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Abstract: Operator assistance systems can help to reduce disturbance-related machine downtime
in food production and packaging processes, especially when combined with machine learning
algorithms. These assistance systems analyze the available sensor signals of the process control
over time to help operators identify the causes of disturbances. Training such systems requires
sufficient test data, which often are hardly available. Thus, this paper presents a study to investigate
how test data for teaching machine learning algorithms can be generated by numerical simulation.
The potential of using virtual commissioning (VC) software for simulating disturbances of discrete
processes is examined, considering the example of a friction and collision-afflicted sub-process from
an intermitting wrapping machine for confectionary. In this study the software industrialPhysics (iP)
is analyzed regarding accuracy of static and dynamic friction and restitution. The values are verified
by setting up virtual substitute tests and comparing the results with analytically determined values.
Subsequently, prerecorded disturbances are classified, and seven selected elements are simulated in
VC software, recording visual effects and switching the characteristics of sensors. The verification
shows that VC software is generally adequate for the assigned task. Restrictions occur regarding the
computing power required of the built-in physics engine and the resulting reduction of the machine
to be simulated.

Keywords: virtual commissioning; disturbance simulation; packaging machines

1. Introduction

Food production and packaging processes are strongly affected by volatile properties of the
processed biogenic materials and the complex behavior of flexible packaging materials. Combined
with the complexity of discrete processes themselves, those properties cause disturbances of the
process line [1]. To minimize the disturbance, related downtime process control needs to be improved;
for example, by enhancing the human–machine interaction with interactive assistance systems, helping
to combine different sources of knowledge. A framework for solidly designed interactive assistance
systems was for instance proposed by Wandke in 2005 [2]. According to Allais et al. the process-relevant
sources of knowledge can be represented by using three different kinds of models: models for human
expertise, models for data or physical models [3]. The integration of these models into specific assistance
systems for food processing have already been pursued in several, mostly scientific approaches; e.g., for
processing of dairy (as proposed by Perrot et al. [4]) or baking products (as presented by Edoura-Gaena
et al. and Kansou et al. [5,6]). As stated by Klaeger et al. assistance systems can also improve
human decision-making in cases of process disturbances by helping people to understand the root
causes of disturbances and therewith to remedy disturbances sustainably [7]. Different root causes
of disturbances can furthermore lead to distinctive, temporal switching characteristics of sensors,
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if they are affected by the specific disturbance, which means that during normal operation the recorded
data of the sensor system show a characteristic course over time [7]. Deviations from that course
can indicate the causes of a disturbance. Once connected to a database, machine learning algorithms
could use these characteristics for detection and differentiation to suggest the most likely root causes
of the specific disturbance for the operator’s troubleshooting. Therefore, the measurement data
recorded by multiple sensors within the process are combined by special algorithms to improve
the operator’s process-monitoring capabilities. This approach of implementing such multi-sensor
process-monitoring systems and data processing technologies is already being researched much, in the
field of manufacturing systems, for example [8].

To achieve a good performance of the operator assistance system, initial training of the machine
learning algorithms is conducted. This requires sensor data to be recorded at the machine and then
preprocessed as a feature matrix. For supervised machine learning to classify disturbances, labelled
data additionally needs to be made available [9], which needs to contain data about nominal production
or information about the current disturbance. For discrete processes, generating these data implicate
the following challenges: Due to the complex interactions between volatile product properties and
environmental influences, a ground truth of the recorded nominal data cannot be defined [10,11].
They contain statistical deviations over time, the altitude of which depends on the process under
consideration [12]. Furthermore, packaging processes are predominantly fast running processes,
which is why particular attention must be paid to the correct time synchronization of the disturbances
recorded by the operator and the raw senor data [11]. Finally, packaging machines are special-purpose
machines designed for a specific task and product range [10], which limits the transferability of an
assistance system from one machine to another. Therefore, the learning process of such assistance
systems can benefit from the use of simulation tools to generate artificial process and sensor data.

