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Abstract: This article presents a new and powerful freeware software called MotorAnalysis-PM and
discusses its application in electromagnetic design and analysis of permanent magnet (PM) motors
for the electric vehicle (EV) industry. This new PM motor software utilizes both finite element (FE)
and analytical methods to speed up the analysis and design process of PM motors significantly. The
analysis and design methodology using MotorAnalysis-PM is presented and discussed for a 50 kW
PM motor utilized in a commercial EV. To validate the accuracy of the software, the numerical results
obtained from the PM motor design and analysis tool are compared with experimental results. The
numerical and experimental results validate the flexibility of this software in achieving accurate
motor design with short design times which is of great interest to EV and PM motor manufacturers.

Keywords: permanent magnet (PM) motor; finite element (FE) method; electrical machine design;
electric vehicle (EV); design methodology

1. Introduction

The development of high-performance permanent magnet (PM) motors in electric vehicles
(EVs) presents engineers with the challenge of developing new designs to increase efficiency and
power density while reducing the cost of the electromechanical devices [1]. The conventional design
process for PM motors is based on utilizing analytical calculations given in generalized form which is
labor-intensive and difficult to follow [2,3]. With the progress in computer and simulation technologies
on the one hand and increasing demand for superior motor characteristics on the other hand, the
advanced computer-based simulation tools become an essential part of the design process. Not only do
they assist in better understanding of the behavior of the device under different operating conditions,
but also allow performance optimization and cost reduction through better material utilization and
minimizing the number of prototypes required during the development process [4,5]. The PM motor
design methodology proposed in this paper is intended to transform the conventional textbook design
process from a generalized form to a definite workflow centered on the use of a computer-based
simulation tool.

In recent years, commercial and expensive electromagnetic tools have been employed for the design
and analysis of PM motors for EVs with some interesting examples found in the literature [4–8]. For
example, Huynh and Hsieh utilized the commercial finite element (FE) software called JMAG to analyze
the electromagnetic and thermal performance of PM motors for EVs. Authors in [4] studied thin electrical
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steel laminations in the rotors with different configurations of flux barriers with neodymium–iron–boron
(NdFeB) permanent magnets. Liu et al. analyzed the optimization process for PM synchronous motors
utilizing ANSYS Maxwell software [5]. Cetin and Daldaban employed ANSYS Maxwell software and
magnetic circuits to analyze axial flux PM motors with different PM geometry designs [6]. Eklund
and Eriksson employed COMSOL Multiphysics software to study the effects of remanence and recoil
permeability of a PM material on the performance of PM synchronous generators [7]. He and Wu
employed ANSYS Maxwell software to analyze the design of interior PM brushless direct current (DC)
motors for an electric impact wrench used for loading and unloading car bolts [8].

Nevertheless, the high cost of commercial analysis software is often unaffordable for many PM
motor manufacturers with a limited budget. For this reason, it is important to develop new and free
analysis and design tools for the PM motor industry. Some recent and interesting examples of free
and non-commercial tools are found in the literature [9–13]. Meeker in [9] developed general-purpose
and non-commercial FE software called “FEMM software” for two-dimensional (2-D) FE analysis.
With FEMM software it is possible to perform magnetostatic and time-harmonic analysis, electrostatic
analysis, heat-flow analysis, and current flow analysis. It is not possible to perform transient analysis
using FEMM software. In addition, although FEMM software is freely available, the design of
PM motors using this FE software is complex and laborious. Lu et al. [10] solved this problem by
development of SyR-e tool based on Octave-FEMM and Matlab-FEMM scripting library and graphical
user interface. SyR-e is a free tool but some calculations, such as steel core losses, PM losses and
efficiency map, are still delegated to expensive commercial FE software. Lehikoinen et al. [11] developed
an open-source Matlab 2-D finite-element method (FEM) library for electrical machines called SMEKlib.
SMEKlib is a library in which more attention has been given to the features and basic analysis tools,
rather than the user interface. Another popular tool for designing a PM motor which is available for
free is JMAG-Express Public developed by the JSOL corporation [12]. JMAG-Express Public is an
analytical tool developed for quick and rough estimation of motor characteristics. Since JMAG-Express
Public is not FEM-based, it is suggested to be used only for basic design while a detailed design is
achievable by commercial tools provided by the JSOL corporation. Finally, another free tool which is
worth mentioning is Emetor [13]. Emetor is an online tool offering powerful magnetostatic FE analysis
features with geometry templates, materials library and automated winding setup. Table 1 shows a
comparison of different free PM-motor design tools. All these developments indicate that there is still
an undeniable need for a freely available PM motor design/analysis tool that provides a dedicated user
interface with accurate and flexible electromagnetic motor analysis capabilities.

