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Abstract: The vibrational behavior of components in mechanical systems like drives and robots can
become critical under changes in the system properties or loading in operation. Such undesired
vibration can lead to detrimental conditions including excess wear, fatigue, discomfort, and acoustic
emissions. Systems are designed to avoid certain frequencies to avoid such problems, but system
parameters can change during operation due damage, wear, or change in loading. An example is the
change in system properties or operation state that then activates resonance frequencies in our system.
Therefore, this work has the goal of modifying the modal behavior of a system to avoid vibrational
problems. Methods of design optimization are applied to find a new optimum design for this altered
condition. Here, this is limited to the addition of mass in order to move the resonance frequency out
of critical ranges. This though requires a new formulation of the optimization problem. We propose a
new constraint formulation to avoid frequency ranges. To increase efficiency, a reduced analytical
sensitivity analysis is introduced. This methodology is demonstrated on two test cases: a two-mass
oscillator followed by a test case of higher complexity which is a gear housing considering over 15,000
design variables. The results show that the optimization solution gives the position and amount of
mass added, which is a discrete solution that is practically implementable.

Keywords: design optimization; structural optimization; mechanical system; vibrations;
modal analysis; sensitivity analysis; structural modification; frequency-band constraints

1. Introduction

In this study, a design methodology is introduced to redesign mechanical systems to account
for changes in system parameters or other environmental changes during operation. To limit the
encroachment on an in-operation mechanical system, the changes of the system are confined to the
addition of mass to the exterior of a housing. Hereby, we desire to find the optimal position and
amount of added mass so that the vibrational behavior will be changed and eigenfrequencies pushed
out of critical frequency bands. After the derivation of the methodology, it will be shown on two cases
of increasing complexity: first on a two-mass oscillator and then on the housing of a planetary gear
set assembly.

The developed methodology is applicable in cases in which damage and wear alter the vibrational
behavior and specifically the eigenfrequencies. An example of changes in system parameters is a
changed mesh stiffness of a planetary gear set that causes the vibrational excitation of the housing.
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The excitation of the housing is considered unacceptable as this will cause increased wear of
components connected to the housing and acoustic emissions.

Here, we use numerical optimization to find the minimum added mass to move the
eigenfrequencies out of certain frequency bands. It should be noted that it is intrinsic that added mass
leads only to a reduction in the values of eigenfrequencies. The optimally in-operational redesigned
eigenfrequencies will be lower, but importantly out of critical frequency bands to avoid excitation.
This type of solution is a pragmatic temporary fix until the machine can be shutdown and maintenance
performed to ensure the original design performance.

Optimal design of mechanical systems under dynamic considerations stems from two traditions
and seemly separate communities denoted by the terms: structural design optimization (also
structural optimization or design optimization, see Ross [1], Baier et al. [2], Vanderplaats [3]) and
dynamic structural modification (also structural dynamic modification or simply structural modification,
see Bucher and Braun [4], He [5], Avitabile [6], Belotti and Richiedei [7]).

The latter includes the assignment of the eigenpair (eigenfrequency or mode shape or both) via
an inverse problem formulation. This method is typically shown on lumped-parameter models and
beam models of few degrees of freedom. Structural design optimization on the other hand varies
from small beam problems to large finite-element models with several million degrees of freedom.
Formulations include dynamics often as constraints and mass as the objective, especially in the
framework of lightweight design. Both of these families of methodologies are algorithmic-supported
design mechanical systems or structures. The governing equation of both is the eigenvalue problem
resulting in eigenvalues (eigenfrequencies or resonance frequencies) and eigenvectors (mode shapes).
The transient response and frequency response functions are also of interest in certain cases but are not
considered here.

This work aims to reduce vibration by adding a minimum amount of mass in a similar
optimization formulation as introduced by Pritchard et al. [8]. The constraint formulation is based on
the formulation introduced by Ross [1] and further developed in its parabolic form in Wehrle et al. [9].
The ballistic frequency-range constraint was developed in this study. A large number of design
variables is feasible with gradient-based optimization with analytical sensitivity analysis [10–13].
Specifically, the sensitivities of eigenfrequencies, also known as eigensensitivities, are carried out in an
efficient reduced form introduced here, allowing for a sensitivity analysis that has a computational
effort that is a fraction of that of the original eigenvalue problem.