For discrete processing, virtual commissioning (VC) software can theoretically be used to simulate
switching characteristics influenced by simulated process disturbances. VC software is already in
use to verify the control code of new machinery and installations to shorten their development
process [13]. Furthermore, there are many approaches being researched to use VC software during
the entire life cycle of a machine. One of these approaches focuses on the connection of virtual
reality technology to VC software, enabling several new applications during the commissioning and
production phase (for example, customer presentations, operator training, safety validation and hybrid
system analysis) [14,15]. Another use case under investigation is the parallel simulation of operation,
which can be used for production planning or process control [14,16]. A third approach investigates
whether VC software can additionally support the reconditioning process of old machines [17].
However, none of these approaches focus on the process disturbances and their effect on sensor data
within a VC model.

Therefore, this paper specifically addresses the machine models built within VC software. In this
context, the modelling depth of machines varies greatly depending on the requirements of the
simulation [18]. To describe the kinematic and physical behavior of a discrete process, a detailed
process model is required [19]. Available VC software uses physics engines to calculate the interaction
between the model’s objects, considering the kinematic and physical behavior of rigid bodies [20].
A physics engine is computer software that, in the context described, enables the modelling of a free
material flow within the simulation, taking the geometry of the objects; physical properties, such as the
masses of the objects and their centers of gravity; and parameters such as friction and restitution into
account [21]. Boeing et al. compared the performances and accuracies of different physics engines by
using basic scenarios, such as the bouncing of a ball [22]. Hummel et al. extended this comparison by
testing the collision and friction behavior of the engines, using scenarios that are more complex [23].
Within their study the collision and friction behavior of the engines was tested by screwing a screw
into a nut and the contact behavior by pushing a slider at constant force against a module, fixed within
a shaft. Both studies show an overall sufficient physical behavior of the different engines in computer
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game and aviation applications respectively. Depending on the scenarios, the performances of the
different engines vary widely.

A commonly used engine is BulletPhysics, which is a free and open-source software library for
multibody simulation (MBS). Its main advantage consists of the capability of calculating simple systems
in real-time, which is why this library seems to be very suitable for the VC of packaging machines and
equipment for processing piece goods. Within the engine, rigid bodies are represented by triangulated
surfaces (see Figure 1).
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Figure 1. Triangulated surface of a cylinder based on [24].

The mass parameters and the inertia tensor are deduced from the triangulated surfacess of the
bodies and the specification of the density. By numerical integration of the density over the surface’s
constrained volume, the body’s mass is derived. Afterwards, the inertia tensor is derived by numerical
integration of the quadratic distance from each surface point to the center of gravity over the surface’s
constrained volume multiplied with the density value.

Rigid body contacts are identified by applying a virtual convex hull around the bodies and
calculating their distance by using the Gilbert–Johnson–Keerthi-algorithm. The performance of
this library is achieved by using an impact-based approach for simulating rigid body interactions in
association with the semi-implicit-Euler-integrator for solving the dynamic system equations [25].
Certainly, the impact-based contact approach and the used integrators are conducive with regard to
the simulation speed, but not to the accuracy, which cannot be compared to simulation applications
like the finite element method (FEM). Common approaches for rising this accuracy, e.g., reducing the
simulation step size or avoiding numerical damping, are not applicable. Besides the accuracies of
the engines used, real-time calculation of VC software is also limited to a few, geometrically simple,
rigid bodies (e.g., cuboid, sphere) [26]. Objects that are more complex take longer to be calculated [20].
This represents a particular challenge for simulating packaging processes, since they often involve
fast-running machines and a high output of geometrically complex products. In addition, other aspects
restrict the use of VC software based on these engines to simulate packaging processes: VC software is
not able to model complex motions of machine parts, such as the cam mechanism [20]. It is also limited
to a rigid body simulation, which restricts the modelling of certain process steps, such as cutting or
forming to a black box model. Products like fluids or paper cannot be modeled within the software at
all [27].

