then applying the matrix inversion TC

0
−1 = T0

C, the pose of the camera
w.r.t.; the fixed reference frame is now known. So, in the end, it is possible to represent the pose of the
nth marker w.r.t.; the reference one by a concatenation of homogeneous transformation (as represented
in Figure 5 and described in Algorithm 2).

T0
n = TC

n T0
C = TC

n TC−1

0 (4)
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Algorithm 2: Improved Automatic marker detection and localization algorithm

while Frame of the video is available do
begin Automatic Markers Detection Process

Same as in Algorithm 1
end
begin Improved Marker Pose Estimation Process

for each ID do
Apply transformation from 2D to 3D to corners;
Produce list of poses w.r.t. camera;
Reorder list
if ID equal to 0 then

Compute TC
0
−1 = T0

C
else

Compute T0
n = TC

n T0
C

end
end
Produce list of poses w.r.t. reference frame;

end
end

In particular, the position of the center of the nth marker is the translation vector t0
n, while its

orientation can be derived by the rotation matrix R0
n and both these components can be obtained from

the homogeneous transformation matrix T0
n. For the sake of completeness, during most of the execution

of the algorithm and in the data logging, rotations are not represented by a rotation matrix, but by
a rotation vector in the axis-rotation form to get more algorithm-efficient data. So, the generic rotation
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vector e = [e1, e2, e3]
T represents a rotation of an angle θ = ‖e‖ about an axis

^
e = e/θ = [ê1, ê2, ê3]

T and
it is related to the generic rotation matrix R by these relations:

R = I + (1− cosθ)E2 + sinθE, where E =
[

^
e
]
×

=


0 −ê3 ê2

ê3 0 −ê1

−ê2 ê1 0

 (5)

θ = cos−1 trace(R) − 1
2

and
^
e =

1
2sinθ


R(3, 2) −R(2, 3)
R(1, 3) −R(3, 1)
R(1, 2) −R(1, 2)

 (6)

At this point, more natural results for a user are obtained, since the fixed marker acting,
both conceptually and physically, as a reference frame could be placed where it is convenient and
meaningful to represent the poses of the other markers fixed to the actual moving objects. By doing so,
it is possible to achieve the required feature of estimating a trajectory w.r.t.; the desired frame in order
to perform the required vehicle dynamics analysis. It is also relevant to state that the pose estimations
could happen both in real-time, using a live video stream, and offline, processing a pre-recorded video.

Extending this concept, now the pose data are no more related to the camera location in the
environment, so the camera may even move while recording the scene, but the system would still
be able to estimate the pose correctly. However, it is essential to note a limitation of this last feature:
to estimate the pose of a marker w.r.t. the fixed reference, the algorithm must identify both of them as
markers, so they must appear in the frames recorded by the camera. If this condition is not satisfied,
the algorithm cannot compute the inversion of homogeneous transformation TC−1

0 and the successive
concatenation of transformations.

Going even further, as briefly hinted before, it is also possible that the fixed reference frame is
not fixed at all, and it can move around like all the other markers. This particular scenario can be
useful when it is required to know the pose of an object w.r.t. a moving one, like in applications such
as platooning, robot swarm, or agent pursuit. In these scenarios, it is even more critical that the camera
sees all the markers, so letting the camera move around, maybe mounted on a flying drone, could be
convenient in some scenarios.

Some quantities must be defined to evaluate system performances. Given the nth marker, several
of its pose estimations are available if it is static (in the best scenario, there is an estimate for each frame

of the video), so it is possible to define and compute the mean position p0
n and the relative standard

deviation σn as follows, where N is the number of collected samples.

p0
n =

1
N

N∑
k=1

p0
n,k (7)

σn =

√√√√∑N
k=1

(
p0

n,k − p0
n

)2

N
(8)

In order to evaluate the correlation of distance from the camera and uncertainty, some additional
parameters are defined. Moreover, these parameters are normalized using the marker side length Lmrk
to compare the results of all the tests fairly. The distance rn between the camera and the marker nth
marker and the associated normalized parameters are defined as

rn = ‖pC
n ‖ = ‖p0

n − p0
C‖ (9)

Normalized rn :rn/Lmrk

Normalized ‖σn‖ : ‖σn‖/Lmrk
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As a side note, the norm of the relative position and the norm of standard deviation vector are
used to condense the information in two scalar parameters, but it is also possible to perform a similar
analysis using the vectors instead.

2.2. Experimental Setup

After this brief introduction about the methods used behind this study, the main elements of the
experimental setup are presented. The first of the main elements is the camera: any camera could work,
but to stay true to the readily available setup requirement, in this study, a typical smartphone camera,
without additional lenses, is used. Such camera records video with a resolution of 1080p at 30 FPS.
The camera has 12MP, an f/2.2 aperture, a sensor size of 1/2.8′′, and pixel size of 1.25 µm. A USB
webcam was also tested, but since its first results were mediocre, it was not used. As shown before,
whichever camera is used, the calibration phase has to be done to get the camera parameters.