Table 1. Comparison of several free permanent magnet (PM)-motor design tools.

Features FEMM SyR-e
Tool

JMAG-Express
Public Emetor MotorAnalysis-PM

Geometry templates No Yes Yes Yes For stator only
Geometry import from

DXF file Yes No No No Yes

Automated winding setup No Yes Yes Yes Yes
Materials library Yes Yes Yes Yes Yes

Magnetostatic FE analysis Yes Yes No Yes Yes
Transient FE analysis With scripting only No No No Yes
Analytical analysis No No Yes No Yes
Motor characteristic

graphs With scripting only Yes Yes No Yes

Efficiency map generation No No No No Yes
Parametric analysis No Yes Yes No No

In this article, a new and powerful PM motor design and analysis tool called “MotorAnalysis-PM”
is introduced. The capabilities of the software are presented, and the design and analysis methodologies
are demonstrated and applied on a 50 kW interior permanent magnet (IPM) motor utilized in a real
EV [14,15]. Moreover, the numerical results are compared with experimental data obtained from
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the literature. The novelty of this article is (i) to introduce a recently developed PM motor design
tool capable of performing electromagnetic design of PM motors and (ii) to present the associated
electromagnetic design workflow.

The content of this article is organized as follows. In Section 2, a brief description of
the characteristics of MotorAnalysis-PM software is presented. Section 3 describes the analysis
methods and models used in MotorAnalysis-PM. Section 4 introduces the electromagnetic design
methodology of an IPM motor using MotorAnalysis-PM. In Section 5, the numerical results obtained
from MotorAnalysis-PM are compared and validated with experimental data. Section 6 presents
the conclusions.

2. General Characteristics of MotorAnalysis-PM Software

MotorAnalysis-PM is a free and powerful software for design and analysis of PM motors and
generators. The software is based on automated FE simulations and establishes a complete set of tools
for design and analysis of PM motors. It is based on Matlab and C++ programming language [14,15]
and does not require the use of other commercial FE software, making it a good choice for any PM
motor manufacturer. MotorAnalysis-PM can analyze several motor topologies including skewed rotor
geometries which can be solved with multi-slice FE analysis [14,15]. In addition, it has an automatic
and manual stator winding layout generation and can employ different wire-sizing methods [14,15].
The software includes a defined materials library, but also gives the users the flexibility to create and
define other materials.

The development of MotorAnalysis software started in 2008 as part of a PhD project to study
the behavior of induction motors with broken rotor bars. Later, the software was transformed into a
design tool for induction motors in 2014. In 2017, the MotorAnalysis software was extended to also
include PM motors and the first version of MotorAnalysis-PM was released. MotorAnalysis-PM uses
Matlab PDE Toolbox to generate the initial finite element mesh. The mesh is further modified to meet
specific needs such as mesh periodicity, rotor rotation with air gap remeshing, periodic and antiperiodic
boundary conditions and etc. Most parts of the user interface (UI) are developed using Matlab UI
design environment. Geometry import from a DXF file and corresponding UI are implemented based
on C++ programming language. The software combines several analysis methods having different
accuracy and computation speeds. The appropriate analysis method can be chosen depending on the
phase of the machine design process and required speed/accuracy tradeoff. The analysis methods and
their features include the following:

a. Magnetostatic finite-element (FE) analysis:

• Based on time-stepping magnetostatic FE simulations assuming ideal sinusoidal or trapezoidal
current waveform.

• Calculation of most commonly used motor parameters like voltage, current, power,
back-electromotive force (EMF), torque, power factor, efficiency, and power losses.

• Used to analyze cogging torque and torque ripple, back-EMF harmonics, steel core losses, PM
losses, and demagnetization effects of PMs.