In conclusion, this paper aims to answer two main questions in order to determine whether
VC software has the ability to generate suitable test data for machine learning algorithms and hence
shortens learning times by addressing the aforementioned challenges regarding the test data of
discrete processes:

1. With what accuracy can VC software simulate process disturbances?
2. Is the accuracy achieved sufficient to depict the effect of real operational machine behavior?

The accuracy is tested by creating and verifying a model within the VC software, calculating the
model error and proposing the evaluation of the simulation results. The second question is addressed
by a model analysis simulating normal and disturbed machine operation. The resulting deviations
in the process simulation and switching characteristic of the sensor lead to a statement about the
applicability of VC software for the assigned task.
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2. Materials and Methods

2.1. Preliminary Remark on the Applied Method

Within the simulation study, the steps model building, verification and model analysis were
conducted as described in [28]. The first step includes the abstraction and implementation of the
machine system in the simulation software used, in such a way that the aforementioned questions of
the simulation study can be answered. Within the verification, the correct implementation of the model
and its physical behavior are examined. Subsequently, the model analysis was conducted by varying
the input parameters of the model to simulate different scenarios. The model can be used to improve
the understanding of a process or to generate data about the process. Due to its high effort involved
in on-site production, the validation of the model was skipped initially, and the model parameters
(e.g., friction coefficients) were estimated based on empirical values. The great experimental effort
made to determine these model parameters was based on the many complex interactions of volatile
product properties and environmental influences that occur in relation to the process (for example,
product dimensions, ambient temperature and the properties of the processed biogenic materials).
Nevertheless, to ensure that the process is shown correctly within the simulation, the simulated process
was visually compared to the process on the real machine. By specifically varying the empirical
parameter values within the model analysis, the simulated machine process and therewith the recorded
sensor data over time are affected. Thus, the potential of the VC software to simulate changes within the
switching characteristics of sensors resulting from process disturbances is investigated by comparing
the recorded data of disturbances to data of the undisturbed process.

2.2. Model Building of the Feeding System of a Wrapping Machine

The disturbance simulation is exemplarily carried out on a virtual model of the feeding system of
an intermitting wrapping machine for confectionary. Preparing this model, the programmable logic
control (PLC) and the simulation model of this machine are combined to a software-in-the-loop test
configuration, as shown in Figure 2. Within the configuration, the components were connected via a
transmission control protocol/internet protocol server. A real-time calculation of the machine model
was not required, since the final aim of the simulation was the generation of sensor data and not testing
the PLC. For this purpose, the control code of the machine was executed as an emulated machine
control (SoftPLC) within the PLC programming environment. The machine was modeled in the VC
software industrialPhysics (iP) Version 2.1, which uses, according to the program settings, the physics
engine BulletPhysics, mentioned above, to calculate interactions between objects. For feasibility tests,
it is neither necessary nor practical to simulate the whole machine, due the effort involved in creating
the simulation model and because of the mentioned limitations of the VC software.
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Figure 2. Structure of the virtual commissioning test configuration based on [19].

The modelling process is based on the CAD data for the feeding unit of the wrapping machine.
The schematic structure of this sub-system is shown in Figure 3. Within the packaging process,
confectionary is transported by conveyor belts, separated by a gear and conveyed to the following
process units by a cam belt. Several sensors monitor the process.
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Figure 3. Schematic structure of the investigated machine.

The machine model for the VC study is generated using the following four steps: Importing the
CAD-data into the simulation software add setting their collision behavior; then setting the coefficients
of friction and restitution; and finally, defining their kinematic behavior [24].

2.3. Verification of the Model

To verify the accuracy of the software calculating the physical parameters, substitute tests are set
up. Correctly simulating the physical behavior of the parameters for friction and restitution directly
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affects the results of the analysis, as these parameters are specifically used to conduct the disturbance
simulation. Therefore, it is necessary to determine their accuracies and whether they can be influenced
by varying the sampling rate of the simulation or not. To test this convergence of the calculation, the
virtual experiments were conducted with sampling rates (SR) of 10 and 5 ms. As the computation
of the physics engine BulletPhysics is not necessarily deterministic, each test is repeated ten times
to enable calculation of the mean value and variance of the measured values [29]. Subsequently, the
results of the virtual substitute tests are compared with analytically determined values to calculate the
relative error of the virtual model.