The second element required is a set of fiducial markers. In this system, ArUco markers are used.
In particular, the 4x4 ArUco dictionary (another name for the set of markers, where the dimensions
are the number of squares used to encode the marker ID) has been used to generate all the required
markers. The adopted dictionary has little impact on the system itself: it is possible to get a higher
number of unique IDs increasing the number of squares. This, however, comes at the cost of smaller
squares in the binary pattern given the same overall size. 16 unique markers have been generated
with the ID ranging from 0 to 15, with marker side length Lmrk of 48 mm or 96 mm to perform the
experimental evaluation of the system. Again, the exact ID value does not matter; it is simply necessary
that all of the markers in the scene are unique, and that among them there is the reference one, that,
as an arbitrary convention, is the maker with ID = 0. Also, the exact number of markers does not
matter; the actual limit is the number of unique markers that the dictionary can generate.

In the static tests, the markers are simply fixed to the floor, trying to cover the whole area that
the camera can see (Figure 6). For a couple of static experimental setups, the markers are placed in
a grid of known (measured) dimensions to evaluate the system accuracy; in other cases, the markers
are placed randomly, trying to cover the whole camera field of view instead. A video records the scene
for about 10 s, so it is possible to collect up to 300 estimations per marker during the whole sequence.
After a recording is complete, the markers can be shuffled around, the camera can be moved in another
position, or its height from the floor can be changed, and then a new test can be done.
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Figure 6. Setup to evaluate the static performance of the system. This picture also shows that the
algorithm places a reference frame at each identified marker center, while the unidentified ones remain
without axes.

A remotely controlled robot is used to have some markers moving in a controllable way. The robot
prototype, called Epi.q mod2 (Figure 7), is the last model of a unique family of mobile robots [24].
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It is a modular robot composed of two almost identical modules (front and rear), that are linked
together by a passive joint that enables relative roll and yaw movements between modules. The most
important feature of this robot is its unique locomotion units that dynamically mix wheeled and legged
locomotion [25], in order to overcome little obstacles. Two markers are fixed on the robot chassis,
one for each module, to test the tracking system with moving objects, while the fixed reference marker
is fixed on the floor where the robot moves. The robot is controlled to follow simple trajectories (e.g.,
straight and circular trajectories) defined by an internal code, or it can be directly controlled by a user
with a remote controller to perform more complex maneuvers. Each robot module can be controlled as
a differential drive robot; however, during these tests, only the front module is actuated, while the
rear module is being pulled like a trailer. It is essential to highlight that, at the moment, there is no
communication between the robot and the tracking system, so the two are independent. It may be
possible, however, that in the future, the marker localization system could be improved and integrated
with a mobile robot, to allow autonomous navigation in indoor scenarios.

Machines 2019, 7, x FOR PEER REVIEW 10 of 19 

 

together by a passive joint that enables relative roll and yaw movements between modules. The most 
important feature of this robot is its unique locomotion units that dynamically mix wheeled and 
legged locomotion [25], in order to overcome little obstacles. Two markers are fixed on the robot 
chassis, one for each module, to test the tracking system with moving objects, while the fixed 
reference marker is fixed on the floor where the robot moves. The robot is controlled to follow simple 
trajectories (e.g., straight and circular trajectories) defined by an internal code, or it can be directly 
controlled by a user with a remote controller to perform more complex maneuvers. Each robot 
module can be controlled as a differential drive robot; however, during these tests, only the front 
module is actuated, while the rear module is being pulled like a trailer. It is essential to highlight that, 
at the moment, there is no communication between the robot and the tracking system, so the two are 
independent. It may be possible, however, that in the future, the marker localization system could be 
improved and integrated with a mobile robot, to allow autonomous navigation in indoor scenarios. 

 
Figure 7. Epi.q mod2, the remotely controlled mobile robot used for testing the localization system 
with moving markers while climbing a little obstacle. The markers with ID 1 and 2 are fixed 
respectively on the front (left in the photo) and rear (right) module. The fixed reference (Marker ID 0) 
is fixed to the floor instead. 

3. Results 

In this section, the results of the experimental tests to evaluate the performance of the proposed 
tracking system are presented. In the first part, the tests with static markers are discussed, while in 
the second part, the tests with moving markers are presented. 