• Visualization features include time-series waveform plots, air gap distribution and field plots as
well as field animations.

b. Dynamic FE analysis:

• Based on time-stepping transient FE simulations considering induced eddy current effects.
• An electrical circuit solver paired with an electromagnetic solver to couple external electrical

circuits with FE PM motor models.
• Arbitrary supply current or voltage waveforms including pulse width modulation (PWM)

inverter supply.
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• Used to analyze transient motor behavior, cogging torque and torque ripple, back-EMF harmonics,
steel core losses including higher harmonics, and demagnetization effects in PMs.

• Visualization features include time-series waveform plots, air gap distribution, and field plots as
well as animations.

c. Steady state d-q analysis:

• Based on a conventional model of the PM motor in d-q reference frame with sinusoidal back-EMF
derived from FE solutions.

• Saturation and cross-saturation of magnetic cores as well as steel core losses are considered.
• Calculation of steady-state performance characteristics, efficiency maps and other performance

maps considering field-weakening strategy.

d. Dynamic d-q analysis:

• Based on the dynamic model of the motor in d-q reference frame with sinusoidal back-EMF.
• Simulation of the PM motor with PWM supply and current control algorithm including

field-oriented control and current hysteresis control.

3. Analysis Methods and Models Used in MotorAnalysis-PM

In this section, the numerical and analytical methods and models used in the software are
briefly described. MotorAnalysis-PM utilizes four main analysis methods comprising numerical and
analytical models that are used in the different steps of the PM motor design process described in
Section 4. Numerical methods are based on FE models and consist of magnetostatic and transient
analyses. Analytical methods are based on equivalent circuit models in the d-q axes reference frame,
also called d-q models, and represented by steady state d-q analysis and dynamic d-q analysis [14,15].
When the FE method is applied, the magnetic field analysis of a PM motor can be solved using a 2-D
approximation [15,16], which assumes that the magnetic field does not depend on z-coordinate (z-axis
being parallel to the motor rotor shaft axis). Thus, the magnetic field is solved in the plane of the
motor’s cross section (x-y plane). For 2-D FE problems, the current density J and the magnetic vector
potential A have only z-component and can be expressed as:

∇×

(
1
µ
·∇ ×A

)
= J (1)

J = σ·
V
l
− σ·

∂A
∂t

(2)

where A is the magnetic vector potential, µ is the magnetic permeability, J is the current density, σ is
the electrical conductivity, V is the voltage applied to the FE area, l is the length in z direction of the
2-D FE PM motor model.

There are two methods used in MotorAnalysis-PM to solve PM motor expressions defined by
(1) and (2). The first method is called a magnetostatic FE analysis and the second method is called a
transient or dynamic FE analysis. For the magnetostatic FE analysis, J is assumed to be independent of
the magnetic field variation so only (1) is used to define the magnetostatic problem. The magnetostatic
FE simulation is also called current driven since the current is known in advance and no induced eddy
currents are considered. To account for the rotor rotation, the magnetostatic FE analysis is repeated for
several different rotor positions accordingly changing the J values. This method is called time-stepping
magnetostatic FE analysis. When the second method of transient FE analysis is utilized, the numerical
simulation is called voltage-driven and the current is treated as an unknown variable.

Although the accuracy of analytical methods is lower, the d-q models offer much higher
computational speed compared to the convectional FE method. The d-q reference frame fixed
to the rotor is a convenient way to represent sinusoidal quantities as constants [15,17,18].
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To consider the effect of cross-saturation, the cross-saturation inductance Ldq and cross saturation
magnet flux linkage Ψmqd lying in the q-axis are considered. With the cross saturation terms the d-axis
and q-axis flux linkages are given as follows [17]:

Ψd = Ψmd + LdId + LdqIq (3)

Ψq = Ψmqd + LqIq + LdqId (4)

where inductances Ld, Lq, Ldq, and magnet flux linkage Ψmd, and Ψmqd values depend on current
components Id and Iq to consider magnetic saturation. The steady state equations, used for the d-q
analysis, after resolving voltages into d and q components, can be written as:

Vd = RsId −ωΨq −ωLsewIq (5)

Vq = RsIq +ωΨd +ωLsewId (6)

V =
√

V2
d + V2

q (7)

The electromagnetic torque T is calculated as:

T =
3
2

p
(
ΨdIq −ΨqId

)
(8)

where p is the number of pole pairs, Ψd and Ψq are the d-axis and q-axis flux linkages, Id and Iq are the
d-axis and q-axis current components.