The generic coefficient of friction implemented in the VC software does not distinguish between
static and dynamic friction, but both scenarios occur within the process under consideration. To test
both scenarios anyhow, an inclined plane following Troll et al. is adapted (see Figure 4) [30].
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For verifying the static friction behavior, a product is placed on a horizontal plane, and then
rotated at a constant angular speed, and the angle at which the product begins to slide is determined.
This angle αS can also be calculated analytically according to Equation (1) based on the coefficient of
static friction µS between plane and product:

αS = arctan(µS) (1)

To verify the dynamic friction, the plane is placed in an angular position with an angle α greater
than the static angle of friction αS, to ensure that the product starts sliding immediately when starting
the simulation. The plane is rotated in horizontal position with a constant angular speed while the
product is first increasing and then reducing its velocity. The coefficient of dynamic friction µD can
be determined analytically based on the angle αD, at which the product slides with constant velocity
according to Equation (2):

µD = tan(αD) (2)

To verify the coefficient of restitution, a product is pushed out of resting state with changing
velocities v1 during the impact along a horizontal plane (see Figure 5)
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Calculating the difference in velocity (v1, vP, v′1. v′P) before and after the impact of the participating
elements according to Equation (3), the coefficient of restitution k is determined by:

k =
v′P − v′1
v1 − vP

(3)
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Assuming that the velocity of the component remains constant after the impact (v1 = v′1 = vcoll)
and the initial state of the product is vP = 0, Equation (3) simplifies to Equation (4):

k =
v′P − vcoll

vcoll
. (4)

2.4. Disturbance Simulation

To investigate the machine model’s feasibility of simulating process disturbances in sufficient
accordance with reality, possible disturbances of the example machine are recorded on-site under
production conditions at a confectionary packaging company and are compiled to a disturbance list.
Subsequently, all disturbances that cannot be simulated using VC software are not considered in detail
within the simulation study. Three independent criteria regarding process and software are therefore
taken into account:

• Can the process and disturbance-relevant behavior of the object be represented as in the model of
rigid bodies?

• Can the process be modeled with 3D-CAD tools?
• Can the sensors be represented within the VC software?

The established criteria are based on the limitations of VC software to calculate the kinematic
behavior of rigid bodies [20]. To take all affected parts of the process into account, the criteria differ
depending on the considered machine level (the product and working tools, the process itself or the
sensors). The first criterion is based on the restriction of the software to rigid bodies with regard
to the products and working tools of the machine. The second one takes the restriction to rigid
bodies and kinematic handling operations into account, regarding the process conducted on the
machine. For instance, incorrectly wrapped confectionary cannot be simulated because of the product
characteristics of the foil and the affected forming process. The third criterion addresses the limitation
of VC software’s simulated sensors regarding detecting the kinematic or geometric properties of a
product. An instance of a not-representable disturbance is the detection of chocolate pollution on the
wrapped product, as an optical sensor cannot be modeled.

The disturbances meeting all three aforementioned criteria are hereafter assigned to one of four
classes. As shown in Table 1, these classes are set up with regard to the effects of the root causes on the
process and supplemented by examples from the list. The interactions between several products and
the machine are considered by classifying the disturbances in terms of their impacts on the discrete
process; hence, this classification method is transferrable to other discrete processes. The first class
includes disturbances wherein the relevant effect results in an additional location of friction within the
process (for example too high products with contact to the upper guide rail). Disturbances within the
second class are based on an additional location of an impact load. The root causes of disturbances of
the third class provoke an immediate change of the product position within the process flow. Eventually,
the causes of disturbances of class 4 affect the sensors directly by forcing their variables.

Table 1. Classification of disturbances representable within virtual commissioning (VC) software.