3.1. Static Markers 

Table 2 collects the results of a test done with eight static markers, with	ܮ௠௥௞ = 96	݉݉	accurately 
placed w.r.t. the reference marker, as shown in the first column. The results show that each marker 
average estimate is always within	5.5	݉݉	from the true value, a relatively good result compared to 
the marker size and to the possibility of tracking a moving robot. The uncertainty	ો௡	is limited too, 
but it is already noticeable an issue that is addressed in the next paragraphs. 

Table 2. Static test results: accuracy and uncertainty. 

ID ࡱࢁࡾࢀ,࢔ܘ૙  [࢓࢓] Avg. Error [࢓࢓] 	࢔ો [࢓࢓] 	૙࢔ܘ [࢓࢓] 	
1 (−210, 297, 0) (−214.7, 301.9, −4.2) (0.7, 1.3, 2.2) (4.7, −4.9, 4.2) 
2 (0, 297, 0) (−1.2, 300.6, −1.3) (0.6, 1.4, 2.4) (1.2, −3.6, 1.3) 
3 (210, 297, 0) (211.3, 302.2, −3.1) (0.6, 1.7, 3.2) (−1.3, −5.3, 3.1) 
4 (−210,0,0) (−212.9, −0.8, 0.1) (0.5, 1.0, 2.6) (2.9, 0.8, −0.1) 
5 (210,0,0) (212.8, 1.4, −1.2) (0.3, 1.0, 2.8) (−2.8, −1.4, 1.2) 
6 (−210,−297,0) (−212.4, −300.7, −0.9) (0.7, 0.8, 4.1) (2.4, 3.7, 0.9) 
7 (0, −297,0) (0.1, −299.9, −0.7) (0.6, 0.8, 3.8) (−0.1, 2.9, 0.7) 

Figure 7. Epi.q mod2, the remotely controlled mobile robot used for testing the localization system with
moving markers while climbing a little obstacle. The markers with ID 1 and 2 are fixed respectively on
the front (left in the photo) and rear (right) module. The fixed reference (Marker ID 0) is fixed to the
floor instead.

3. Results

In this section, the results of the experimental tests to evaluate the performance of the proposed
tracking system are presented. In the first part, the tests with static markers are discussed, while in the
second part, the tests with moving markers are presented.

3.1. Static Markers

Table 2 collects the results of a test done with eight static markers, with Lmrk = 96 mm accurately
placed w.r.t. the reference marker, as shown in the first column. The results show that each marker
average estimate is always within 5.5 mm from the true value, a relatively good result compared to the
marker size and to the possibility of tracking a moving robot. The uncertainty σn is limited too, but it
is already noticeable an issue that is addressed in the next paragraphs.

In Figure 8, it is possible to see the results of one of the many tests with a marker size of 96 mm.
The results are so good that the marker estimations distribution is hidden by the size of the points used
to represent them, in particular for markers closer to the camera.
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Table 2. Static test results: accuracy and uncertainty.

ID p0
n, TRUE [mm] p0

n [mm] σn [mm] Avg. Error [mm]

1 (−210, 297, 0) (−214.7, 301.9,−4.2) (0.7, 1.3, 2.2) (4.7,−4.9, 4.2)
2 (0, 297, 0) (−1.2, 300.6,−1.3) (0.6, 1.4, 2.4) (1.2,−3.6, 1.3)
3 (210, 297, 0) (211.3, 302.2,−3.1) (0.6, 1.7, 3.2) (−1.3,−5.3, 3.1)
4 (−210, 0, 0) (−212.9,−0.8, 0.1) (0.5, 1.0, 2.6) (2.9, 0.8,−0.1)
5 (210, 0, 0) (212.8, 1.4,−1.2) (0.3, 1.0, 2.8) (−2.8,−1.4, 1.2)
6 (−210,−297, 0) (−212.4,−300.7,−0.9) (0.7, 0.8, 4.1) (2.4, 3.7, 0.9)
7 (0,−297, 0) (0.1,−299.9,−0.7) (0.6, 0.8, 3.8) (−0.1, 2.9, 0.7)
8 (210,−297, 0) (212.7,−299.0,−2.0) (0.6, 0.9, 4.1) (−2.7,−2.0,−2.0)
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The most remarkable test results aspect is that the point distribution relative to each marker lies
along the line connecting the mean position of the marker and the camera position: this outcome is
linked to the typical difficulties of estimating depth from a single camera. This issue is particularly
evident in the XZ plane, because the minimum vertical distance for all the markers is always above
1.25 m (the camera height from the floor), so each marker always has a substantial uncertainty in the
XZ plane. In contrast, in the XY plane, this effect is more apparent for markers farther away from the
camera, so it is possible to state that this effect is due to the distance from the camera, or in other words,
because of the well-known problem of measuring the depth from a single camera. This outcome is not
a surprise, as it is a typical problem of single-camera image-based systems, and the common way to
solve it could be a new experimental configuration with a stereo-camera, or with at least two cameras
with known relative positions. These solutions allow the uncertainty to be noticeably reduced by fixing
the depth estimation issue, but they also increase the setup costs, and in the case where several cameras
are needed, the environment needs to be highly structured to support the system.