Examples will be shown with both a lumped-parameter model as well as a finite-element model.
The latter shows the methodology with a large-scale problem, both in terms of the number of design
variables and of the number of degrees of freedom.

2. Design Optimization for In-Operation Structural Modification

In this work, we find the optimal position and amount of mass added to change the vibrational
behavior—specifically the eigenfrequencies—of a system. Added mass can, for example, be easily
added to the exterior of a housing with a limited intervention to the system, which is typically possible
during in-operational conditions, requiring only a short stoppage if at all. To accomplish this, and
specifically to properly design the position and amount of mass added, this engineering design problem
is expressed as a numerical optimization problem. The formulation of the constraints concerning
frequency bands are of special interest. To ensure a computational effort of reasonable magnitude, an
efficient sensitivity analysis is developed here and derived below.

2.1. Formulation and Setup of the Optimization Problem

In contrast to the classic dynamic structural modification problem in which specific
eigenfrequencies and mode shapes are desired, we wish to avoid frequency bands by adding a
minimum amount of mass. Therefore, an inverse problem formulation is not possible and instead
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we will use a formulation using structural design optimization that are solved with a numerical
optimization algorithm. Structural design optimization is formulated generally as

min
x∈χ
{ f (x)}

such that gj =
yj(x)

cj
− 1 ≤ 0, ∀j

and xL
i ≤ xi ≤ xU

i , ∀i
governed by m (x) r̈ + d (x) ṙ + k (x) r = Fext (x) ,

(1)

where f is the objective function, g a constraint function, y a constrained system response, c the state
limit, x the vector of design variables within a design domain χ, which is defined by the vectors of the
lower bounds xL and the upper bounds xU . Here, the constraint functions are formulated in the form
of upper bound constraints. It should be noted that we denote here matrices as double underlined
symbols (·), vectors are underlined (·), and scalars have no underline. This applies to both upper and
lower cases symbols.

In this study, the design variables are the added masses madd,i at discrete points and the constraint
functions will be the natural frequencies, which are constrained in certain ranges. We will be
minimizing the sum of added masses to

1. minimize the change in our structural behavior, which could possibly lead to other problems,
2. avoid added mass that can often lead to lowered efficiency.

2.2. Frequency-Band Constraints

In this study, the goal is to avoid resonance problems. Therefore, several ranges of
eigenfrequencies of a dynamic system are to be constrained, which we refer to as frequency-band
constraints ωband (see Figure 1). In the following, constraint formulations that avoid ranges will be
introduced: first a formulation from the literature, then a derived formulation, and finally a novel
formulation specifically developed here.

Frequency range 1

Frequency range 2

Frequency range 3

ω

Figure 1. Schematic of frequency-band constraints.

A frequency-band constraint formulation was introduced by [1] to constrain ranges of frequencies
in which the frequency band constraints are defined by

gRoss,j = (−1)nband+1
2nband

∏
k=1

g
(
ωj, ωband,k, (L, U)

)
, j = 1 . . . nω, k = 1 . . . nband. (2)

Each constraint function g is defined by

gL =
ωL

k
ωj
− 1

gU =
ωj

ωU
k
− 1

, j = 1 . . . nω, k = 1 . . . nband, (3)

where ωj is the jth calculated eigenfrequency, while ωL
k and ωU

k are the lower and upper-bound
frequencies of the kth frequency-band constraint. Inspired by the Ross formulation, we limit
the polynomial as a second-order function and introduce further constraints, which takes the
following form:

gparabolic,l = cnorm

(
ωj −ωL

k

) (
ωU

k −ωj

)
, j = 1 . . . nω, k = 1 . . . nband, (4)
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where cnorm is a constant to normalize the constraint values keeping the same maximum value of all and
l = (j− 1) nband + k is the running index from zero to nω · nband. This formulation requires nω · nband
constraint functions. It should be noted that the constraint convention here is that negative values
are a feasible design while positive values are nonfeasible. As can be seen in Figure 2, the parabolic
constraint formulation gparabolic,i results in a parabola over each of the constrained frequency band.
This formulation has also been successfully applied to planetary gear design in Wehrle et al. [9,14,15].
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Figure 2. An example of the parabolic formulation for frequency-band constraints where the ranges to
be avoided are gray, and each colored line represents a constraint function.

