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Abstract: Reconfigurable Manufacturing Systems (RMSs) rely on a set of technologies to quickly
adapt the manufacturing system capacity and/or functionality to meet unexpected disturbances,
such as fluctuation/uncertainty of demand and/or unavailability/unreliability of resources. At the
operational stage, such disturbances raise new production requirements and risks, which call upon
Decision-Makers (DMs) to analyze the opportunity to move from a running configuration to another
more competitive one. Such a decision is generally based on an evaluation of a multitude of criteria,
and several multi-criteria decision-making (MCDM) approaches have been suggested to help DMs
with the reconfiguration process. Most existing MCDM approaches require some assignment of
weights to the criteria, which is not a trivial task. Unfortunately, existing studies on MCDM for an RMS
have not provided guidelines to weigh the evaluation criteria. This article fills in this gap by offering
a framework to set up such weights. We provide a comprehensive set of quantitative indicators to
evaluate the reconfiguration decisions during the operation of the RMS. We suggest three weighting
methods that are convenient to different levels of DM expertise and desired degree of involvement in
the reconfiguration process. These weighting methods are based on (1) intuitive weighting, (2) revised
Simos procedural weighting combined with the Technique for Order of Preferences by Similarity to
Ideal Solution (TOPSIS), and (3) DM independent weighting using ELECTRE IV. The implementation
of the suggested framework and a comparison of the suggested methods carried out on an industrial
case study are described herein.

Keywords: reconfiguration; multi-criteria decision making; SIMOS procedural weighting;
TOPSIS; ELECTRE

1. Introduction

Manufacturing systems should have the ability to be react not only to design innovation, mass
customization, and technological evolution [1], but also to disturbances and risks that occur at the
operational stage, such as fluctuation/uncertainty of demand and/or unavailability/unreliability of
resources [2], Reconfigurable Manufacturing Systems (RMS) have appeared as a new paradigm to
provide advanced software, hardware, and decision-making techniques to increase the responsiveness,
flexibility, and resilience of manufacturing systems to react to change, disturbances, and risks [3].
RMS is designed at the outset for a rapid change in structure to adjust the production capacity
and/or functionality quickly within a part family in response to sudden changes in manufacturing
requirements [4,5].
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At the operational stage, the occurrence of disturbances and risks call upon Decision-maker
M (DM) to analyze the opportunity to switch from a running configuration to a more competitive
one. Among the available reconfiguration approaches (cf. Section 2), multi-criteria decision-making
(MCDM) assists with the selection of one configuration from several available options based on their
performance according to several criteria [6]. The majority of existing MCDM approaches require some
assignment of weights to the criteria, which is usually entrusted to DM, who are typically asked to
give their preferences by prioritizing the criteria [7].

Criteria weighing is, unfortunately, a nontrivial task for numerous reasons. To set up the weights
of the criteria, the DM should have a sufficient experience regarding the system, as well as familiarity
with, and knowledge of, the special MCDM mechanisms and subtleties/intricacies, both of which are not
always verified. Furthermore, in certain situations, DM may not wish to provide weights—for example,
when they are uncomfortable or unwilling to deal with the handling of numerous or conflicting criteria.
Moreover, several DMs can have conflicting opinions regarding the weights of the criteria, and a poor
assignment influences the quality of the selected solution. Nevertheless, weights are frequently set
apart from indicators by experts based on human judgment and opinions.

The weighing scheme is therefore important, where it reflects the opinions of experts and allows
considering the priorities among a company’s production strategies and objectives. This significant
scheme is subjective and sensitive to variations due to the different appreciations of experts and the
possible divergence in their opinions and points of view. Unfortunately, existing studies applied MCDM
to RMS have not offered guidelines or weighing schemes to set up the weights of the criteria. A major
limitation in existing research is associated with the way the weights are assigned to decision criteria.

This paper fills this gap by providing a framework for setting up the weights of the criteria.
After reviewing related works in the next section, the third section provides a comprehensive set
of quantitative indicators to evaluate the reconfiguration decisions during the operation of an RMS.
In the fourth and fifth sections, a reconfiguration framework for a manufacturing system based on two
MCDM techniques is presented. Three weighting methods are suggested, which are convenient to
different levels of DM expertise and desired degree of involvement in the setup of the reconfiguration
process, namely both an intuitive and revised SIMOS procedure weighting using TOPSIS, and DM
independent weighting using ELECTRE IV. Section 6 provides an implementation of the suggested
approach as well as a comparison through an industrial case study. Finally, Section 7 concludes the
paper and draws future research directions.

2. Related Studies

A substantial amount of research has been directed towards designing modular equipment [8]
and flexible control architectures to enable manufacturing system reconfiguration and to provide
increased resilience and agility [9]. Several studies have analyzed the degrees/levels of flexibility [10]
and reconfiguration [4] of different manufacturing systems. Many researchers have focused on highly
technical and complex industries, with high value-added products and a high level of automation. Some
areas of focus are related to the automotive industry (e.g., gearboxes and car engine assemblies) [9], the
telecommunication and electronics industries (e.g., phones, computers, and printed circuit boards) [11],
and the aerospace industry (e.g., airplane wing assemblies) [12]. In turn, industries manufacturing
low added-value products, produced in a small series, and involving manual operations, such
as the garment/clothing, furniture, and electro-mechanical industries (e.g., aircraft or automotive
engine parts) have gained less attention [11]. In this article, we address such an electro-mechanical
industry, namely, the electro-submersible pump (ESP) assembly industry, which is characterized by a
semi-automated process, including manual and automated operations, low production volumes, and
high customization.

In studies conducted on RMS, various types of events and changes that trigger reconfiguration
have been addressed:
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• Changes in production volume: This is known as a scalability problem and is related to demand
fluctuations and variations in the required production amount [13].

• Changes in functionality: This is known as a convertibility problem and is related to
the introduction, upgrading, or modification of new products or process capabilities or
functionalities [14].

• Changes in requirements: This is related to a modification of the technical specifications of a
product. In this case, the aim is to find the configuration that best encounters the required
specifications [15].

• Changes in resource availability or reliability: This refers to the operating status of the production
resources and equipment. Examples of such changes are breakdowns or failures in machines [13].

• The different types of changes have motivated researchers to tackle them from
different perspectives:

• System engineering: From this perspective, researchers have focused on finding configurations
that best encounter the required customer specifications [15].

• Planning: From this perspective, researchers have focused on determining, in advance, the
sequence of configurations that best cope with the predicted changes over numerous time
periods [11].

• Monitoring and control: From this perspective (i.e., at run-time or production execution),
researchers have considered a reconfiguration as a possible solution enabling the use of the
flexibility of the system to manage disturbances, disruptions, and risks. It is worth mentioning
that only very few authors have tackled the configuration from this perspective [16].

The present study is particularly interested in the perspective of monitoring and control, in which
the problem is to specify how to select the best move from one current configuration to another under
the occurrence of disturbances, disruptions, and risks during the operational stage (i.e., at run-time or
production execution).

2.1. Multi-Criteria Decision Making for RMS

MCDM approaches have been used to deal with a wide array of problems in the field of
reconfigurable manufacturing. MCDM techniques help with ranking alternatives and computing their
final priorities by applying additive formulas, such as in the analytic hierarchy process (AHP) [17], fuzzy
AHP [18], analytic network process (ANP) [19], Fuzzy ANP [20], ELECTRE III [21], PROMETHEE [22],
and TOPSIS [22].

Some researchers have dealt with the design stage of an RMS, and have focused on numerous
related aspects, including the overall design of the system architecture [21], the system component
selection [22], the configuration design [23], or the process planning selection [22]. Some
researchers have considered strategic indicators (e.g., the convertibility, scalability, maintainability,
and reliability) [24], or indicators referring to the cost, reconfigurability, and quality [25]. Such studies
have assumed that all variations in the technological evolutions and production scenarios are known a
priori at the time of designing the system. In fact, such assumptions are mostly unrealistic and can
often yield results that are substantially poorer than expected in the long or medium term, and at the
execution stage of the system.