Finally, the dynamic equations used for the dynamic d-q analysis are given by the following
expressions:

Vd =
dΨd
dt

+ Lsew
dId
dt

+ RsId −ωΨq −ωLsewIq (9)

Vq =
dΨq

dt
+ Lsew

dIq

dt
+ RsIq +ωΨd +ωLsewId (10)

where Rs is the stator winding phase resistance, Lsew is the stator end winding inductance, and ω is the
electrical operating speed.

The computation of flux and inductance parameters Ld, Lq, Ldq, Ψmd and Ψmqd in MotorAnalysis-PM
is based on the magnetostatic FE analysis for one rotor position with permeance freezing. This allows
the use of the superposition method to extract the parameters of the PM motor while considering the
magnetic saturation and cross-saturation [17]. This process is referred to as the parameterization of the
d-q model. During parameterization, the magnetostatic FE simulation is run for the entire range of
advance angle values from 0◦ to 360◦ (electrical degrees) and current values from zero to the maximum
current defined by the user. This process can also be repeated for several rotor positions to consider
variation of the d-q model parameters with rotor position. Finally, the time-stepping magnetostatic FE
simulation is performed for several operating points to include information about the steel core losses
into the d-q model. Every time the d-q model is utilized, its parameters are interpolated depending on the
current and advance angle values, so the non-linear behavior of the motor is included in the d-q model.

4. Design Methodology Using MotorAnalysis-PM

The objective of this section is to emphasize the practical aspects of the design process and to
demonstrate how they are solved using MotorAnalysis-PM. The proposed process can be used for the
electromagnetic design of alternating current (AC) PM motors. Note that it is not necessary to strictly
follow the given step sequence as some steps can be skipped in a certain stage while others can be
repeated multiple times. The flowchart of the proposed design methodology using MotorAnalysis-PM
is shown in Figure 1.
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The proposed design and analysis process is illustrated by a study of the Toyota Prius 2004 IPM
synchronous motor. The FE analysis results obtained from MotorAnalysis-PM are presented here
and discussed.
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4.1. Initial Design Assumptions

Initial design assumptions include the choice of outer or inner rotor topology, rated current or
current density, rated voltage, power and torque, corner speed, materials, size and weight requirements.
Table 2 shows the basic specifications of the Toyota Prius 2004 motor used for this analysis [19–21].

Table 2. Toyota Prius 2004 PM motor specifications [19–21].

Specification Value

Rated current density 27.4 A/mm2

Rated current 230 A
Corner speed 1200 rpm
Rated power 50 kW
Rated torque 400 Nm

Stator outer diameter 269.2 mm
Lamination length 83.6 mm

Lamination material M-19 29 Ga
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4.2. Initial Winding Configuration

The initial winding configuration includes the number of slots, number of pole pairs, coil span
and slot fill factor. The basic rules on the winding configuration can be found in [2,3,22,23]. Once the
number of slots, number of pole pairs, and coil span are entered, MotorAnalysis-PM automatically
computes the winding layout for each phase using the star of slots method [24]. The star of slots
represents the general theory of multilayer-balanced m-phase windings and the rules to lay out such
windings. To simplify the design process, the initial number of parallel paths and the number of turns
are set to 1. Since the magnetic field depends on the value of ampere-turn and not on the number of
turns itself, this assumption will not affect the calculation of magnetic flux density distribution. Actual
values of the number of parallel paths and the number of turns will be determined in future steps.

In the next stage, besides the winding layout, the fundamental winding factor, the least common
multiple (LCM) of the number of slots and number of poles, and the greatest common divisor (GCD)
of the number of slots and number of poles are calculated. The fundamental winding factor should
be kept close to unity. LCM of the number of slots and the number of poles equals to the number of
periods of cogging torque waveform per rotor revolution. Selecting a higher value of LCM minimizes
the cogging torque. GCD of the number of slots and number of poles should be an even number.
Choosing a higher value for this parameter ensures a better balance of radial forces with reduced noise
and motor vibrations. Note that maximizing the fundamental winding factor, LCM and GCD, and at
the same time minimizing the phase resistance is inherently incompatible, so the task of the designer is
to find the optimal balance between winding parameters.