As here only mass is added, which results in intrinsically lower resonance frequencies, a saw-tooth
constraint function was first devised. This was done to avoid problems that may occur with a
gradient-based optimization algorithm when the position of the frequency to be moved would be
located on the section of the parabola with negative slope (i.e., higher than the midpoint of the
frequency range). To avoid a non-differentiable piecewise representational, as is the case of the saw
tooth function, a continuous approximation of the saw tooth function was found. Recognizing that
the continuous function of that of the ballistic trajectory of a projectile with drag, we define this novel
constraint formulation, which we will refer to as ballistic frequency-range constraint, as

gballistic,l =
1
a

(
(1 + a) + c

(
ωj + d−ωL

k

)
− e(c(ωj+d−ωL

k ))
)

, j = 1 . . . nω, k = 1 . . . nband, (5)

which depends on the constants a, b, c, and d. It should be noted that this function is normalized to
have a maximum value of unity. The constants a and b are chosen to define the shape, while c and d
are dependent on the former. The value for a is chosen on the interval [0, ∞) and defines how much
the peak is moved away from the center of the range. The value for b is set to 0 or −1 to define if the
peak is moved in direction of the upper or lower limit of the range constraint. The two constants c and
d are defined as follows:

c =
−1− 2b
ωU

k −ωL
k

(
W−1

( −1
e(1+a)

)
−W0

( −1
e(1+a)

))
(6)

d =
−1
c

(
−Wb

( −1
e(1+a)

)
− (1 + a)

)
, (7)

whereW is the multivalued inverse of the Lambert W-function of w 7→ wew, which has an infinite
number of branches. Each of the branches has a different solution to

z =Wk (z) eWk(z), (8)

for any complex number z and any branch index k. The Lambert W-function has a real value for the
principal branchW0 on the interval

[
− 1

e , ∞
)

and for the branchW−1 on the interval
[
− 1

e , 0
)

[16]

(see Figure 3). Since in our case the Lambert W-function is used byW−1

(
−1

e(1+a)

)
andW0

(
−1

e(1+a)

)
, the
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resulting value is real and on the interval (−∞, 0]. It should be noted that the value of the ballistic
trajectory inspired constraint formulation converges to the constraint from Ross [1] for small values
of a,

lim
a→0

gballistic = gparabolic, (9)

and, therefore, the ballistic-trajectory-inspired constraint formulation can be considered as a
generalization of the parabolic formulation. Figure 4 shows the different forms that the ballistic
constraint formulation can assume: left or right leaning and the sharpness of the peak. For different
optimization formulation, different forms may be beneficial. In this work, a right leaning function with
a sharp peak was chosen.

−1
e

0 1 2
−2

−1

0

1

W0(z)
W−1(z)

Figure 3. The two real branches ofW (z) [16].
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Figure 4. Different profiles of the ballistic range constraint function.

As the value of the constraint functions can easily reach a large negative value in the feasible
domain, this can have negative infinity in its computer implementation. To avoid numerical issues
and errors, we use a large negative number, here −1× 106. As these designs are feasible, this has no
negative effect with gradient-based optimization algorithms.

It should be duly noted that this formulation results in a non-convex design domain. Figure 5
shows how this formulation has an inherently non-convex design domain for the two-mass oscillator
optimized in Section 3.1.
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Figure 5. Design domain of the two-mass oscillator with valid design domain in blue and invalid
design domain in red demonstrating islands of validity

eigenvalue problem (undamped case) and where the eigenvector is normalized about the mass matrix,
i.e. ΦTmΦ = 1, the eigenfrequency sensitivity is [2,17]

dωj

dx
=

1
2ωj

ΦT
j

(dk
dx
−ω2

j
dm
dx

)
Φj. (10)