Performance criteria at production execution include indicators that measure the operational
performance (product blocked time, throughput, product earliness, machine utilization, and product
lateness) [26], and indicators associated with the reconfigurability, quality, cost, and performance [27].
Indicators associated with operators and inventory have also been considered [18]. The skills of the
operator acquired by experience and training are assessed using indicators related to human factors.
However, none of these indicators are considered at the time of evaluating the move from the current
configuration to another approach (i.e., evaluation of the decision of a reconfiguration).
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In these studies, the researchers rely on the assumption that the reconfiguration tasks (such
as removing/adding/rearranging machines and resizing/relocating the storage buffers) are trifling
and do not have any impact on the indicators related to the operational stage, which is far from
reflecting the constraints and real operating conditions on the shop floor. Indeed, these tasks are mostly
time-consuming, costly, and different in their configuration. In this regard, to consider such limitations,
Cheikh et al. [17,28] developed indicators related to strategic, operational, and human factors.

Bensmaine et al. [24] conducted the only study coupling a variant of TOPSIS with simulated
annealing to handle the process planning generation in an RMS. To the best of our knowledge, TOPSIS
has been addressed only in [24] for a configuration selection for an RMS operation, although the authors
did not consider the ergonomic indicators. TOPSIS was also used in [24] to obtain an evaluation of the
reconfiguration decisions that are more realistic and based on both ergonomic and technical indicators.

This article extends our previous study [24] by developing a more comprehensive classification of
operational (regarding the dynamic behavior of the system) and strategic (regarding the process of
reconfiguration) criteria that need to be considered when reconfiguring an RMS during production
execution. Considering a more comprehensive set of criteria allows for refining the description of
the context in which a disturbance occurred and enables better advised decision-making. We further
provide a multi-criteria evaluation and decision-making framework to reconfigure manufacturing
systems when considering both DM dependent and independent weighting schemes. In reality, not all
DMs have a sufficient experience and expertise that qualify them to weight the selection criteria and,
in many cases, the expert does not want to intervene in the decision-making process. The suggested
framework tackles these two issues by offering indirect weighting using the revised SIMOS method
and independent weighting using ELECTRE IV.

2.2. Weighting Schemes

The majority of existing studies using MCDM in RMS-related problems depend on the DM
judgment to assign the weights of the criteria. Some authors considered a random generation of a set of
weights and assigned them randomly to the criteria [22]. A sensitivity analysis is also used to examine
the quality of the obtained selection. In many cases, random weighting methods lead to assigning low
weights to highly important criteria and vice versa, which in turn result in making poor decisions.
Other researchers have dealt with vagueness and uncertainty in DM preferences applying triangular
fuzzy sets [20]. In such a context, experts allocate fuzzy preference relations to the criteria, and the
consistency is characterized using the transitivity. For instance, for a criterion m, if a configuration ni is
favored to configuration ni+1, which is favored over configuration ni+2, then configuration ni must be
favored over configuration ni+2. However, it is not easy to ensure (or rely on) consistency in situations
in which numerous configurations are able to cope with a current disturbance scenario.

From this extensive literature analysis, we can point out that no studies considered have considered
a DM independent weighting scheme. This article fills in this gap by providing a framework to set up
the weights of the criteria based on three weighting methods that are convenient to different levels of
decision-making expertise and the desired degree of involvement in the reconfiguration process.

3. MCDM Reconfiguration Framework

The focus of this study is on developing a decision support system (DSS) to help DMs make
the best reconfiguration decision during the production execution stage. To cope with changes and
disturbances, the DSS assesses a set of capable (candidate) configurations and selects the most suitable
one when considering a MCDM approach. To set up the weights of the criteria, we developed three
methods convenient to different levels of DM expertise and the desired degree of involvement in the
reconfiguration process (see Figure 1):

• intuitive weighting through direct DM involvement;
• indirect weighting through a revised SIMOS procedure weighting; and
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• DM (DM) independent weighting.
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Figure 1. MCDM reconfiguration framework.

A set of criteria quantifying numerous aspects of the reconfiguration decision are used to evaluate
the candidate configurations. These criteria are categorized into three classes:

1. Discrimination criteria are used to evaluate the ability of the configurations to meet the new
production requirements, which includes the resource unavailability (RUN) and throughput
satisfaction (TS).

2. Operational criteria are used to evaluate the dynamic behavior and performance of the candidate
configurations, which are composed of two types, namely configuration and resources indicators.
The configuration indicators measure the ability of a configuration to meet the current requirements,
and resource indicators measure the performance of individual modules. Table 1 illustrates
these indicators.

3. Strategic criteria are used to evaluate the effort (i.e., cost or time) needed to move from the
current configuration to a new candidate configuration (i.e., a reconfiguration process). This
effort is assessed as a function of the number of removed/added/relocated buffers, machines, and
operators. Table 2 shows these indicators.

Table 1. Operational criteria.

Configuration Indicators. Resource Indicators

Criterion Notation Criterion Notation Criterion Notation

Earliness ET Work in Process WIP Module
Utilization MU

Lateness LT Nearest to Required
Throughput NRT

No of Modules NM
Waiting Time WT No operators NLO

Table 2. Strategic indicators.

Criterion Notation Criterion Notation Criterion Notation

No. of Additional
Machines NAM No. of Additional

Buffers NAB No. of Additional
Operators NAO

No. of Removed
Machines NMM No. of Removed

Buffers NMB No. of Removed
Operators NMO

No. of Relocated
Machines NLM No. of Relocated

Buffers NLB No. of Relocated
Operators NLO

The structure of the criteria evaluation framework is shown in Figure 2. More details on these
criteria are described in our previous study (Mabkhot et al. [29]).
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4. TOPSIS Procedure

TOPSIS was first introduced in 1981 by Hwang et al. [30]. As with many MCDM techniques,
TOPSIS compares the available alternatives by normalizing the criterion score, and then finds the
so-called “ideal” solution. Next, the geometric distance between the ideal solution and each alternative
solution is calculated. The main concept is to choose the alternative that has the shortest and
longest distance from a negative and positive ideal solution (PIS and NIS), respectively. TOPSIS is a
compensatory aggregation technique that compares all criteria at once rather than using a pairwise
comparison, such as in AHP. This type of technique tolerates a trade-off among the criteria, where a
good value in one criterion can compensate a poor value of another. Indeed, it enables a more realistic
type of modeling not provided by non-compensatory methods, which exclude or include alternatives
based on certain cut-offs [31]. In TOPSIS, criteria weights set priorities among the criteria, and indicate
preferences to satisfy one criterion over another. The higher a weight is, the more important the
criterion. This article does not claim improving the TOPSIS method. Instead, we suggest two ways to
assign criteria weights within TOPSIS, namely (1) intuitive weighting based on expert knowledge, and
SIMOS weighting.

4.1. Intuitive Weighting

In this method, experts assign weights to prioritize the classes of the criteria. Because the
reconfiguration process aims to cope with new production requirements, any configuration that is
unable to satisfy these new production requirements should not be considered. The discrimination
criteria class examines this ability. Highest priority is given to this class with an accumulative weight
of 0.6 (Table 3). The next priority is assigned to configurations that meet those requirements with a
minimum amount of resources operating with the highest possible utilization rate, which are assessed
using the operational criteria class and are given an accumulative weight of 0.3 (Table 3). The least
priority is given to the strategic criteria class in which, if more than one configuration has the ability to
meet the new requirements with the same operational indicators, the comparison is tackled based on the
time and effort needed to move any of those candidate configurations from the current configuration.
In fact, this class of criteria assesses the reconfiguration process, which is achieved in real-time, and
is given the least priority with an accumulative weight of 0.1 (see the Case study section for the
argumentation and discussion). In each class, the weights of the criteria are assigned equally.
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Table 3. Criteria weights (wj).