Class 1 Class 2 Class 3 Class 4

Effect Additional friction Additional impact Position change Forcing sensor variable

Example Products too high Edge between
conveyor belts Broken products Contaminated sensor

Simulated via Changing product
geometry

Changing machine
geometry

Changing product
geometry

Affecting switching
characteristic

When choosing the disturbances to simulate, it is paramount to consider as many different root
causes of disturbances as possible (e.g., machine settings, machine contamination, broken products,
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deformed products). The disturbances are simulated by modifying physical and geometrical parameters
within the model (see Table 1). Therefore, the coefficient of restitution or friction is changed, the product
or machine dimensions are adapted or a sensor signal within the machine model is set to a certain
value. However, the simulative implementation of the cause of disturbance does not influence the class
allocation. Changing the product geometry can be a modification of the outer product dimensions,
as in the first class, or a division of the product into two parts, as in the fourth class. This changes
in the model lead to a temporal switching behavior of the sensors, which is recorded. Interactions
between different root causes of disturbances are not taken into consideration within this first step of
examination. The simulation’s SR is set to 5 ms. To generate comparative data, an undisturbed process
simulation is recorded as well. The results of the simulated process are evaluated visually during the
simulation and analytically by comparing the recorded data of the switching behavior of the sensors
over time.

3. Results and Discussion

3.1. Results of the Model Building Process

At first, the model was built within the VC software. To generate an error-free material flow
through the machine sub-system, constructive adjustments were made in the relevant CAD-data,
because the physics engine applies a collision margin of 1 mm to the simulated objects, as shown in
Figure 6 [25]. Using the unadjusted CAD-files would lead to a geometrical error, exemplarily in the
case of the product height. As the product height is below 10 mm, an additional margin of 1 mm
on each side, added by the engine, leads to a geometrical deviation of more than 20% within the
simulation. After building the model and conducting the simulation without disturbances, restrictions
regarding the accuracy of the simulated material flow and simulation speed are determined. In the
area of the gear (see Figure 3), a geometrically complex sorting process takes place. This process is
not simulated correctly. This effect correlates with the statement in Hofman that objects smaller than
100 mm can cause instabilities within the calculations of the physics engine [31]. Therefore, that part of
the gear is excluded from further analysis. Furthermore, time expansion already occurs when only this
part of the machine is simulated with around 100 moving products, which limits the extension of the
model to other machine parts subsequently.
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3.2. Results of the Verification

To conduct the experiment for static friction, the corresponding coefficient was set to default in the
VC software, µS = 0.25, which leads to an angle of αS = 14.04◦ (Equation(1)). The results depictured in
Figure 7a) imply that the coefficient is very sensitive to the SR. At a SR of 10 ms, the product slightly
starts sliding prior to the analytically calculated angle αS and the velocity of the product vibrates
during simulation. At a SR of 5 ms the accuracy increases, the product starts sliding at the angle αS

and vibration disappears.
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The coefficient of dynamic friction is generally lower than the static one. Due to the similarity
of the experiment with Troll et al., the coefficient of dynamic friction is set to µD = 0.15 too [30].
The verification of the coefficient of dynamic friction shows a sequence of velocity, as exemplarily
depictured in Figure 7. For both SRs, a step in velocity before reaching the angle αD is visible.
Furthermore, the velocity starts vibrating when converging to zero. According to Equation (2), the
mean coefficient of friction µD varies from 0.1521 ± 0.0009 (10 ms SR) to 0.1517 ± 0.0016 (5 ms SR) with
relative errors ∆µD of 1.43% (10 ms SR) or 1.15% (5 ms SR) respectively, those being only marginally
smaller with lower SR. Contrarily, the variance of the measurement data recorded at a SR of 5 ms is
almost twice the variance at 10 ms SR.