It should be noted that we use the nomenclature here where d(·)
dx is the total derivative of some function

with respect to the vector x and ∂(·)
∂xi

is the partial derivative with respect to one term of the vector x,
namely xi. Specifically in our case, there will be no change in stiffness and therefore the eigenfrequency
sensitivity simplifies to

dωj

dx
= −ωj

2
ΦT

j
dm
dx

Φj. (11)

As we are adding mass to mass points, the term
∂m
∂xi

is a matrix with ones on the diagonal at those
corresponding degrees of freedom and elsewhere empty. This study utilizes this matrix structure
and introduces a novel approach to drastically reducing the dimensionality of the sensitivity analysis
and therefore the computational effort. We can reduce the size of this equation to three degrees of
freedom for the spatial case, two for the planar case and one for the one-degree of freedom case, i.e.

Figure 5. Design domain of the two-mass oscillator with valid (blue) and invalid (red) design domain
demonstrating islands of validity.

This being the case, the pragmatic use of gradient-based optimization algorithms is shown to
efficiently solve this design problem.

2.3. Sensitivity of Added Mass

To ensure computational efficiency, gradient-based optimization is used for this redesign problem.
Therefore, the analytical sensitivities are provided to reduce the computational effort. For the Hermitian
eigenvalue problem (undamped case) and where the eigenvector is normalized about the mass matrix,
i.e., ΦTmΦ = 1, the eigenfrequency sensitivity is [2,17]

dωj

dx
=

1
2ωj

ΦT
j

(dk
dx
−ω2

j
dm
dx

)
Φj. (10)

It should be noted that we use the nomenclature here where d(·)
dx is the total derivative of some

function with respect to the vector x and ∂(·)
∂xi

is the partial derivative with respect to one term of the
vector x, namely xi. Specifically in our case, there will be no change in stiffness and therefore the
eigenfrequency sensitivity simplifies to

dωj

dx
= −ωj

2
ΦT

j
dm
dx

Φj. (11)

As we are adding mass to mass points, the term
∂m
∂xi

is a matrix with ones on the diagonal at those
corresponding degrees of freedom and elsewhere empty. This study utilizes this matrix structure
and introduces a novel approach to drastically reduce the dimensionality of the sensitivity analysis
and therefore the computational effort. We can reduce the size of this equation to three degrees of
freedom for the spatial case, two for the planar case and one for the one-degree of freedom case, i.e.,
∂m
∂xi

is simply the identity matrix e with the size of the numbers of dimension of the model. Therefore,
assuming a lumped mass matrix for a mass point, these values are the following:

general:
∂mi
∂xi

= e, Rndim×ndim , (12)

three-dimensional volume element:
∂mi
∂xi

=




1 0 0
0 1 0
0 0 1


 , (13)
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three-dimensional beam element:
∂mi
∂xi

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




, (14)

two-dimensional bar element:
∂mi
∂xi

=

[
1 0
0 1

]
, (15)

one-dimensional lumped-parameter element:
∂mi
∂xi

= 1. (16)

The mass sensitivity matrix
∂m
∂xi

and mode vector Φj reduce to those degrees of freedom of the
mass point affected by a single design vector xi; all other values of the mass sensitivity matrix are

zero. The reduction of ΦT
j

dm
dx Φj can be shown with the following graphical representations of the

sensitivity equation:

ΦT
j︷ ︸︸ ︷

Φj,i

∂m
∂xi︷ ︸︸ ︷

∂mi
∂xi

Φj︷ ︸︸ ︷

Φj,i

and, as
∂mi
∂xi

is the identity matrix, this simplifies to the following:

ΦT
j︷ ︸︸ ︷

Φj,i

Φj︷ ︸︸ ︷

Φj,i .

Summarizing, for the sensitivity of the jth natural frequency to the ith design variables, gives
the following:

∂ωj

∂xi
= −ωj

2
ΦT

j,iΦj,i, (17)

where the subscript i of Φj,i refers to the degrees of freedom of the ith design variable. The sensitivity
equation then reduces to a simple function proportional to the square of the eigenvector of those
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degrees of freedom of the node of added mass. In turn this drastically reduces the computational effort
of the senstivity analysis.