Criteria Discrimination Criteria Operational Criteria

Indicators RUN TS NO NM MU NRT LT ET WT WIP
Value of wj 0.3 0.3 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04

Criteria Strategic Criteria
Indicators NAM NMM NLM NAB NMB NLB NAO NMO NLO
Value of wj 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111 0.0111

4.2. Revised SIMOS Procedure

Assigning the weights of the criteria is an extremely difficult task, particularly for experts who are
not used to dealing with the subtleties or intricacies of MCDM techniques. In 1990, Simos [32], [33]
developed a new technique that enables any DMs (even without experience in dealing with a MCDM)
to express their wishes to assign priority for weights of a variety of criteria. The DM is given a pack
of cards and asked simple questions to order the cards, followed by the weights indirectly based on
the answers to the questions. This method aims at communicating to MCDM experts the information
required for assigning a numerical value to the weights of the criteria. Figueira and Roy [34] revised the
original version to overcome some of the method limitations, and Siskos and Tsotsolas [35] improved
some of the robustness issues. Within this framework, we revised the method to assign weights
to a group of 19 criteria, as shown in Figure 2, for helping DMs with low expertise express their
weight preferences.

4.2.1. Collecting the Information

The first step in applying the revised Simos is by writing the name and a short description on
a single card for each criterion and using numerous blank cards (more than 4-times the number of
named cards). The following steps elaborate on the information collection process:

1- The name and a brief description of each criterion g j, j = 1 . . .m, are written on a card. Hence,
there will be m named cards, where m represents the number of criteria (in this case, m = 19 criteria).
These cards should not contain any information that can influence the preferences of the DM.

2- The named cards are given to the DM without any specific arrangement for placement in
descending order, starting from the least important cards on the left-hand side and ending with
the most important card on the right-hand side (). If the DM believes that two criteria have the
same importance, the DM can group them into a subset. In the end, there will be a ranking of the
subsets of the criteria CSr, r = 1 . . .m; here, m represents the number of subsets and 1 ≤ m ≤ m.
As depicted in Figure 3, CSr can be composed of a single criterion, CSr=1, where rank r = 1
consists of criterion g4, or can be composed of two or more criteria, i.e., CS4, which consists of
two criteria g3 and g7.

3- Until now, any two consecutive subsets CSr and CSr+1 have an identical distance between them
equal to the scale unit u (Figure 3). To help the DM conceive the importance of any two subsets of
the criteria, the DM is requested to recognize the distance between them by inserting one or more
blank cards. Each inserted blank card is intended to give an extra unit u distance between their
weights. For instance, in Figure 3, CS2 and CS3 have a distance equal to 3u, which means the
latter is 3u-times more important than the former.

4- In the end, the DM will be requested to say how much the difference in importance is between
the subset on the right-hand side CSm, (the most important) in comparison with the subset on
the left-hand side CS1 (the least important). In other words, the DM will be asked whether
the difference of importance between these two subsets is two-fold, three-fold, or more. This
importance value is the Z-ration that determines the absolute value of each player in the
evaluation scale.
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Figure 3. Schematic of sample cards played by DM during the SIMOS procedure [36].

4.2.2. Algorithm

For each criterion g j, the revised Simos assigns a numerical weight value for = 1, . . . , m according
to three steps [35]:

1- Step 1: Assigning non-normalized weights of subsets Sr

The non-normalized weight k1, . . . , kr, . . . , km is assigned to subset CSr based on its rank r. For
this purpose, let e′r represent the number of white cards between ranks r and r + 1.

Let us define the following:

er= 1 + e′r, ∀r = 1, .. , m− 1

e =
m−1∑
r=1

er

u =
Z− 1

e
retain six decimal places

(1)

Then, kr =


1, f or r = 1

1 + u.
r−1∑
j=1

e j, ∀r = 2,..m− 1 (2)

For kr weights, we use a rounding-off technique to retain two decimal places.

2- Step 2: Apply criteria non-normalized weights inside a subset Sr

Let |CSr| represent the total number of criteria inside a subset CSr. For instance, as shown in
Figure 3, |CSr=3| = 3 (i.e., there are three criteria within CSr=3, which are g8, gm−1 and g5), and
|CSr=4| = 2. Each criterion g j within a subset CSr is assigned the non-normalized weight kr of subset
CSr. Let k′j represent the criterion non-normalized weight g j. Then, for each g j inside a subset CSr,
k′j = kr, ∀ j = 1, . . . , |CSr|. For instance, in Figure 3, k′j=8 = k′j=m−1 = k′j=5 = kr=3.

3- Step 3: Convert criteria into normalized weights

The non-normalized weights k′j, j = 1, . . . , m are converted into normalized weights k∗j using
Equation (3):

k∗j =
100
K′

. k′j, where K′ =
∑m

j=1
k′j. (3)

In the first released Simos procedure [32,33], the normalized weights k∗j are written without
decimal places, where they were rounded into the nearest higher or lower integer value. Nevertheless,
Figueira and Roy [34] remarked that these rounding-up techniques in many cases result in a total
weight that is less than 100, leading to a distortion. In the MCDM contexts, a distortion is not accepted.
To minimize the weight distortion, Figueira and Roy [34] developed the following algorithm:
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4.2.3. Rounding and Minimization of Distortion

Figueira and Roy [34] suggest deriving rounded normalized weights k′′j from k∗j by either one of
three possible options, which is denoted by ϑ as follows:

ϑ = 0 : no f igures a f ter the decimal point;

ϑ = 1 : one f igure a f ter the decimal point;

ϑ = 2 : two f igures a f ter the decimal point.

Using this rounding technique, the following result will be obtained: K′′ =
∑m

j=1 k′′i ≤ 100,
ε = 100−K′′ ≤ 10−ϑ ×m.

(4)

In fact, the value τ = 10ϑ × ε is an integer equal to m at most.
If k j = k′′j + 10−ϑ is suitably selected for the τ criteria and k′′j for the remaining m − τ criteria,

m∑
j=1

k j = 100 will result with normalized weights k j having the required decimal places [34]. Thus, to

obtain the minimum possible distortion of the weights, the τ criterion in which a value of 10−ϑ must be
added is determined using the following algorithm [34]:

1- Step 1

For each criterion g j, the following ratios are determined:

d j =
10−ϑ −

(
k∗j − k′′j

)
k∗j

(5)

which is related to the dysfunction associated with the relative error resulting from rounding up to the
nearest integer, and

d j =

(
k∗j − k′′j

)
k∗j

(6)

which is related to the dysfunction associated with the relative error resulting from rounding downward
to the nearest integer.

2- Step 2

Create two lists, L and L, which are defined as follows:

• List L: This is achieved by ranking the pairs of
(
g j, d j

)
in increasing values of d j.

• List L: This is achieved by ranking the pairs of
(
g j, d j

)
in increasing values of d j.

• Set H =
{
j/d j > d j

}
, and consider |H| as the number of g j criteria in set H.

3- Step 3

The m criteria are divided into two groups (subsets) T+ and T−, where
∣∣∣T+

∣∣∣ = τ and
∣∣∣T−∣∣∣ = m− τ.

The T+ criteria should be rounded upward to the nearest integer, and in contrast T− should be rounded
downward. The division of T is carried out as follows:
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(a) In the case of |H|+ τ ≤ m, T+ is formed with the summation of the m criteria of H and m− τ− h,
which represents the last criterion belonging to L and not H. Thus, list T− is constructed by the
first τ criterion belonging to L and not H.

(b) In the case of |H|+ τ > m, T+ is formed with the summation m− h criterion belonging to L and
not H, and τ+ h−m, which represents the first criterion belonging to L and not H. Thus, list T− is
constructed by m− τ, the last criterion belonging to L and not H.

The results of these steps will be normalized weights k j. The total sum of these k j will be 100,
which is the aim of the distortion–minimization algorithm. The next step is to convert k j into w j and
use it in TOPSIS according to the following formula:

w j = k j/100 (7)

Figueira and Roy [34] and Siskos and Tsotsolas [35] fixed some special cases of the revised
Simos. The case study section provides a detailed example of the revised Simos to reconfigure the
manufacturing systems.

4.3. TOPSIS Algorithm

For an evaluation of n candidate configurations using the m criterion, TOPSIS is accomplished in
the following eight steps [31]:

Step 1: Determine E = [xi j]n×m, the evaluation matrix of which is as follows:

E =


x11 · · · x1m

...
. . .

...
xn1 · · · xnm

, (8)

where xi j represent the performance of indicator j (the third section) in configuration i, assessed
based on the new production requirements triggered by a disturbance.