From these results, it is possible to state that the position of the markers is estimated where
expected and the precision is higher for the markers closer to the camera (‖σ‖ around 0.5 mm), and it
decreases a little when the marker is further away (‖σ‖ up to 5 mm, some outliers goes up to 20 mm).
Slightly worse results are obtained with markers with a smaller side length (48 mm).

Even if the marker pose is represented in the desired frame independently from the camera
position, the results show that the estimation uncertainty is related to the relative position of the camera
and the markers, in particular the distance between them. In Figure 9, it can be easily seen that the
normalized uncertainty ‖σn‖/Lmrk increases when the normalized distance rn/Lmrk increases, and in
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particular, it can be stated that a parabolic function relates precision and distance. From this image, it is
also possible to prove the claim that better precision can be achieved with larger markers, while a slightly
worse precision can be achieved if smaller markers are used. An alternative interpretation of these
data is that the smaller markers can be seen as markers with the same size as the other, but “virtually”
further away from the camera.Machines 2019, 7, x FOR PEER REVIEW 12 of 19 

 

 
Figure 9. Localization accuracy as a function of distance from the camera. Values are normalized using 
the marker side length. 

Many characteristics of the established tracking method can already be derived from the results 
of the tests with static markers. Even if the markers’ poses are represented in the desired fixed 
reference frame, regardless of the camera position, the distance ݎ௡  is still relevant as a parabolic 
function relates it to the uncertainty ો௡. The camera position is therefore key to obtain the optimal 
results in terms of precision, and the system setup has to be set accordingly, minimizing the relative 
distance between the camera and the markers. An experimental setup with a moving camera may 
help in this process, as it can reduce the distances as required or when it is needed, but if the camera 
moves too quickly, it is also possible to introduce motion blur. In the next part, this last problem is 
discussed in more detail, as it can also occur when the camera is static, and the markers are moving, 
or both are moving. 

The angle between the marker plane and the relative distance vector ܘ௡஼ also plays a role in the 
marker detection ability. If this angle is relatively small, perspective distorts the marker projection on 
the object plane, and the marker cannot be detected if the distortion is significant; however, there was 
no measuring instrument accurate enough to provide further insights. Nevertheless, qualitatively 
speaking, the range of angles from which the markers can still be tracked is compatible with most of 
the setups where a camera is capturing the environment from the top. 

From these initial observations, it is clear that the parameters of the camera and its position are 
essential to a successful localization process. However, it may be possible to achieve slight 
performance improvements at the cost of higher expenses and complexity. First of all, the results 
shown here proved that a larger marker guarantees better precision, so it is advisable to use the 
largest marker possible. Another interesting solution might be to fix more than one marker to the 
object to be tracked, in order to perform a kind of data fusion approach. In doing so, some uncertainty 
can be filtered out, and some partial occlusion cases can also be overcome too: if at least one of the 
multiple markers is detected, its pose can be estimated. Further along this path, several cameras and 
several markers for the single object could be used to enforce a proper approach to data fusion and a 
proper setup capable of setting up camera occlusion scenarios. However, it is clear that going further 
in these directions, the initial requirement of a low-cost and readily available experimental setup to 
track some markers is lost. 

3.2. Moving Markers 

Two main issues need to be addressed when a moving marker has to be tracked. First, if the 
marker moves above a specific speed limit, or if the relative speed between the marker and the camera 

Figure 9. Localization accuracy as a function of distance from the camera. Values are normalized using
the marker side length.

Many characteristics of the established tracking method can already be derived from the results of
the tests with static markers. Even if the markers’ poses are represented in the desired fixed reference
frame, regardless of the camera position, the distance rn is still relevant as a parabolic function relates
it to the uncertainty σn. The camera position is therefore key to obtain the optimal results in terms of
precision, and the system setup has to be set accordingly, minimizing the relative distance between the
camera and the markers. An experimental setup with a moving camera may help in this process, as it
can reduce the distances as required or when it is needed, but if the camera moves too quickly, it is also
possible to introduce motion blur. In the next part, this last problem is discussed in more detail, as it
can also occur when the camera is static, and the markers are moving, or both are moving.

The angle between the marker plane and the relative distance vector pC
n also plays a role in the

marker detection ability. If this angle is relatively small, perspective distorts the marker projection on
the object plane, and the marker cannot be detected if the distortion is significant; however, there was
no measuring instrument accurate enough to provide further insights. Nevertheless, qualitatively
speaking, the range of angles from which the markers can still be tracked is compatible with most of
the setups where a camera is capturing the environment from the top.