2.4. Sensitivity Formulations of Frequency-Band Constraints

Above, we derived the sensitivities of the eigenfrequencies with respect to added mass. The final
sensitivity of the constraint functions is needed by the optimization algorithm. The constraint formation
by Ross [1] has the following sensitivity (also developed within the same work):

dgRossj

dx
= (−1)nband+1

2nband

∑
k=1

dgjk

dx

2nband

∏
l=1

g
(
ωj, ωband,k, (L, U)

)
, j = 1 . . . nω, k = 1 . . . nband. (18)

We now introduce the sensitivities of the range-constraint functions introduced in this work.
The parabolic range-constraint function has the following sensitivity:

dgparabolic,l

dx
= cnorm

dωj

dx

((
ωU

k −ωj

)
−
(

ωj −ωL
k

))
. (19)

This work introduces the ballistic range-constraint formulation and this design sensitivity can be
calculated by

dgballistic,l

dx
=

c
a

dωj

dx

(
1− e(c(ωj+d−ωL

k ))
)

. (20)

The index l runs in both Equations (19) and (20) in the following fashion:

l = (j− 1) nband + k, j = 1 . . . nω, k = 1 . . . nband. (21)

The last of these is the sensitivity function that will be used in the examples below.

3. Numerical Validation

3.1. Two-Mass Oscillator

The method described above will be shown on an introductory example of the two-mass oscillator
(Figure 6). We have an original design of the following parameters:

m1 m2

k1 k2

Figure 6. Schematic of two-mass oscillator.

m1 = 0.2 kg k1 = 10000 kN ·m
m2 = 0.2 kg k2 = 20000 kN ·m,

giving the following eigenfrequencies of the system

ω1 =745.1844 Hz

ω2 =2403.5961 Hz.
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It is now assumed that the eigenbehavior of the system has shifted due to wear or fault, or that
the requirements have changed. The constrained regions are defined by

ωrange =




0 500
650 800
1000 1350
2000 2500


 Hz,

which gives a nonfeasible initial design. A design is to be found in which these frequency ranges
are avoided by adding a minimum mass to the system. The resulting design domain of this
two-dimensional problem is displayed above in Figure 5. The optimization formulation is

min
x∈χ
{ f (x)}

such that g1 = 1
a

(
(1 + a) + c

(
ω1 + d−ωL

1
)
− e(c(ω1+d−ωL

1 ))
)
≤ 0

g2 = 1
a

(
(1 + a) + c

(
ω1 + d−ωL

2
)
− e(c(ω1+d−ωL

2 ))
)
≤ 0

g3 = 1
a

(
(1 + a) + c

(
ω1 + d−ωL

3
)
− e(c(ω1+d−ωL

3 ))
)
≤ 0

g4 = 1
a

(
(1 + a) + c

(
ω1 + d−ωL

4
)
− e(c(ω1+d−ωL

4 ))
)
≤ 0

g5 = 1
a

(
(1 + a) + c

(
ω2 + d−ωL

1
)
− e(c(ω2+d−ωL

1 ))
)
≤ 0

g6 = 1
a

(
(1 + a) + c

(
ω2 + d−ωL

2
)
− e(c(ω2+d−ωL

2 ))
)
≤ 0

g7 = 1
a

(
(1 + a) + c

(
ω2 + d−ωL

3
)
− e(c(ω2+d−ωL

3 ))
)
≤ 0

g8 = 1
a

(
(1 + a) + c

(
ω2 + d−ωL

4
)
− e(c(ω2+d−ωL

4 ))
)
≤ 0

and xL
i ≤ xi ≤ xU

i , ∀i

where x =
[
madded,1 madded,2

]T

and f = madded,1 + madded,2

governed by
(

k−ω2
j m (x)

)
Φj = 0.