Step 2: Deduce [dmi j]n×m, the normalized matrix of which is as follows:

dmi j = xi j/

√
(
∑

x2
i j) . (9)

Step 3: Calculate vi j, the weighted normalized matrix of which is the following:

vi j = w j × dmi j, where
∑

w j = 1, and w j are set according to Label (16). (10)

Step 4: Let J+ =
{
j = 1, . . . , f

}
, 1 ≤ f ≤ m, which is related to the set of indicators that have a positive

impact, where these indicators are {RUN, TS, MU, ET}. Let J− =
{
j = 1, . . . , k

}
, 1 ≤ k ≤ m, f +

k = m be related to the set of indicators that have a negative impact, where these indicators are
{NRT, NO, NM, LT, WT, WIP, NAM, NMM, NLM, NAB, NMB, NLB, NAO, NMO, and NLO}.
Calculate the row vector AP of the positive ideal solutions and the row vector AN of the negative
ideal solutions as follows:
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AP =
[
pacx1, . . . , pai j, . . . , paczm

]
,wherepai j =

{
max vi j over all con f igurations i = 1, . . . , n and ∀criterion j ∈ J+;
min vi j over all con f igurations i = 1, . . . , n and ∀criterion j ∈ J−;

An =
[
nacx1, . . . , nai j , . . . . , naczm

]
,

wherenai j =

{
min vi j over all con f igurations i = 1, . . . , n and ∀criterion j ∈ J+;
max vi j over all con f igurations i = 1, . . . , n and ∀criterion j ∈ J−;

(11)

where pai j and nai j are the best and worst values of criterion j recorded over all configurations.
Step 5: For each configuration i, calculate distance S+

i from the positive ideal solutions and distance S−i
from the negative ideal solutions:

S+
i = [

m∑
j=1

(
vi j − pai j

)2
]

1
2

i = 1, . . . , n (12)

S−i = [
m∑

j=1

(
vi j − nai j

)2
]

1
2

i = 1, . . . , n (13)

Step 6: Calculate Ci, the relative closeness to the ideal solution.

Ci =
S+

i

S+
i + S−i

, 0 < Ci < 1 (14)

Step 7: Order the configurations based on their relative closeness in ascending order.
Step 8: Choose the first configuration.

5. ELECTRE IV Procedure

ELECTRE is a non-compensatory technique that uses various mathematical functions to indicate the
degree of dominance of one alternative over the others. ELECTRE is a family of variant techniques [37].
Among these variants, ELECTRE IV was derived to deal with such cases in which a DM does not have
the required ability, does not like to interfere in a situation, or does not have the knowledge to express
the relative importance of the set of criteria. Instead of ranking alternatives (i.e., configurations in our
case), ELECTRE IV seeks to establish a partial ordering of alternatives: It groups alternatives that have
a similar priority into the same category, and then ranks the categories by introducing the relative
order of these categories. ELECTRE IV consists of two phases. First, forming a set of sequences of
ranking relations through an alternative pairwise comparison using thresholds. Second, ranking a
final-partial preorder that aggregates two complete preorders using an algorithm. As preliminary
notations, let us take the following:

• A = {a1, a2, . . . ., an} as a set of n candidate configurations,
• F =

{
g1, g2, . . . ., gm

}
as a set of m criteria, where m ≥ 3, and

• gj(ai) as the performance of the configuration ai ∈ A according to the criterion gj ∈ F.

Figure 4 shows the steps of ELECTRE IV, which will be further illustrated in the
following subsections.
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5.1. Outranking Relation Constructions

This section presents the set of outranking relations that are exploited to find the final preorders.
The thresholds are defined to calculate the preferences and indifferences of the configurations, which
are necessary to find the pairwise binary relations used to determine the outranking relations. The
outranking relations are the raw data for calculating the fuzzy outranking matrix, which is used along
with distillation thresholds as inputs to the ranking algorithm described in the ELECTRE IV section.

5.1.1. Thresholds

In ELECTRE IV, pseudo-criteria are used in place of the real criteria to determine the relations
of the fuzzy binary outranking for the configurations. The pseudo-criteria express the DM attitude
toward the imprecision, uncertainty, and heterogeneity of the scales. Consider two configurations ak
and an that have to be compared. Three thresholds are then defined as follows [38]:

• Indifference thresholdqj refers to the largest difference in the performance between any two
configurations g j(ak) and g j(an) compatible with the situation in which there is no difference.

• Preference threshold p j refers to the smallest difference in performance between any two
configurations g j(ak) and g j(an) in which the DM undoubtedly prefers an alternative that
has the best performance.

• Veto threshold vt j is the smallest difference in performance between any two configurations g j(ak)

and g j(an) according to which the DM is not in favor of the idea that the worst between the two
configurations under consideration on a specific criterion may be overall regarded as equivalent
to the better one, even when the performance of the worst is better under all other criteria.

The calculation of these thresholds is built on formula 24 [39]:

α× g j(ai) + β. (15)

It is a DM’s task to assign values for coefficients α and β for all criteria and for each type of
threshold. These coefficients must be assigned in such a way that that the resulting thresholds make a
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clear decision (without a doubt) about an indifference, preference, or veto relation (cf. Section 6 for
discussion).

Thresholds can be regarded either in terms of the worst or best performance of two compared
configurations. In the former case, the calculation of the thresholds is called “direct,” whereas, in the
latter case, the calculation of thresholds is called the “inverse.” The worst performance is considered the
smallest if the direction of the preference is increasing (as when evaluating the machine utilization or
throughput, for example), and is considered the greatest if the direction of the preference is decreasing
(as when evaluating the work in process (WIP), for example).

For example, if g j(ak) < g j(an) and the direction of preference is increasing, then we have
the following:

• The calculation of the direct indifference threshold is q j(g j(ak)) = α× g j(ak) + β.
• The calculation of the inverse indifference threshold is q j(g j(ak)) = α× g j(an) + β.

For the same case, but with a decreasing preference, we have the following:

• The direct indifference threshold will be calculated as q j(g j(an)) = α× g j(an) + β.
• The inverse indifference threshold will be calculated as q j(g j(an)) = α× g j(ak) + β.

Therefore, the calculation of the thresholds is based on four cases:

• Case 1: Increasing the preferences for the performance (↑) and direct thresholds (→).
• Case 2: Decreasing the preferences for the performance (↓) and direct thresholds (→).
• Case 3: Increasing the preferences for the performance (↑) and inverse thresholds (←).
• Case 4: Decreasing the preferences for the performance (↓) and inverse thresholds (←).

For any case, α and β coefficients must not bring back a negative value for a threshold. Then, to
guarantee consistency [39], consider the following:

• In Case 1, the coefficient is α ≥ −1.
• In Cases 2 and 3, the coefficient is α < 1.
• In Case 4, the coefficient is α > −1.
• The following relation should be satisfied for each criterion: q j(.) ≤ p j(.) ≤ vt j(.).
• To avoid an incoherence, the following conditions should be satisfied:

q j(g j(an)) − qi(g j(ak))

g j(an) − g j(ak)
≥ −1 (16)

p j(g j(an)) − pi(g j(ak))

g j(an) − g j(ak)
≥ −1 (17)

vt j(g j(an)) − vi(g j(ak))

g j(an) − g j(ak)
≥ −1 (18)

5.1.2. Preferences and Indifferences

Situations of strict preference, weak preference, and indifference are defined according to Equations
(19)–(21) [40]:

an I j ak ⇔ g j(an) − g j(ak) < qi(g j(ak)) (19)

an P j ak ⇔ pi(g j(ak)) < g j(an) − g j(ak) (20)

an Q j ak ⇔ qi(g j(ak)) < g j(an) − g j(ak) ≤ pi(g j(ak)) (21)

where, ak I j an, refers to a situation in which the DM is indifferent between configurations ak and an,
ak P j an, refers to a situation in which configuration ak is strictly preferred over configuration an, and
ak Q j an refers to a situation in which configuration ak is weakly preferred over configuration an.
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5.1.3. Pairwise Binary Relations

The binary relations for any pair of configurations (ak, an) is calculated as follows [39]:

m = mp(ak, an) + mq(ak, an) + mi(ak, an) + m0(ak, an) + mp(an, ak) + mq(an, ak) + mi(an, ak). (22)

where, mp(ak, an), represents the number of criteria when configuration ak is strictly preferred
over configuration an, mq(ak, an), represents the number of criteria when configuration ak is weakly
preferred over configuration an, mi(ak, an), represents the number of criteria when the DM is indifferent
between configurations ak and an, and mo(ak, an), represents the number of criteria when configuration
ak has the same evaluation as an.