To verify the coefficient of restitution, it is set to k = 0.4 and the velocity of the component pushing
the product is increased from vcoll = 0.2 m/s to vcoll = 0.5 m/s following [30]. The verification of the
coefficient of restitution shows an overall decreasing relative error and a decreasing variance with
increasing simulation’s SR (Figure 8), except at the product velocity of vcoll = 0.45 m/s. Depending on
the scenario, both values fluctuate heavily. The maximum errors of the measurement data are 6.47%
(SR of 10 ms) and 5.34% respectively (SR of ms).
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The model verification reveals anomalies regarding the model calculation. Both experiments to
verify the coefficients of friction show vibrations in velocity when converging to zero. In Hummel
et al. the same behavior is described when using the engine BulletPhysics, which is explained with
the impulse-based calculation algorithm applied within this engine [23]. This algorithm tends to
get unstable when calculating stationary contacts [24]. Furthermore, an unwanted step in velocity
within the verification of dynamic friction and a situational fluctuation of the model error within the
verification of the coefficient of restitution are determined. The data recorded from all substitute tests
are published alongside the manuscript as supplementary materials.

Despite those anomalies and by comparing the experimental values to the analytically ones, the
program shows a generally sufficient physical behavior for the intended purpose. As to be expected,
the calculated parameters for static friction and impact converge to the analytically determined ones
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when reducing the simulation’s SR, contrarily to calculating dynamic friction. A final statement on the
relevance of the anomalies and the relative error of the model needs to be supported by a validation
with real machine data.

3.3. Results of the Disturbance Simulation

For the simulation of disturbances, 28 out of 99 items on the compiled disturbances list meet
the criteria to be simulated. Those disturbances are classified according to Table 1, whereat five are
assigned to class 1, two to class 2, 15 to class 3 and six to class 4. Seven out of this 28 disturbances are
exemplarily simulated in the set up model. From the disturbances assigned to class 1, the scenarios of an
overly-low, adjusted upper guide rail and of overly-high products are simulated. The event conducted
from the second class is an edge between two conveyor belts. As the third class contains the most
disturbances, three examples were chosen to be simulated. The root causes of disturbances considered
are broken products, products with lateral product remains from the previous production process
and a contaminated conveyor belt. Eventually, from class 4 a contaminated sensor is represented in
the model.

All of those seven disturbances have a visual impact during simulation and an impact on the
recorded switching characteristic of the sensors. By comparing the simulated disturbance scenarios
to the real one, different visual effects on the process can be identified. These visual effects are, for
example, gaps within a group of products for classes 1 and 3, and a misalignment of products for
class 2 and class 3, which, in case of class 3, partly causes products being sorted out. Disturbances of
class 4 have no immediate impact on the process, but the machine runs out of products because the
request for new products is stopped by the PLC. A similar visual effect can be detected simulating
class 3 disturbances over a longer period of time, caused by sorted out products. Overall, the visual
effects highly depend on the location of the root causes of disturbances and the functions of the affected
sensors, which is why visual effects cannot be narrowed down to a specific class exclusively.

Each visual effect interrelates to a similar deviation in the switching characteristic of certain
sensors, regardless of the disturbance root cause. Here, all sensors within the considered machine
sub-system are photoelectric sensors. Switching characteristics are exemplary illustrated in Figure 9,
compared to the data of an undisturbed production. As all sensor signals are binary data, signals 2
and 3 are multiplied by the factors 1.2 and 1.4 for better readability. Figure 9a shows the recorded
time courses of the first three sensors while simulating products too highly, a disturbance of class
1. The disturbance results in additional short periods of the sensor not detecting products, due
to additional friction between the product and the upper guide rail. The switching characteristics
of sensor 2 and sensor 3 also show occasional short times not detecting products. The simulation
of an upper guide rail too low adjusted shows a similar switching characteristic. Therefore, this
effect is consistently observable with different disturbances of class 1. Figure 9b shows the impact of
misaligned products on the switching characteristic when exemplarily simulating an edge between
conveyor belts, a disturbance of class 2. This disturbance causes a variation in the actuation time
period of the involved sensor. Two disturbances of class 3, the lateral product remaining and the
contaminated conveyor belt, show similar influences on the switching characteristics of certain sensors.
Figure 9c shows the switching characteristics resulting from simulating a contaminated sensor, a
disturbance of class 4, provoking the machine to run empty. All sensors sequentially stop detecting
products, according to their positions along the feeding unit, whereas the contaminated sensor shows
a permanent actuation. Simulating the machine running empty by modelling a disturbance of class 3
results in similar switching characteristics, even though in this case all sensors stop detecting products
and changes in the switching characteristics occur later, as there are still products arriving.
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Altogether, it was possible to determine a reasonable outcome of the simulation model for all
four classes of disturbances. Thus, VC software is generally able to generate test data for machine
learning algorithms. When compared to the normal operational behavior of the machine, all simulated
disturbances show logical deviations visually on the process and in the switching characteristics of the
sensors. The amount of the deviation and the position of the affected sensor are strongly dependent on
the considered disturbance.