As added mass can only lower the eigenfrequency, the ballistic constraint function is used here
with constant values a = 100 and b = 0, resulting in a continuous saw-tooth form, cf. Section 2.2
and Figure 4. The optimal design of a two-mass oscillator is solved using the first-order optimization
algorithm, method of moving asymptotes (MMA) [18] with the above-described analytical sensitivity
method. Despite the non-convex design domain as a result of the frequency-band constraints
(cf. Section 2.2 and Figure 2), it has been shown in [9,14,15] that gradient-based optimization
algorithms are efficient and effective. The main design goal here is achieving a feasible design
and therefore the risk of the optimum being not globally optimal is acceptable.

Starting from the lower limit, i.e., the original design, this optimization problem quickly finds a
valid design with minimum amount off added mass. With MMA, this needs 11 iterations, which in
turn requires 11 system evaluations and 11 sensitivity evaluations. The convergence plot is seen in
Figure 7. The start and optimal values are found in Table 1.
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Figure 7. Convergence plot for the two-mass oscillator.

Table 1. Optimization responses for the two-mass oscillator.

Parameter Symbol Start Value Optimal Value

Design variable 1 x1 0 0.0891
Design variable 2 x2 0 0.0
Objective function f 0.0 0.0891

Inequality constraint 1 g1 −1000000.0 −1000000.0
Inequality constraint 2 g2 0.6705 −0.2124
Inequality constraint 3 g3 −0.7693 −1.1476
Inequality constraint 4 g4 −2.6517 −2.9165
Inequality constraint 5 g5 −1000000.0 −1000000.0
Inequality constraint 6 g6 −1000000.0 −1000000.0
Inequality constraint 7 g7 −1000000.0 −1000000.0
Inequality constraint 8 g8 0.8529 −0.0014

3.2. Gear Housing

Here, we will show the application of the developed methodology to a large-scale engineering
example. A housing of a planetary gear set will be redesigned to find the position and amount of
added mass to move it out of critical frequency ranges.

The vibrational behavior of the gear housing is assessed via an eigenvalue analysis of a
three-dimensional model with the finite-element method. The geometry is shown in Figure 8. The
base of the housing is sized 96.5× 96.5 mm and its height is 101.5 mm. The eigenvalue problem of the
structural-mechanical model with neglected damping and free vibration is given by

(
−ω2

j m + k
)

Φj = 0, (22)

where m is the mass matrix, k is the stiffness matrix, ωj is the jth eigenfrequency (the square root of the
eigenvalue), and Φj is the corresponding jth mode shape (eigenvector). This analysis is solved using
the open software KRATOS MULTIPHYSICS [19,20]. The finite-element model consists of 195,970 nodes
and 1,077,626 volume elements. It is made of steel and a linear elastic material model is applied with
the parameters shown in Table 2. The bottom face (highlighted in orange in Figure 8b) is clamped to
restrict the structure.
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(a) View 1 (b) View 2

Figure 8. Geometry of the gear housing with design domain shown in blue.

Table 2. Linear-elastic material properties of steel.

Property Symbol Value Units

Density ρ 7.85× 10−9 t/mm3

Young’s modulus E 206900 MPa
Poisson’s ratio ν 0.29 [−]

We limit the scope of the analysis and optimal design to the first six eigenfrequencies, whose
mode shapes can be seen in Figure 9.

(a) 1st mode at 6513.56 Hz (b) 2nd mode at 6519.64 Hz (c) 3rd mode at 7245.50 Hz

(d) 4th mode at 7795.73 Hz (e) 5th mode at 10578.7 Hz (f) 6th mode at 12260.2 Hz

Figure 9. First six mode shapes of the gear housing.
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Studies about the modeling of vibrational behavior of planetary gear sets and the determination
of the uncertain eigenfrequencies are introduced by Wehrle et al. [14,15].

Table 3 summarizes the frequency ranges which should be avoided by the eigenfrequencies of
the housing.

Table 3. Frequency bands to be avoided.

Frequency Range k ωL
k [Hz] ωU

k [Hz]

1 230.7 231.5
2 1222 1292
3 2517 2691
4 2881 3635
5 6776 7278
6 7574 9311
7 9339 9907

A comparison of these frequency ranges and the computed values show that some
eigenfrequencies of the housing are in the forbidden ranges. To move the eigenfrequencies outside
of the forbidden frequency ranges, mass can be added to the housing. In this application, mass can
be added to all mesh nodes which are on the external surface of the housing, highlighted in blue
in Figure 8b.