If two relations exist for the same criteria ak and an, the richest/dominated one will be considered.
The order of relations from lowest to highest in richness is Sq ⊂ Sc ⊂ Sp ⊂ Ss ⊂ Sv. This means that Sv

dominates all four relations, and Ss dominates Sq, Sc, Sp, . . . , etc. For instance, if the two relations
ak Sq an and ak Ss an exist, the ak Ss an relation dominates ak Sq an, and it will be considered (cf. Section 6
for an example).

5.1.4. Outranking Relations

The outranking relations for ELECTRE IV are defined as follows [41]:
Quasi-dominance Sq If mp(an, ak) + mq(ak, an) = 0

and mi(an, ak) < mi(ak, an) + mq(ak, an) + mp(ak, an)

then ak Sq an;
Canonic-dominance Sc If mp(an, ak) = 0

and mq(an, ak) ≤ mp(ak, an)

and mq(an, ak) + mi(an, ak) < mi(ak, an) + mq(ak, an) + mp(ak, an)

then ak Sc an;
Pseudo-dominance Sp If mp(an, ak) = 0

and mq(an, ak) ≤ mq(ak, an) + mp(ak, an)

then ak Sp an;
Sub-dominance Ss If mp(an, ak) = 0

then ak Ss an;
Veto-dominance Sv If mp(an, ak) = 0

or


mp(an, ak) = 1
mp(ak, an) ≥

m
2

g j(ak) + vt j
(
g j(ak)

)
≥ g j(an), ∀ j ∈ F

thenak Sv an.

5.1.5. Fuzzy Outranking Matrix

For each pair (an, ak) of configurations, a credibility degree σ(an, ak) ∈ [0, 1] indicates how much
configuration (an) outranks the configuration (ak) [40]:

σ(an, ak) =



1 i f an Sq ak

0.8 i f an Sc ak

0.6 i f an Sp ak

0.4 i f an Ss ak

0.2 i f an Sv ak

0 i f no relation among
{
Sq, Sc, Sp, Ss, Sv

}
(23)
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Credibility degrees are used to determine the matrix of the fuzzy outranking:

Fuzzy
outranking

matrix =

σ(., .) a1 a2 . . an

(24)

a1 1 σ(a1, a2) σ(a1, .) σ(a1, .) σ(a1, ak)

a2 σ(a2, a1) 1 σ(a2, .) σ(a2, .) σ(a1, ak)

. σ(., a1). σ(., a2) 1 σ(., .) σ(., ak)

. σ(., a1) σ(., a2) σ(., .) 1 σ(., ak)

an σ(., a1) σ(an, a2) σ(an, .) σ(an, .) 1

5.1.6. Distillation Threshold

From the fuzzy outranking matrix, a succession of crispy outranking relations is constructed. To
do so, a set of cutoff levels (λl) ∈ [0, 1] and a distillation threshold s(λl) are defined. The distillation
threshold is calculated as follows:

s(λl) = δ× λl + γ (25)

Then, only the arcs an and ak of the fuzzy outranking relation for which σ(an, ak) > λl are held,
and a crispy outranking relation Sλl

A , can be calculated as follows:

Sλl
A ⇔

{
σ(an, ak) > λl
σ(an, ak) > σ(ak, an) + s(σ(an, ak))

(26)

This means that the declaration “an outranks ak” will be considered if it is more significant than
the reverse declaration “ak outranks an.” The distillation threshold function is constant, where δ = 0
and γ = 0.1. Thus, s(λ) = 0.1. This value permits the transformation of a nested relation into a fuzzy
one. Because of the ranking, we have the following:

• In the first step, only the strongest dominance threshold among those that have been asserted will
be considered.

• In the second step, the two strongest dominance thresholds will be considered.

From the crispy outranking matrix, the calculations are made for all configurations [39]:

• λl − power o f con f iguration an: pλl
A (an) determines the number of configurations that an outranks:

pλl
A (an) = |{ak ∈ A / an Sλl

A (ak)}| (27)

• λl −weakness o f con f iguration an: fλl
A (an)determines the number of configurations that outrank an:

fλl
A (an) = |{ak ∈ A / ak Sλl

A (an)}| (28)

• λl − qualification o f con f iguration an: qλl
A (an) determines the relative rank of configuration an in

set A:
qλl

A (an) = pλl
A (an) − fλl

A (an) (29)

5.2. Ranking Algorithm

Using the fuzzy outranking matrix (Equation (24)), a ranking algorithm is deployed to order the
candidate configurations in two complete pre-orders. The two pre-orders are accomplished through
several iterations called distillations. The first pre-order, descending, results in a descending order,
starting with the best configuration. The second pre-order, ascending, results in an ascending manner,
starting with the worst configuration.
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5.2.1. Distillation

Let λl be the first cutoff level and qλk
A (an) be the qualification of configuration an. Then, in set

A of the candidate configurations, the best configuration(s) that have the maximum qualification in
the descending selection will be denoted as a subset D1, and the worst configuration(s) that have the
minimum qualification in the ascending selection will be denoted as a subset D1. These two subsets
are calculated as follows:

D1 =
{
an ∈ Aqλ1

A (an) = qA = max
x ∈ A

qλ1
A (x)

}
(30)

D1 =
{
an ∈ Aqλ1

A (an) = q
A
= min

x ∈ A
qλ1

A (x)
}

(31)

Hence, at the end of l steps of the first distillation, the first subset of A, which will contain the
first/last class of one of the two final pre-orders, is selected.

Let C1 = D1 represent the first class of the descending selection, and C1 = D1 represent the first
class of the ascending selection. Thus, A1 = A\C1 or A1 = A\ C1 represents the remaining subset of
configurations from A to be ranked after the first distillation. To select one or more configuration, in
this subset, the qualification of each configuration will be calculated again. This step will be reiterated
until all configurations are ranked.

5.2.2. Ascending and Descending Pre-Ordering Algorithms.5.2.3. Final Ranking

Step-1: y = 0, A0 = A or A0 = A.
Step-2: λ0 = max

an,ak∈Ay ,n,k

σ(an, ak) or λ0 = min
an,ak∈Ay ,n,k

σ(an, ak)

Step-3: l = 0, D0 = Ay or D0 = A0.
Step-4: Among the arcs of the fuzzy outranking relations that have credibility lower than

λl − s(λl), select the one with the maximum value:
λl+1 = max

σ(an, ak)>λl−s(λl)},n,k
σ(an, ak)

Notice that ∀ an, ak ∈ Dl, σ(an, ak) > λl − s(λl)⇒ λl+1 = 0.
Step-5: Calculate the λl − quali f ications of all configurations belonging to Dl.
Step-6: Obtain the minimum or maximum λl − quali f ications: qDl

, or q
Dl

.

Step-7: Build the subset:
Dl+1 =

{
an ∈ Dlq

λk+1
Dl

(an) = qDl

}
, or

Dl+1 =
{
an ∈ Dlq

λk+1
ADl

(an) = q
Dl

Step-8: if
∣∣∣Dl+1

∣∣∣ = 1 or
∣∣∣Dl+1

∣∣∣ = 1 or λl+1 = 0 then, go to step 9
else, do l = l + 1, Dl = Dl or Dl = Dl, go to step 4

Step-9: Cy+1 = Dy+1or Cy+1 = Dy+1

do Ay+1 = Ay\Cy+1 or Ay+1 = Ay\ Cy+1

if Ay+1 = ∅ or Ay+1 = ∅ then y = y + 1, go to step 2
else, END of distillation.

At the end of ascending and descending pre-orders, the result will be two complete pre-orders.
In each of them, the configurations will be grouped in a set of ranked classes. Each class consists of
at least one configuration. To obtain the intersection pre-order (the final order), the following rules
are applied:

• Configuration an is considered better than ak if in at least one of the distillations, an is better than
ak, and in the other distillation, an is at least as well ranked as ak.