4.3. Geometry Design

Basic sizing rules can be found in [2,3,8,25]. The main objective while adjusting the geometry
parameters is to produce the rated torque with the minimum amount of power losses and minimum
use of active materials. For IPM motors, this task can be achieved by choosing the appropriate level
of magnetic saturation for different steel cores of the motor and by maximizing the saliency ratio
of the motor. This section describes how MotorAnalysis-PM can facilitate to achieve these goals.
The Geometry Editor window of MotorAnalysis-PM for entering geometry parameters of the motor is
shown in Figure 2.

For the surface PM motors, the maximum torque occurs at an advance angle γ = 0 and the entire
analysis can be done with this assumption. In the case of the IPM motor, the maximum torque will
occur at an advance angle between 0◦ and 90◦ due to a significant reluctance torque component.
Therefore, the advance angle at which the maximum torque is achieved should be determined first.
The initial torque versus advance angle curve (blue curve in Figure 3) is obtained by the d-q analysis
of MotorAnalysis-PM for the rated current density to determine the advance angle corresponding
to the maximum torque. Since the accuracy of the d-q analysis is less than that of the FE method,
the time-stepping magnetostatic FE analysis is carried out for several values of advance angles in
the vicinity of the torque peak previously obtained from d-q analysis. This results in finding the
maximum torque advance angle with better accuracy. Only a few points are used for the time-stepping
magnetostatic FE analysis since its computational speed is much lower compared to the d-q analysis.
For the PM motor under study, the refined advance angle value of 50◦ is found that ensures maximum
torque as shown in Figure 3 with red color. The advance angle value of 50◦ is used for further analysis.

Table 3 compares the results of MotorAnalysis-PM magnetostatic FE analysis for the rated current
density and a quarter of rated current density. The corresponding flux density distribution plots
obtained from MotorAnalysis-PM are shown in Figure 4. Note that current and voltage are computed
for initial winding configuration employing one turn.
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magnetostatic finite-element (FE) analysis (red).

Table 3. MotorAnalysis-PM magnetostatic FE analysis results for initial winding configuration.

PM Motor Parameters Rated Current
Density

Quarter of Rated
Current Density

Current density (A/mm2) 27.4 6.85
Speed (rpm) 1200 1200

Advance angle (deg.) 50 50
Torque (Nm) 396.8 108.9

Output power (kW) 49.9 13.7
Efficiency (%) 85.5 95.9

Root mean square (RMS) phase current for one turn (A) 2070.3 517.6
RMS phase voltage for one turn (V) 17.7 10.6

Copper losses (W) 8317.5 519.8
Iron core losses (W) 139.5 69.4
Magnet losses (W) 4.4 0.1
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Figure 4 and Table 3 demonstrate how the magnetic saturation of the steel cores can influence the
PM motor performance. With the rated current density, the PM motor is oversaturated, maximum
average flux density in the tooth is about 2 T, and in the stator back iron it is about 1.9 T, which leads to
efficiency of only 85.5%. With four times lower current density, the observed maximum average flux
density in the tooth is reduced to 1.5 T and 1.3 T for the stator back iron, resulting in calculated efficiency
of 95.9%. The flux density distribution plots provide valuable insight about motor performance
revealing regions with exceeding flux densities. In an ideal case, the flux density values should be
kept as low as possible, reducing both the magnetic resistance and steel core losses. In practice, this is
restricted by the size and weight requirements. For most steels, it is usually recommended to keep
the flux density in the stator teeth below 1.8 T or even less for higher speed motors to minimize core
losses. The flux density in the back iron is usually lower than that of the teeth. However, validation
with the magnetostatic FE analysis is recommended to determine the back iron dimensions satisfying
the desired motor performance and size/weight requirements. More detailed recommendations for
choosing flux density levels for different parts of the PM motor can be found in [2]. If needed, the motor
designer may consider adding more steel to the saturated region to reduce flux densities and improve
motor performance. By contrast, steel active parts with very low flux densities can be removed to save
weight and cost.