The engineering design problem described above is implemented as a numerical optimization
problem of the following form:

min
x∈χ
{ f (x)}

such that gl =
1
a

(
(1 + a) + c

(
ωj + d−ωL

k
)
− e(c(ωi+d−ωL

k ))
)
≤ 0, j = 1 . . . nω, k = 1 . . . nband,

and xL
i ≤ xi ≤ xU

i , ∀i

where x =
[
madded,1 madded,2 . . . madded,15494

]T

and f = ∑15494
i=1 xi

governed by
(

k−ω2
j m (x)

)
Φj = 0,

(23)

where the constraint index l = (j− 1) nband + k. The objective function is the minimization of the
added mass. The constraint formulation and sensitivity analysis are performed as described above
in Sections 2.2–2.4. As added mass can only lower the eigenfrequency, the ballistic range constraint
function is used with the constants a = 700 and b = 0, which is like the two-mass oscillator results in a
continuous saw-tooth form, cf. Figure 4. Design variables are all surface nodes on the highlighted blue
surface in Figure 8b. With this, the vector of design variables are the values of the mass added to these
15,494 nodal mass elements. The lower bound of the design variables is set to zero,

xL
i = 0 g, ∀i, (24)

and the upper bound of the design variables is set to a value of

xU
i = 10 g, ∀i. (25)

The start vector of the design variables is set to the lower bound values., i.e., the initial structure
with no added mass. The design optimization is performed using the toolbox DESOPTPY [21,22] and
the first-order optimization algorithm MMA [18].

Figure 10 shows the values of eigenfrequency sensitivities
dωj
dx of the initial design (i.e., with no

added mass). The sensitivities are calculated by eigenfrequency and the value of the sensitivity with

respect to each design variable, i.e., nodal mass,
∂ωj
∂xi

is represented by the color of the spheres shown
in each subfigure. It should be noted that the flat gray (i.e., without spheres) has been designated as
non-design domain. As per Equation (17), the relation between mode shape and sensitivities can be
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clearly seen, cf. Figures 9 and 10. The solution of the eigenvalue problem for the first six modes at the
initial design requires approximately nine minutes on a machine with an Intel Core i7-8700 CPU at
3.20 GHz × 12 and 31.4 GiB of random-access memory. The efficiency of the optimization technique is
guaranteed with sensitivity computations, which with the method described in Section 2.3 takes less
than one second.

(a) 1st mode at 6513.56 Hz (b) 2nd mode at 6519.64 Hz (c) 3rd mode at 7245.50 Hz

(d) 4th mode at 7795.73 Hz (e) 5th mode at 10578.7 Hz (f) 6th mode at 12260.2 Hz

Figure 10. Sensitivities of the eigenfrequencies of the gear housing with respect to added mass dωj
dx .

Figure 11 shows the values of the objective function and the maximum constraint function during
the optimization run. Convergence was reached after 28 iterations and a feasible design is obtained.
It is here to see that the problem immediately moves to a feasible design after the second iteration
and after which the added mass is further reduced while staying at the active constraint limit. This
excellent convergence behavior is obtained with the gradient-based algorithm despite the non-convex
nature of the problem, including islands of feasibility (cf. Figure 5). For the optimal design, 52.01 g
of mass was added to the housing, which has a mass of 2.425 kg, or only a 2% increase in mass with
respect to its initial mass. Furthermore, as the design is feasible, all eigenfrequencies have been shifted
out of the constrained ranges. The numerical results can be seen in Tables 4 and 5.
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Figure 11. Convergence plot for the housing.

Table 4. Optimization responses for the gear housing.

Parameter Symbol Start Value Optimal Value Unit

Objective f 0.0 52.01 g
Maximum constraint gmax 0.9458 0.0005 −

Eigenfrequency 1 ω1 6513.80 6172.81 Hz
Eigenfrequency 2 ω2 6519.89 6273.29 Hz
Eigenfrequency 3 ω3 7245.71 6775.99 Hz
Eigenfrequency 4 ω4 7795.97 7574.93 Hz
Eigenfrequency 5 ω5 10579.3 9920.87 Hz
Eigenfrequency 6 ω6 12260.8 11013.2 Hz

Table 5. Optimal values of the design variables for the gear housing, all values in g.