• Configuration an is judged as indifferent to ak if the two configurations belong to the same
equivalence class in the two pre-orders.

• Configuration an and ak are incomparable if an is better ranked than an in the ascending distillation
and ak is better ranked than ak in the descending distillation, or vice-versa.
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6. Case Study

This section presents a case study and illustrates how to use the decision-making framework to
select a configuration that can best meet the current situation.

6.1. Presentation of the Case Study

In this study, we consider an electro-mechanical manufacturing plant that assembles
electro-submersible pumps (ESP) with a variety of power, sizes, and usages. An ESP is an artificial
technique for pumping up high to moderate volumes of fluids (e.g., sewage and drainage waters) from
wells. Submersible pumps are manufactured in different pressure heads that range between 7 to 50 m
and flow rates of between 10 and 2500 m3/h. An ESP assembly is applied in semi-automated assembly
lines. DMs can reconfigure the assembly lines by adding, removing, and/or relocating modules during
the production running time, which enables an easy and quick adaption of product functionality and
capacity against risks and disturbances. Each configuration differs in the number of modules, module
arrangement, and/or worker assignment to the modules. One or two skilled operators are required to
accomplish the assembly task on each module. Basic modules can serve numerous purposes, such as
inspection, assembly, delivery, and packaging. The performance of each module differs from one task
to another based on the type of accomplished task, the type of product, and operator skills (Figure 5).Machines 2020, 8, x FOR PEER REVIEW 17 of 28 
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Figure 5. Configurations.

Four configurations (A, B, C, and D) are provided in Figure 5 to illustrate the physical
implementation of the configurations on the shop floor. The presentation of these four configurations is
for the sake of harmonizing the description of the case study with the illustration of the reconfiguration
example elaborated in Section 6.1.2.

We represent the discrete layout of the shop floor as a grid by dividing it into rows and columns.
Each configuration component can be assigned to a location on the grid, which describes the physical
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implementation of the configuration resources on the shop floor. A different assignment of workers to
the modules yields a different configuration.

6.1.1. Simulation-Based Evaluation of Configurations

To evaluate the criteria for each configuration, we gathered data from a real case study and
implemented it in ARENA simulation software version 15.1. Over a 6-day period (one 8 h shift a day),
we collected data to generate the service time distributions. The ARENA Input Analyzer is used for
this purpose, and simulation results directly provide values for most of the operational criteria, as
shown in Table 4, whereas the discrimination, strategic, and other operational criteria are calculated
from these criteria based on the equations illustrated in Section 3. Calculating the values of the criteria
related to RUN, TS, ET, LT, and NRT relies on the performance indicators, in addition to the production
order, leading to a change in the running configuration.

Table 4. Performance indicators of configurations.

Configuration NO NM MU (%) Th (Pcs/day) WT (Hrs) WIP (Pcs)

A 3 3 0.67 60 1.40 11.12
B 4 4 0.72 96 1.89 21.05
C 3 3 0.62 80 1.10 8.90
D 4 4 0.79 108 1.39 13.80

Table 5 shows the generated distributions. The inter-arrival times of the parts are based on the
availability of the first module on the line, where the parts are available in mesh baskets and can
enter the assembly line immediately after dispatching the previous part. The transportation time
between modules is determined based on the speed of the roll conveyor, which has a maximum speed
of 42 m/min and is controlled by the next module operator. We built and verified a model for each
configuration under normal operating conditions. The simulation models ran for 100 replications each
11 h long with a 3 h warm up.

Table 5. Simulation parameters.

Modules
Service Times (minute)

Motor Assembly Pump Assembly Electro-Submersible Assembly

Module-1 NORM(7.01, 0.374) LOGN(4.95, 0.559) LOGN(12.51, 0.86)
Module-2 6.4 + GAMM(0.331,3.82) 3.69 + GAMM(0.451, 4.12) 12 + GAMM(0.331, 3.82)
Module-3 LOGN(6.5.22, 0.857) NORM(5, 0.23) LOGN(11.55, 0.343)
Module-4 NORM(7.3, 0.005) LOGN(5.2, 0.603) LOGN(12.4, 0.902)
Inspection UNIF(2, 25)

The simulation results directly provide values for most of the operational criteria, as shown in
Table 4, whereas the discrimination, strategic, and other operational criteria are calculated from these
criteria based on the equations illustrated in Section 3. Calculating the values of the criteria related to
RUN, TS, ET, LT, and NRT relies on the performance indicators, in addition to the production order,
leading to a change in the running configuration.

A strategic criteria calculation based on the amount of change will be carried out on the assignments
and physical locations of the modules and operators to move to each candidate configuration.

6.1.2. Disturbance Occurrence

Let us consider configuration A to be currently in operation to assemble an order, in which 420
pieces of product ESP 0.5 HP are due after seven working days, where the factory operates a single
8 h shift. Any configuration having a throughput Th of more than or equal to 60 Pcs/day is able to
meet the order on time. As we can see from Table 6, configuration A is capable of accomplishing this
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order on time under normal conditions, where Th is equal to 60 Pcs/day. At some point, a disturbance
occurs, in which Module_02 fails, affecting the performance of the configuration and its ability to meet
the orders on time. The consequences of the disturbance can be determined using approaches, such as
described in [42]. Now, a reconfiguration decision has to be made. The DM has to decide whether to
continue using configuration A or move to another configuration. In this latter case, the DM has to
decide which configuration to use (i.e., B, C, or D, all of which are feasible).

6.2. TOPSIS Selection

An expert from the factory who is in charge of taking the reconfiguration decision is selected to
implement the framework. He has more than twenty years of experience as ESP production supervisor
and manager. The same expert opinion was used to implement the three methods of the framework (cf.
Sections 4.1 and 4.2.1). The following subsections illustrate the application of TOPSIS using the two
different weighting methods.

6.2.1. Intuitive Weighting

This section shows the implementation of TOPSIS based on the intuitive weighting method
described in Section 4.1.
Step 1: Determine E = [xi j]n×m, the evaluation matrix of which is as follows:

R
U

N

TS N
O

N
M

M
U

ET LT N
R

T

W
T

W
IP

N
A

M

N
M

M

N
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N
A

B
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M
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N
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N
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O

N
M
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E=

1 1 4 4 0.79 2 0 44 1.39 13.80 1 0 0 4 0 0 1 0 0 Config D
0 1 3 3 0.62 0 0 16 1.1 8.9 1 1 0 3 0 1 1 1 0 Config C
1 1 4 4 0.72 1 0 32 1.89 21.05 2 1 0 0 0 0 2 1 0 Config B

Step 2: Deduce the normalized decision matrix (ri j)n×m.

dmi j =


0.71 0.58 0.62 · · · 0.41 0 0

0 0.58 0.47 · · · 0.41 0.71 0
0.71 0.58 0.62 · · · 0.82 0.71 0


Step 3: Calculate vi j, the weighted normalized matrix of which is as follows:

vi j =


0.212 0.17 0.019 · · · 0.004 0 0

0 0.17 0.014 · · · 0.004 0.007 0
0.212 0.17 0.019 · · · 0.008 0.007 0


Step 4: Calculate the positive and negative ideal solutions (AP) and (AN):

AP = [0.212 0.17 0.014 . . . 0.004 0 0]AN = [0 0.17 0.019 . . . 0.008 0.007 0]

Steps 5, 6, 7, and 8: Determine the positive and negative ideal solutions (S+
i ) and

(
S−i

)
, and the relative

closeness to the ideal solution Ci. Rank the candidate configurations in ascending order and choose the
configuration that ranks at the top.

Table 6 shows that configuration D is ranked at the top of the list (Ci = 0.0008477), followed by
configuration B (Ci = 0.0016163) and configuration C (Ci = 0.0686639).

Table 6. Relative closeness to ideal solution, intuitively weighting based.

Configurations S+
i S−i Ci Rank

D 0.0005719 0.6740291 0.0008477 1
B 0.0011098 0.6855460 0.0016163 2
C 0.0465463 0.6313395 0.0686639 3
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6.2.2. Improved SIMOS Weighting

This section demonstrates the use of the improved SIMOS method to assign the weight and the
use of this weight in TOPSIS. First, we implement SIMOS (cf. Section 4.2) for the same case study.