In IPM motors, inserting PMs deeper into the rotor steel decreases magnet torque component
in comparison to surface PM motors. This is due to the fact that the distance between magnets and
the stator becomes larger and magnetic flux travels a longer distance. This is compensated by the
reluctance torque component, which is determined by the saliency ratio, Lq/Ld. The saliency ratio, in
turn, is affected by the rotor geometry and stator winding configuration [26,27]. Figure 5 shows curves
of the saliency ratio versus the advance angle for different stator currents generated using the d-q
analysis of MotorAnalysis-PM. It is seen that the saliency ratio changes significantly with a change in
current and advance angle. The dependence on the advance angle becomes more evident as the rotor
saturates which should be considered while designing the motor. Increasing the saliency ratio with the
advance angle is an important factor to consider especially for the field-weakening operation. This
means that the reluctance torque component increases during operating conditions when the magnet
torque component decreases with the weakened flux of the PMs.
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4.4. Number of Turns and Parallel Paths

Table 3 shows the FE simulation results with corner speed of 1200 rpm for initial winding
configuration with one turn and one parallel path. To adjust the desired levels of the stator root mean
square (RMS) phase current and RMS phase voltage, the two expressions below can be used:

IsRMS = IsRMS(1)Npp/W
VsRMS = VsRMS(1)W/Npp,

(11)

where Npp is the number of parallel paths of the winding, W is the number of turns, IsRMS(1) and
VsRMS(1) are the stator RMS phase current and RMS phase voltage with one parallel path and one turn
winding corresponding to corner speed and rated current density.

The corner speed is defined as the maximum speed that the motor can reach with rated torque
while operating in maximum torque per ampere (MTPA) regime i.e. without field weakening [17].
With a given rated torque, the corner speed determines the peak output power of the motor. While
setting the number of turns and parallel paths using (11) the maximum phase voltage available from
the inverter terminals should be considered such that the phase voltage defined by (11) does not
exceed the inverter limit. Parallel paths can be considered to adjust the voltage and current ratings
to those of a specific supply and to minimize the unbalanced magnetic pulls due to manufacturing
imperfections [28].

The actual winding arrangement chosen for the considered example comprise of nine turns and
one parallel path. The Winding Editor window of MotorAnalysis-PM is shown in Figure 6. According
to (11) and simulation results presented in Table 3, the actual rated RMS current is reduced to 230 A
and the RMS phase voltage is increased to 159.3 V.
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4.5. Demagnetization Analysis

Irreversible demagnetization occurs when the operating point of any part of the PMs passes
beyond the linear range, i.e. falls below the “knee” of the demagnetization curve. In this case, the
residual flux density in the PMs is reduced, causing an irreversible change in the PM properties [15,29].

During field-weakening operation the d-axis current can push the flux density in the PMs towards
the vicinity of the knee of the demagnetization curve. Hence, IPM motors should be designed with the
ability to withstand the demagnetizing field without the risk of PM demagnetization at maximum
operating temperatures.

MotorAnalysis-PM provides the calculated value of maximum demagnetizing field strength
experienced by the PMs for each run of magnetostatic and dynamic FE analysis. This allows assessment
of the risk of demagnetization by the designer. It is recommended to check the design for possible risk
of demagnetization at the worst operating conditions (maximum current, magnet temperature and
advance angle) and also during fault conditions [30]. If simulations reveal the risk of demagnetization,
the designer should consider increasing the PM thickness, change the PM material, or change the PM
grade with a higher intrinsic coercivity or/and operating temperature.