Parameter Symbol Start Value Optimal Value

Design variable 1 x1 0.0 0.192
Design variable 2 x2 0.0 0.733
Design variable 3 x3 0.0 0.080
Design variable 4 x4 0.0 0.168
Design variable 6 x6 0.0 0.051
Design variable 8 x8 0.0 0.248

Design variable 13 x13 0.0 0.164
Design variable 928 x928 0.0 2.602
Design variable 997 x997 0.0 10.00

Design variable 1075 x1075 0.0 10.00
Design variable 1161 x1161 0.0 0.446
Design variable 4731 x4731 0.0 7.287
Design variable 4757 x4757 0.0 10.00
Design variable 4809 x4809 0.0 10.00
Design variable 6957 x6957 0.0 0.005
Design variable 7806 x7806 0.0 0.005
Design variable 8024 x8024 0.0 0.033

All other design variables xelse 0.0 0.0

After the design optimization, the vast majority of design variable values are numerically zero,
creating a favorably discrete solution. In fact, of the 15,494 design variables, there are only 17 with
values larger than zero, i.e., only 17 nodal mass elements have added mass. The values of these are
found in Table 5. Figure 12 shows the position of the zero design variables in gray and the design
variables with different values in the scale of the color bar. Of the 17 design variables with an added
mass, four optimal values are at the upper limit of 10 g, one optimal value is approximately 7.3 g, and
a further optimal value is approximately 2.6 g. The optimal values of the other 11 design variables
are one to three magnitudes smaller and have values between 0.004 g and 0.8 g, which are identified
in Figure 12 as yellow mass nodes. The optimal positions are be nearly symmetrical at the top edge of
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the upper flange. That so few nodes of the optimal design have added mass is deemed to be positive
and, therefore, easier to physically implement.

(a) View 1 (b) View 2

(c) Top left side (d) Top right side

Figure 12. Values of design variables after optimization; nodes with zero mass are shown in gray,
nodes with added mass are shown with the scale of the color bar.

4. Conclusions

In this work, we have developed a new methodology for the efficient redesign of mechanical
systems with respect to their eigenfrequencies by adding mass. The solution results in the amount
and position of mass to be added. Due to the generality of this method, it can be applied to small
lumped-parameter models or very large finite-element models efficiently and effectively. This is
validated above on two case studies.

It was shown that, even with the simple test case with few design variables, the design domain
is multimodal and has islands of validity. Therefore, this problem is inherently non-convex. Despite
this characteristic of the optimization problem, gradient-based algorithms were used because of their
great efficiency and successfully moved the eigenfrequencies of the system outside the constrained
bands. Although the gradient-based algorithms lead to a final design that is a local minimum, the
non-convexity of the problem cannot guarantee that this is a global minimum. With such large design
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domains as the engineering example, the main priorities were feasibility of design and efficiency,
which were achieved.

As this method is efficient, when models are a priori available, this can be also carried out online
to properly design addition mass to alter the vibrational behavior in the matter of minutes or even
seconds. Furthermore, in this case, the objective function was chosen to minimum added mass, which
leads to the least change in the system.

For the practical application of this methodology, only an accurate CAD model of the housing
and the frequency ranges that are to be avoided are necessary. After meshing, a node set is
defined on the exterior of the housing on which the addition of mass is feasible. There may be
manufacturing inaccuracies and material variations causing deviations from the deterministic values
used here. Uncertainty analysis can then also be integrated into the design process. Experimental
studies are planned for both this investigation as well as the general verification using different
benchmark examples.

For a wide range of applications, the addition of mass, e.g., to the outside of the housing,
represents an ideal solution to maintain other operating conditions. In this work, it is shown that this
can be done with a design optimization method utilizing a new constraint formulation and efficient
sensitivity analysis. The method can further be extended to include other objectives, design variables
and constraints.
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