4. Conclusions

This paper investigated the applicability of VC software to creating test data for machine learning
algorithms. Therefore, a feeding system of an intermitting wrapping machine for confectionary was
modeled within this software. Subsequently, replacement tests were carried out within the model
verification to examine the model error. In the following model analysis, selected disturbances of the
real machine were simulated and evaluated with regard to their effect on the process and the switching
behavior of the sensors. To determine whether VC software has the ability to generate suitable test
data for machine learning algorithms or not, this paper aimed to answer two main questions:

1. To what accuracy can VC software simulate process disturbances?
2. Is the achieved accuracy sufficient at depicting the effect of real operational machine behavior?

With regard to the first question, the first restrictions regarding the feasibility of VC software were
determined when building the simulation model. Due to the size of this model, a time expansion
occurred during simulation. Furthermore, restrictions regarding the calculation accuracy of geometrical
complex and small parts were determined, which limits the transferability of the results to machines
with a few, simple processing operations. Within the verification of the model, the overall, sufficient
physical behavior and therewith the feasibility of the software for the intended purpose were determined
anyway, with a maximum model error of 6.47%. Nevertheless, anomalies regarding the calculation of
the physical parameters were identified.

Concerning the second question, the model analysis showed that only a limited number of process
disturbances occurring on the machine can be simulated within the VC software. This restricts the
proposed use of VC software to processes fulfilling the criteria set up in this paper. The disturbances
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that could be modeled with VC software were assigned to four classes. Changes in the sensor’s
switching characteristics were determined in all four classes of disturbances and therefore an effect on
the operational behavior was identified by simulating disturbances.

Eventually it was shown that VC software is generally usable for generating test data for machine
learning algorithms focusing on simple discrete processes. The successful application of the software in
this area can help to overcome the previous problems with the recording of process data. Therefore, the
software enables investigations that focus specifically on individual disturbances and the normative
operating behavior of the machine. By applying this method to a new machine it can finally help
setting up an operator assistance system at the stage of initial commissioning.

Nevertheless, the correctness of the recorded data might be influenced by the error of the software’s
calculation of parameters, as the root causes of the disturbances, on one hand, were implemented
by varying these parameters, and on the other hand, cause effects related to these parameters.
The influences of the model error on the wrapping process and the recorded data have not yet been
investigated. An aspect of future research is therefore investigating the sensitivity of each parameter on
the process and on switching characteristics separately. This will help determining the influence of each
parameter’s error on the model and the generated data. Another step for investigating the suitability
of the generated data to train an operator assistance system is the validation of the model. The model’s
parameters need to be aligned to the parameters of the real system. Furthermore, the generated sensor
data needs to be compared to the real system as well. Based on these results, interactions between root
causes of disturbances, as they occur within the real process, could be simulated.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-1702/8/2/19/s1.
The data recorded from the substitute tests are published alongside the manuscript. The data sets regarding static
and dynamic friction contain the simulation time in ms, the horizontal distance of the center of gravity of the
product to the joint in mm and the angle of the plane in. Each set is referred to the time in the control software
(real time). The data regarding the calculation of the restitution coefficient contain the simulation time in ms
and the horizontal position of the product and the pusher in mm. Each set is referred to the time in the control
software (real time) as well. The data concerning the machine, including CAD and sensor data and disturbances
analyzed in this paper were collected from commercial enterprises as part of a research project and are subject to a
confidentiality agreement. Therefore, a disclosure is legally not possible.
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