From these initial observations, it is clear that the parameters of the camera and its position are
essential to a successful localization process. However, it may be possible to achieve slight performance
improvements at the cost of higher expenses and complexity. First of all, the results shown here proved
that a larger marker guarantees better precision, so it is advisable to use the largest marker possible.
Another interesting solution might be to fix more than one marker to the object to be tracked, in order
to perform a kind of data fusion approach. In doing so, some uncertainty can be filtered out, and some
partial occlusion cases can also be overcome too: if at least one of the multiple markers is detected,
its pose can be estimated. Further along this path, several cameras and several markers for the single
object could be used to enforce a proper approach to data fusion and a proper setup capable of setting
up camera occlusion scenarios. However, it is clear that going further in these directions, the initial
requirement of a low-cost and readily available experimental setup to track some markers is lost.
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3.2. Moving Markers

Two main issues need to be addressed when a moving marker has to be tracked. First, if the
marker moves above a specific speed limit, or if the relative speed between the marker and the camera
is too high, the video frame may become blurred, making it impossible to obtain an image with
well-defined contours required to detect or identify the marker successfully during its movement.
Referring to the previous part about how the markers tracking works, it is possible that, while moving,
the marker may be detected as a potential marker, but its binary pattern is so blurred that its encoding
process, and therefore the marker identification, fails. It is also possible, if the marker moves even faster,
that the marker is not detected at all, and the identification phase is skipped. The latter possibility is
generally more related to a marker moving far away from the camera rather than its actual speed in
doing so. It may be possible to fail the marker detection phase if the marker in the image frame is so
distorted that a convex four-sided polygon does not approximates it anymore. It is more common
that this situation is due to a very distorted perspective than a fast-moving marker. Second, a moving
marker, due to the perspective, can become virtually larger or smaller in the image frame if it moves
closer or further away from the camera. So, while it moves closer to the camera, the localization results
are generally better, but when the marker moves away, the uncertainty increases. It is also possible that
the marker moves so far away that it becomes so small in the picture, that it is not possible to detect the
marker anymore, or, as said before, it becomes so distorted by the perspective that it is impossible to
detect the marker.

From the experimental evidence, it appears that the transformations between the 2D image
projection and the actual environment have a significant influence in analyzing the dynamic system
performances. Going further, it appears that perspective plays a major role in this. In Figure 10,
horizontal and vertical displacements that take place in the 3D environment and that are projected
on the image plane are represented. By focusing on the horizontal displacements in the figure,
it appears that different equalities hold depending on which references are seen: in the 3D environment
AB = A′′B′′, while A′B′ is a larger displacement, but in the image plane the AB = A′B′ equality
holds, while A′′B′′ is a shorter movement. In other words, two points moving at the same speed,
but a different distance from the camera, appears to be moving at different speeds in the image plane,
while two points moving at different speeds may appear to be moving at the same speeds in the image
plane. This issue is also present, if not even more evident, for the vertical displacements.
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Figure 10. Graphical representation of the issue of representing speeds in the image plane or in
the 3D environment. In the image plane, the following relations are true AB = A′B′ > A′′B′′ and
CD = C′′D′′ > C′D′, while in the actual environment AB = A′′B′′ < A′B′ and CD = C′D′ < C′′D′′

are true instead.
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Since the detection and identification of the actual markers seems to be strongly related to the
image plane, in this article, the dynamic analysis of the system is done in the image plane using speeds
measured in pixel per frame in the image space along the u and v axis. However, it is possible to
perform a similar analysis in the real 3D environment if the camera model is known.

Vu =
∆u

∆FRAME
Horizontal velocity (10)

Vv =
∆v

∆FRAME
Vertical velocity (11)

Figure 11 depicts how the extended algorithm can measure the speed of an object in the image
space. At the beginning, the center of the fiducial marker is projected to the image plane and its position
(u0, v0) is estimated in pixels unit. After some time ∆t, the object gets detected and projected again.
Hence, it is possible to compute the position difference between the two frames (∆u, ∆v). The velocity
in pixel/frame is obtained by dividing this variation by the frames increment.

The dynamic tests consist of the camera recording several trials where the robot moves from a still
position to a reference speed in straight horizontal and vertical lines. Figure 12 shows how often a
moving marker is identified while moving at a particular speed: a still marker is always detected
and identified, while, for faster moving markers, the detection probability decreases. The detection
probability becomes almost zero when a marker is moving with a horizontal over ±20 pixel/ f rame and
a vertical speed over ±10 pixel/ f rame. As said before, the transformation matrix between the 3D world
and its 2D projection is required to relate these values to the actual speed of the robot, since they can
represent different speeds depending on the perspective. It also appears that the results in the vertical
direction are slightly worse than the one in the horizontal direction. The most probable explanation
is that while the robot moves horizontally, it stays about the same distance from the camera during
its path, but if the robot moves vertically, it moves further away from the camera, worsening the
localization results.