Collecting the Information:
We have m = 19 criteria, and the DM orders them from least to most important. The DM forms

14 subsets SCr of criteria m. Thirteen white cards are inserted between the subsets of the criteria.
In addition, the DM sets up z = 24, which is the ratio between the least important (NMO) to the most
important (RUN) criterion. The results of the collection are depicted in the first three columns of
Table 7.

Table 7. Non-normalized weights for z = 24.

Rank
(Ascending)

Subset of Criteria
SCr

Number of White Cards
According to r and e

′

r
er

Non-Normalized
Weights k(r) Total

1 NMO 0 1 1 1.00
2 NMB, NMM 1 2 1.85 3.70
3 NLO 0 1 3.56 3.56
4 NLB, NLM 1 2 4.41 8.81
5 NAO 0 1 6.11 6.11
6 NAB, NAM 1 2 6.96 13.93
7 NO 1 2 8.67 8.67
8 NM, MU 1 2 10.37 20.74
9 ET 0 1 12.07 12.07
10 WT, WIP 1 2 12.93 25.85
11 NRT 1 2 14.63 14.63
12 LT 6 7 16.33 16.33
13 TS 0 1 22.30 22.30
14 RUN 0 1 23.15 23.15

Sum 19 13 27 . . . 180.85

The algorithm:
Step 1: Determine the non-normalized weights as follows: e = 27, and thus u = 24−1

27 = 0.851852, and
the non-normalized weights k(r) are as shown in Table 7.
Step 2: Determine the normalized weights as follows: The three normalized weights k∗j, k′′j , and k j are

shown in Table 8, where K′′j is equal to 99, and ε = 100− 99 = 1, and τ = 101
∗ 1 = 10.

Table 8. Normalized weights for w = 1 and z = 24.

Rank Criteria N.
Normalized
Weights k*

j

Normalized
Weights k

′′

j
Ratio dj Ratio dj

Normalized
Weights kj

1 NMO 18 0.553 0.5 0.085 0.096 0.5
2 NMB 15 1.024 1.0 0.074 0.023 1.1
2 NMM 12 1.024 1.0 0.074 0.023 1.1
3 NLO 19 1.966 1.9 0.017 0.034 1.9
4 NLB 16 2.437 2.4 0.026 0.015 2.5
4 NLM 13 2.437 2.4 0.026 0.015 2.5
5 NAO 17 3.379 3.3 0.006 0.023 3.3
6 NAB 14 3.850 3.8 0.013 0.013 3.8
6 NAM 11 3.850 3.8 0.013 0.013 3.8
7 NO 3 4.792 4.7 0.002 0.019 4.7
8 NM 4 5.734 5.7 0.011 0.006 5.8
8 MU 5 5.734 5.7 0.011 0.006 5.8
9 ET 6 6.676 6.6 0.004 0.011 6.6

10 WT 9 7.147 7.1 0.007 0.007 7.2
10 WIP 10 7.147 7.1 0.007 0.007 7.2
11 NRT 8 8.089 8.0 0.001 0.011 8.0
12 LT 7 9.031 9.0 0.008 0.003 9.1
13 TS 2 12.328 12.3 0.006 0.002 12.4
14 RUN 1 12.800 12.7 0.00004 0.008 12.7

SUM 19 . . . 100 99 . . . . . . 100.0
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Rounding and Minimization of Distortion
The two ratios d j and d j are shown in columns 7 and 8 of Table 8, respectively. In addition, |H| =10

and |H|+ τ = 20 > m = 19, and T+ criteria will then be deduced using the second rule (the TOPSIS
section). The two lists of L and two subsets of T+ and T− are shown in Table 9.

Table 9. Lists if L, L, T+, and T− for ϑ =1.

N. Crit. L N. Crit. ¯
L N. Crit. T−

1 0.00004 18 0.096 1
√

8 0.001 19 0.034 8
√

3 0.002 17 0.023 3
√

6 0.004 15 0.023 6
√

2 0.006 12 0.023 2
17 0.006 3 0.019 17

√

9 0.007 16 0.015 9
10 0.007 13 0.015 10
7 0.008 14 0.013 7
4 0.011 11 0.013 4
5 0.011 6 0.011 5
14 0.013 8 0.011 14

√

11 0.013 1 0.008 11
√

19 0.017 9 0.007 19
√

16 0.026 10 0.007 16
13 0.026 4 0.006 13
15 0.074 5 0.006 15
12 0.074 7 0.003 12
18 0.085 2 0.002 18

√

The resulting weights from the SIMOS procedure are shown in Table 10. The sum of the weights
is equal to 1.

Table 10. Weights of the criteria based on the SIMOS procedure.

Criteria Discrimination Criteria Operational Criteria

Indicators RUN TS NO NM MU NRT LT ET WT WIP
Value of wj 0.127 0.124 0.047 0.058 0.058 0.08 0.091 0.066 0.072 0.072

Criteria Strategic Criteria
Indicators NAM NMM NLM NAB NMB NLB NAO NMO NLO
Value of wj 0.038 0.011 0.025 0.038 0.011 0.025 0.033 0.005 0.019

TOPSIS is implemented using the resulting weights. The results are shown in Table 11. Table 11
shows that configuration D is ranked at the top of the list (Ci = 0.0046992), followed by configurations
B (Ci = 0.0054746), and C (Ci = 0.0206812).

Table 11. Relative closeness to ideal solution based on SIMOS procedure.

Configurations S+
i S−i Ci Rank

D 0.0028598 0.6057285 0.0046992 1
B 0.0035781 0.6500052 0.0054746 2
C 0.0128308 0.6075778 0.0206812 3

6.3. ELECTRE IV Selection

For a disturbance in a particular resource, ELECTRE IV is applied to select one of the recommended
configurations. In this case, n = 3 and m = 19. The definition of pseudo-criteria is shown in Table 12.
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Table 12. Definition of the pseudo-criteria.

Criteria.
RUN TS NO . . . NAO NMO NLO

g1 g2 g3 . . . g17 g18 g19

Direction of preferences ↑ ↓ ↓ . . . ↓ ↓ ↓

Mode of definition → → ← . . . → → →

Candidate
Configurations

D = a4 1 1 4 . . . 1 0 0
C = a3 0 1 3 . . . 1 1 0
B = a2 1 1 4 . . . 2 1 0

Indifferences
α 0 0 0.1 . . . 0 0 0
β 0 0 2 . . . 2 2 5

Preferences
α 0 0 0.2 . . . 0 0 0
β 1 1 3 . . . 3 3 10

Veto
α 0 0 0.3 . . . 0 0 0
β 2 2 4 . . . 6 6 15

To calculate the five outranking relations, the binary outranking relations should be calculated
first (the ELECTRE IV section). Start with a pairwise comparison of the configurations for all criteria.
For example, the pairwise comparison of a4 and a2 for all criteria gm will be clarified. To calculate
σ(a4, a2) and σ(a2, a4), the following calculation will be made:

For criterion g5, the preferences are in increasing direction of performance, and the thresholds are
direct (the ELECTRE IV section). Thus,

q5(g5(a2)) = α5 × g5(a2) + β5 = 0× 0.72 + 0.05 = 0.05

p5(g5(a2)) = α5 × g5(a2) + β5 = 0× 0.72 + 0.15 = 0.15

g5(a4) − g5(a2) = 0.07

q5(g5(a2)) < g5(a4) − g5(a2) ≤ p5(g5(a2))⇒ a4Q5 a2 ⇒ mq(a4, a2) = 1.

Similar calculations are achieved for all criteria to obtain the comparisons of a4 and a2 shown in
Table 13.

Table 13. Binary outranking relations when comparing configurations E(5) and C(3).

Criteria g1 g2 g3 . . . g17 g18 g19

Binary relation of a4
and a2

m0(a4, a2) m0(a4, a2) m0(a4, a2) . . . mi(a4, a2) mi(a4, a2) m0(a4, a2)

Next, the five outranking relations are calculated (Table 14).

Table 14. Five outranking relations for a comparison of configurations E (5) and C (3).

. Binary Outranking Relations Five Outranking Relations

mp(., .) mq(., .) mi(., .) m0(., .) Sq Sc Sp Ss Sv

Total for
(a4, a2)

0 2 6 9 .. .. .. .. ..

Total for
(a2, a4)

2 0 0 9 .. ..
√ √ √

There is no relation for (a4, a2), σ(a4, a2) = 0. Among a2 Sp a4, a2 Ss a4, and a2 Sv a4, the richest
one is a2 Sv a4, and thus σ(a2, a4) = 0.2.
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These calculations will be repeated for a pairwise comparison of a4 and
a3, and a3 and a2, in order to obtain the following fuzzy outranking matrix:

Fuzzy outranking matrix =

σ(., .) a4 a3 a2

a4 1 0 0
a3 0 1 0
a2 0.2 0 1

To find the two pre-orders, the ranking algorithm is applied. Let s(λl) = α×λl + β = 0×λl + 0.1.

6.3.1. Descending Pre-Order

Distillation-1
Step 1: y = 0, A0 = A = {a4, a3, a2}

Step 2: λ0 = 0.2.
Step 3: l = 0 , D0 = A0.
Step 4: λ0 − s(λ0) = 0.2− (0× 0.2 + 0.1) = 0.1, and the richest credibility degree lower than 0.1 is 0.
Thus, λ1 = 0.
Step 5: To calculate the qualification, the crispy outranking matrix should first be calculated as follows:

crispy outranking
matrix =

a4 a3 a2

a4 0 0 0
a3 0 0 0
a2 1 0 0

Power,
weakness, and
qualification

=

a4 a3 a2

Power 1 0 0
Weakness 0 0 1
Qualification 1 0 -1

Step 6: a4 has the maximum qualification, and thus we move to the following step.
Step 7: D1 = {a4}.
Step 8: λ1 = 0, then go to step 9.
Step 9: C1 = {a4}, A1= {a3, a2 }.

λ1 = 0, then C2 = {a3, a2}. End of descending pre-order.

6.3.2. Ascending Pre-Order

Distillation-1
Step 1: y = 0, A0 = A = {a4, a3, a2}

Step 2: λ0 = 0.2.
Step 3: l = 0 , D0 = A0
Step 4: λ0 − s(λ0) = 0.2− (0× 0.2 + 0.1) = 0.1, and the richest credibility degree of lower than 0.1 is 0.
Thus, λ1 = 0.
Step 5: To calculate the qualification, the crispy outranking matrix should first be calculated as follows:

crispy outranking
matrix =

a4 a3 a2

a4 0 0 0
a3 0 0 0
a2 1 0 0

Power,
weakness, and
qualification

=

a4 a3 a2

Power 1 0 0
Weakness 0 0 1
Qualification 1 0 -1

Step 6: a2 has the minimum qualification, and thus we move to the following step.
Step 7: D1 = {a2}

Step 8: λ1 = 0, then go to step 9
Step 9: C1 = {a2}, A1= {a4, a3 }.

λ1 = 0, then C2 = {a4, a3}. The marks the end of the ascending pre-order.
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6.3.3. Final Ranking

Table 15 shows that configuration D is the top-ranked configuration, followed by configurations C
and B.

Table 15. Ranking results.

Configurations Rank in Descending
Pre-Order

Rank in Ascending
Pre-Order Rank in Final Pre-Order

D = a4 1 2 1
C = a3 2 2 2
B = a2 2 1 3

6.4. Results and Discussion

The failure of Module_02 in configuration A imposed a new situation, in which the DM has to
select one among three candidate configurations B, C, and D to cope with new requirements. The
results of the implementation of the suggested framework are shown in Table 16, which for each
method gives the rank of configurations to cope with the new situation requirements.

Table 16. Summarized results of the suggested approach.

Configurations
Ranks

TOPSIS
ELECTRE IV

Intuitive Weighting SIMOS Weighting

D 1 1 1
C 3 3 2
B 2 2 3

Fortunately, for this situation, all methods evaluate configuration D at the first rank. The second
and third ranks differ for weight-dependent and weight-independent methods and are similar for
the two weight-dependent methods. Looking deeply into the values of the criteria, as shown in
the evaluation matrix in the case study section, the non-selection of configuration C can be justified.
First, configuration C has a RUN value of 0, which means that the failing resource (Module_02) is
one of its constituents, and it fails to meet the resource requirements to handle the situation. Now,
the competition is limited between configurations D and B. Configuration D dominates B in four
operational criteria, namely, MU, ET, WT, and WIP, and four strategic criteria, which is, NAM, NMM,
NAO, and NMO, whereas configuration B is better than D in only one operational criterion (NRT) and
one strategic criterion (NAB).

Some points in the suggested framework can be discussed as follows:

• In a sense, the fact that the intuitive and SIMOS weighting provides identical rankings demonstrates
a justification of the intuitive weighting procedure. In fact, SIMOS weighting is a type of detailed
and documented intuitive weighting. However, such a result is not systematic. It may be useful
to consider a sensitivity analysis to assess the impact of the weight variation and an assignment in
the reconfiguration decision.

• Intuitive criteria weighting and DM preferences. The criteria weights are set up to favor the
discrimination criteria first, followed by the operational and strategic criteria in order. Within
each category, the criteria weights are assigned equally (the TOPSIS section) for the sake of
simplification. However, the weights within each category are not necessarily equal. For example,
in the strategic criteria category, the effort/cost required to add or move modules is not equal to
the effort/cost required to add or move operators. The revised SIMOS method overcomes this
issue and assigns different weights for each criterion in the same category.
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• Estimation of the z ratio during SIMOS procedure. Standardizing this ratio in each manufacturing
sector is worth investigating. Such standardization can be achieved in several ways, such as by
surveying field experts.

• ELECTRE IV and threshold parameters. Some parameters have to be set up to make a clear
decision regarding an indifference, preference, or veto relation. Because a configuration
ranking and selection are highly sensitive to such parameters, a more rational and systematic
approach should be considered to set them up, based for example on learning [38], [39], or on
simulation–optimization [34] techniques.

7. Conclusions and Future Research

During the operation of an RMS, the decision to move from one configuration to another usually
requires an evaluation of a multitude of criteria. Although several MCDM approaches have been
suggested to assist DMs with the reconfiguration process, most existing approaches do not provide
guidelines to weigh the evaluation criteria. The main contribution of this article is to provide a
framework to set up criteria weights when considering different levels of DM expertise and desired
degree of involvement in the reconfiguration process. The framework is based on a comprehensive set
of quantitative indicators to evaluate reconfiguration decisions during the operation of the RMS. This
includes three weighting methods, namely, intuitive and revised SIMOS procedure weighting using
TOPSIS, and DM independent weighting using ELECTRE IV, respectively. It is worth noting that this
study is among the first to consider a SIMOS weighting procedure and ELECTRE IV for reconfiguration
purposes. The implementation of the framework and a comparison of the suggested methods were
carried out through an industrial case study.

The three selection methods reveal different features and need a different level of experience.
TOPSIS based on intuitive weighting requires the DM (DM) to have a deep understanding of all the
criteria and the consequences of prioritizing one criterion over another. Once the DM becomes familiar
with the situation, the criteria weight can be tuned easily. Although TOPSIS based on SIMOS procedure
requires less experience, the DM should have sufficient understanding of the method to fine-tune the
selection process outcomes. Regarding ELECTRE IV, it outranks configurations independently from the
DM choices and preferences, but it relies on the accuracy of the thresholds. Each method has different
features and is applicable to different cases. The case study implementation shows the potential of
the suggested framework to support DMs with both high level and low level of expertise as well as
allowing the DMs to choose to what extent they want to intervene in the reconfiguration decision.

The suggested framework can be extended in several ways. From the DM perspective, the current
framework considers only one DM, and a possible way of extension consists of considering group
decision-making to establish a consensus based on several DM opinions and preferences. From the
decision-making perspective, the current framework determines the weights of the criteria based on
subjective expressions of opinions and preferences collected from a DM. A possible way to achieve an
extension consists of considering the objective criteria weighting, based, for example, on information
entropy. From a multi-criteria perspective, the framework can be extended to include other types of
criteria, related, for example, to the sustainability and smart and green manufacturing, and to include
human factors and ergonomic concerns during a reconfiguration.
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