Machines 2019, 7, x FOR PEER REVIEW 14 of 19 

 

௨ܸ = ΔݑΔܧܯܣܴܨ 				Horizontal	velocity (10)

௩ܸ = ΔݒΔܧܯܣܴܨ 				Vertical	velocity (11)

Figure 11 depicts how the extended algorithm can measure the speed of an object in the image 
space. At the beginning, the center of the fiducial marker is projected to the image plane and its 
position (ݑ଴, (଴ݒ  is estimated in pixels unit. After some time Δݐ , the object gets detected and 
projected again. Hence, it is possible to compute the position difference between the two frames (Δݑ, Δݒ). The velocity in pixel/frame is obtained by dividing this variation by the frames increment. 

The dynamic tests consist of the camera recording several trials where the robot moves from a 
still position to a reference speed in straight horizontal and vertical lines. Figure 12 shows how often 
a moving marker is identified while moving at a particular speed: a still marker is always detected 
and identified, while, for faster moving markers, the detection probability decreases. The detection 
probability becomes almost zero when a marker is moving with a horizontal over േ	20	݁݉ܽݎ݂/݈݁ݔ݅݌ 
and a vertical speed over േ	10	݁݉ܽݎ݂/݈݁ݔ݅݌. As said before, the transformation matrix between the 
3D world and its 2D projection is required to relate these values to the actual speed of the robot, since 
they can represent different speeds depending on the perspective. It also appears that the results in 
the vertical direction are slightly worse than the one in the horizontal direction. The most probable 
explanation is that while the robot moves horizontally, it stays about the same distance from the 
camera during its path, but if the robot moves vertically, it moves further away from the camera, 
worsening the localization results. 

 
Figure 11. Working principle of the pinhole camera model applied to a moving object. Figure 11. Working principle of the pinhole camera model applied to a moving object.



Machines 2020, 8, 29 15 of 19Machines 2019, 7, x FOR PEER REVIEW 15 of 19 

 

 
Figure 12. Horizontal and vertical speeds detection rate in the image plane. 

It should be possible to increase the number of analyzed frames increasing the camera FPS, 
improving the possibility to detect the markers, but also giving the possibility to collect more data 
enabling some filtering to estimate the missing estimation as well. Common camera sensors from a 
smartphone or a webcam can generally reach up to 60 FPS at the cost of image quality. High-end 
commercial camera sensors instead can reach 60 FPS without compromising the image quality. High-
speed cameras would be the best solution, but with such instruments, the requirement to have a low-
cost and readily available setup is lost. 

A possible solution to the problem related to the image perspective could be trying to get the 
image plane as parallel as possible to the plane of motion of the markers; i.e., a top view of a simple 
planar motion. In this way, the depth has little if no effect, so the speeds are easily relatable. 
Regarding the relative camera-marker distance, it appears that centering the markers close to the 
camera optical axis reduces distortion effects that are evident when close to the border of the image. 

The issues of detecting markers under challenging conditions such as inadequate lighting or 
high blur due to fast motion are very common while using this type of markers, that have been 
developed mainly for static or semi-static applications, like augmented reality. The trend to overcome 
these kinds of issues seems to avoid the identification of the marker by encoding a possible pattern 
of a closed region in favor of an identification based on machine learning classification [26]. The bits 
extraction steps to encode the marker require that the pattern is easily recognizable; however, it is 
not always possible if a lot of motion blur, or other conditions such as defocus, non-uniform lighting 
or small size, applies. For this reason, a classifier is trained with several labeled pictures of markers 
in different conditions, to identify the markers using a neural network instead. This leads to a more 
robust system, but the cost is a more computational heavy algorithm that may not work in real-time 
if there is a high number of markers. Moreover, the machine learning approach requires accurate 
algorithm training in order to work, even in static conditions. 

3.3. Robot Trajectory 

This section briefly shows the application of the localization algorithm that leads to the 
development of this tool: vehicle dynamics tracking of a mobile robot. The experimental data 
collected with the tracking system are then compared with a simulated dynamic model of the robot. 
The dynamic model is derived and described in [27]. The model is a planar dynamic model of 
modular articulated robots like Epi.Q. Due to the robot locomotion unit architecture, the model 
implements wheel-ground contact forces that take into account wheel slippage and skidding. The 

Figure 12. Horizontal and vertical speeds detection rate in the image plane.

It should be possible to increase the number of analyzed frames increasing the camera FPS,
improving the possibility to detect the markers, but also giving the possibility to collect more data
enabling some filtering to estimate the missing estimation as well. Common camera sensors from
a smartphone or a webcam can generally reach up to 60 FPS at the cost of image quality. High-end
commercial camera sensors instead can reach 60 FPS without compromising the image quality.
High-speed cameras would be the best solution, but with such instruments, the requirement to have
a low-cost and readily available setup is lost.

A possible solution to the problem related to the image perspective could be trying to get the
image plane as parallel as possible to the plane of motion of the markers; i.e., a top view of a simple
planar motion. In this way, the depth has little if no effect, so the speeds are easily relatable. Regarding
the relative camera-marker distance, it appears that centering the markers close to the camera optical
axis reduces distortion effects that are evident when close to the border of the image.

The issues of detecting markers under challenging conditions such as inadequate lighting or high
blur due to fast motion are very common while using this type of markers, that have been developed
mainly for static or semi-static applications, like augmented reality. The trend to overcome these kinds
of issues seems to avoid the identification of the marker by encoding a possible pattern of a closed
region in favor of an identification based on machine learning classification [26]. The bits extraction
steps to encode the marker require that the pattern is easily recognizable; however, it is not always
possible if a lot of motion blur, or other conditions such as defocus, non-uniform lighting or small size,
applies. For this reason, a classifier is trained with several labeled pictures of markers in different
conditions, to identify the markers using a neural network instead. This leads to a more robust system,
but the cost is a more computational heavy algorithm that may not work in real-time if there is a high
number of markers. Moreover, the machine learning approach requires accurate algorithm training in
order to work, even in static conditions.

3.3. Robot Trajectory

This section briefly shows the application of the localization algorithm that leads to the development
of this tool: vehicle dynamics tracking of a mobile robot. The experimental data collected with the
tracking system are then compared with a simulated dynamic model of the robot. The dynamic model
is derived and described in [27]. The model is a planar dynamic model of modular articulated robots
like Epi.Q. Due to the robot locomotion unit architecture, the model implements wheel-ground contact
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forces that take into account wheel slippage and skidding. The parameters required to simulate the
model have been obtained through an experimental identification.

As before, Epi.q mobile robot with the two markers is used as a moving agent. Two pre-defined
speed profiles are used as references for the left and right motors to obtain repeatable trajectories.
The remote controller acts just like a remote power switch, without any other control of the robot.
The most common maneuver that can provide useful vehicle dynamics insight, excluding the trivial
straight path, is the circular one. The robot starts from a still position and accelerates to reach the
steady-state condition; then, applying a higher velocity to one of the motors, the robot performs
a circular trajectory with a constant curvature radius. Figure 13 presents the comparison between
the filtered collected data and a dynamic simulation with the same initial conditions and inputs.
The two trajectories are comparable, and the main difference between them seems, in particular, to be
referencing the actual video recording, due to non-simulated dynamics effects. The robot locomotion
units are subject to considerable wheel slippage, since all the wheels of the same units spin at the same
speed, due to the employed gearing system. This effect is even more evident when lateral dynamics
are considered. Given that these wheel dynamics are only partially implemented in the simulated
model, and that the tracking system results shown before are sufficiently accurate and precise, it is
supposed that the main source of divergence between the experimental data and the simulation is
due to unmodelled dynamics, that with high probability, are related to the dynamics of the wheels.
Nevertheless, it is possible to say that the tracking system can provide initial insights to begin the
study of mobile robot dynamics using a minimal setup, achieving the intentions that lead to this study.
It is clear that a proper tracking setup could, with high probability, overperform this system; however,
it cannot be denied that, with the proposed tool, it is possible to collect data without any dedicated
instruments with sufficient accuracy, to derive some useful information from the experimental data.

Machines 2019, 7, x FOR PEER REVIEW 16 of 19 

 

parameters required to simulate the model have been obtained through an experimental 
identification. 

As before, Epi.q mobile robot with the two markers is used as a moving agent. Two pre-defined 
speed profiles are used as references for the left and right motors to obtain repeatable trajectories. 
The remote controller acts just like a remote power switch, without any other control of the robot. 
The most common maneuver that can provide useful vehicle dynamics insight, excluding the trivial 
straight path, is the circular one. The robot starts from a still position and accelerates to reach the 
steady-state condition; then, applying a higher velocity to one of the motors, the robot performs a 
circular trajectory with a constant curvature radius. Figure 13 presents the comparison between the 
filtered collected data and a dynamic simulation with the same initial conditions and inputs. The two 
trajectories are comparable, and the main difference between them seems, in particular, to be 
referencing the actual video recording, due to non-simulated dynamics effects. The robot locomotion 
units are subject to considerable wheel slippage, since all the wheels of the same units spin at the 
same speed, due to the employed gearing system. This effect is even more evident when lateral 
dynamics are considered. Given that these wheel dynamics are only partially implemented in the 
simulated model, and that the tracking system results shown before are sufficiently accurate and 
precise, it is supposed that the main source of divergence between the experimental data and the 
simulation is due to unmodelled dynamics, that with high probability, are related to the dynamics of 
the wheels. Nevertheless, it is possible to say that the tracking system can provide initial insights to 
begin the study of mobile robot dynamics using a minimal setup, achieving the intentions that lead 
to this study. It is clear that a proper tracking setup could, with high probability, overperform this 
system; however, it cannot be denied that, with the proposed tool, it is possible to collect data without 
any dedicated instruments with sufficient accuracy, to derive some useful information from the 
experimental data. 

 
Figure 13. Position estimation of markers 1 and 2 fixed to a robot performing a circular trajectory. It 
is possible to note that two shifted circles appear, due to wheels slippage and other dynamic effects. 

4. Discussion 

This article showed an extended fiducial marker tracking algorithm based on the ArUco library 
that can track a mobile robot indoors, allowing the user to estimate the location of the markers in the 
desired reference frame, enabling a more intuitive data representation for the user. Moreover, the 
performances of this tool have been tested positively, using a smartphone camera to verify if the 
whole setup could provide significant results to derive insight about the robot dynamics without the 
need of a commercial tracking setup, but using only a readily available instrument (the smartphone 
camera) and with minimal overall cost. 

With markers with a side length of 96 mm, it is possible to estimate their location with a precision 
of less than 1 cm within a distance of 3 m from the camera, using a low cost and easy to use 
configuration. At the same time, the tracking system can obtain an accuracy that is less than 6 mm 

Figure 13. Position estimation of markers 1 and 2 fixed to a robot performing a circular trajectory. It is
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4. Discussion

This article showed an extended fiducial marker tracking algorithm based on the ArUco library
that can track a mobile robot indoors, allowing the user to estimate the location of the markers in
the desired reference frame, enabling a more intuitive data representation for the user. Moreover,
the performances of this tool have been tested positively, using a smartphone camera to verify if the
whole setup could provide significant results to derive insight about the robot dynamics without the
need of a commercial tracking setup, but using only a readily available instrument (the smartphone
camera) and with minimal overall cost.

With markers with a side length of 96 mm, it is possible to estimate their location with a precision of
less than 1 cm within a distance of 3 m from the camera, using a low cost and easy to use configuration.
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At the same time, the tracking system can obtain an accuracy that is less than 6 mm within a distance
from the camera 1.5 m. It is possible to achieve even better precision and improved coverage increasing
the size of the markers. Results from tests with different camera-marker distances show the relationship
between camera precision and range: the lower the distance, the better the precision. Therefore,
the established localization method can provide a location estimation that is accurate enough to be
used in relatively small rooms. These results also fall within the expected ranges of similar systems
based on image processing, but with the additional feature of more intuitive estimate representation.
However, the adopted monocular camera setup leads to an inevitable issue related to depth estimation;
therefore, comparable setups with more than one camera perform better than the proposed solution,
in particular at longer ranges. It is planned to compare this system’s performance directly with a more
sophisticated system in the future.

If more accuracy or range is needed, the camera sensor can be improved; the camera position can
be modified to reduce the camera-marker distances, the size of the markers can be increased to make
them appear “virtually” closer to the camera, the single object can be tracked using several markers
fixed to it to implement a data fusion approach (probably the best approach, in the sense that it fixes
three makers onto three different surfaces, perpendicular between them). The latter solution can also
help in case of partial occlusion of the object.

The dynamic experiments have revealed that this method of position estimation is still robust and
reliable when the markers move in the environment. The camera was able to detect movements of
within ±20 pixel/frame in the horizontal direction and within ±10 pixel/frame in the vertical direction.
Higher velocities were also observed and detected (in the horizontal direction in particular), but with
significantly lower confidence. It is highly probable that a camera with a higher frame rate and
an even better resolution may obtain even better results. However, further analysis will be required to
understand better how the system behaves.

5. Conclusions

To conclude, this system can work as a marker tracking system enabling markers pose estimation
w.r.t. an intuitive reference frame, in order to perform some trajectory analysis. In addition, this system
can work using a readily available camera, such as a smartphone camera, and still provide significant
results in contained environments. So, it is possible to conclude that this tool achieved the two
requirements that led to its development: a readily available and low-cost setup that could enable any
researcher to perform some trajectory analysis, even without a proper experimental setup.

By adding some kind of communication between this system and the robot, this localization
algorithm could be used in real-time to send data to the robot, in order to achieve some kind of
autonomous navigation capability where the relative motion w.r.t; a given reference is required.
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