4.6. Field-Weakening Operation

In the development of MotorAnalysis-PM additional attention has been given to the analysis
of field-weakening capabilities of the motor, which is especially important for EV applications. The
ability of a motor to maintain a constant output power during the field-weakening operation is defined
by the characteristic current given by [31]:

Ich = λpm/Ld (12)

where λpm is the magnet flux linkage in the d-axis and Ld is the d-axis inductance. According to (12), the
characteristic current of the Prius IPM motor is determined from the MotorAnalysis-PM d-q analysis
to be:

Ich = 0.1607/0.00226 = 71 A (13)

Since λpm and Ld nonlinearly depend on the advance angle γ, the characteristic current is
determined for γ at which the maximum torque occurs (MTPA operation is implied). This is illustrated
in Figure 7. On the other hand, since the values of λpm and Ld also depend on the stator current, multiple
iterations are required and calculation is repeated for different stator currents until Ich converges.
Figure 8 shows results from the d-q analysis of MotorAnalysis-PM demonstrating how the stator
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current influences the output power during the field weakening operation. The three curves in Figure 8
pertain to three values of the stator current; rated current of 230 A, previously determined characteristic
current of 71 A, and 30 A which is less than half of the characteristic current. As expected, the output
power is almost constant for the characteristic current. For the rated current which in this case is much
higher than the characteristic current, the output power shows a noticeable peak at the corner speed.
Figures 9 and 10 show the torque and advance angle curves corresponding to those three values of
the stator current. One of the advantages of the MotorAnalysis-PM software is that it automatically
adjusts the advance angle in the field-weakening regime, so the torque is maximum for a given current
without exceeding the voltage limit.
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To ensure that the desired motor performance in the field-weakening region is obtained, the
characteristic current value should be defined in the initial stage of the design. The characteristic
current is usually chosen to be close to the rated current Irated [31,32] (which is not the case for the Prius
motor considered). According to (12) an increase in λpm and/or a decrease in Ld leads to an increase
of the characteristic current. Therefore, any change in PM dimensions, PM residual flux density, slot
dimensions, or winding arrangement may be considered by the designer to adjust the characteristic
current. It should be noted that, according to (11), changing the number of turns and number of
parallel paths does not affect the Ich/Irated ratio even if it changes Ld.
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Figure 10. Advance angle versus speed curves for different stator currents in MTPA and field-weakening
regimes.

4.7. Analysis over Entire Speed and Torque Ranges

The MotorAnalysis-PM d-q analysis capability allows the generation of a variety of motor
characteristic curves and maps, such as the speed-torque curve, current-torque curve, efficiency map,
current and voltage maps, and many others. This flexibility allows the designer to overview the motor
performance over an entire operating range as opposed to only examining one or several operating
points. Several examples of d-q analysis curves generated by the software are shown in Figures 8–10.
The efficiency map is a contour plot representing the maximum efficiency that can be obtained for
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specific values of speed and load torque. The efficiency map is usually shown in speed-torque
coordinates, with the X-axis being the rotor speed and the Y-axis representing the torque of the machine.
Figure 11 shows the efficiency map for the Prius motor generated by the MotorAnalysis-PM software
over an entire speed and torque range (only efficiencies over 80% are shown).
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Calculation of the efficiency map is computationally expensive since it requires multiple iterations
for every speed-torque pair to find the optimum operating point while considering the constraints
of inverter voltage and current limits [33–36]. To speed up the efficiency map computation,
MotorAnalysis-PM uses the analytical steady-state d-q model previously parametrized with FE
simulations. This advantage allows the efficiency map to be generated in a matter of few minutes.
For instance, the motor efficiency map (Figure 11) with 579 points is generated in 33 minutes with
MotorAnalysis-PM (Intel Core i7 2.7 GHz CPU and 16 GB RAM). This is significantly faster compared
to commercial FE software packages where many hours or days are necessary to compute the motor
efficiency maps and expensive computational resources are necessary for this numerical process [33–36].
For example, Delafosse et al. utilized ANSYS Maxwell software to compute the efficiency map for the
same Prius PM motor presented in this paper using 2-D FE simulations [33]. An efficiency map with
250 points was computed in 2 hours and 19 minutes using a single core and the same efficiency map
with 250 points was obtained in 17 minutes using 10 cores [33]. Dlala et al. employed ANSYS Maxwell
software to compute the PM motor efficiency map with 400 points in 3 hours using 4 cores [34]. Finally,
from references [33] to [36] one can see that in some commercial FE software packages where the
efficiency map is calculated solely based on FE simulations, the efficiency map calculation requires
significantly more time compared to MotorAnalysis-PM, where a combination of FEM and analytical
models are utilized to speed up the simulation process. Furthermore, some commercial FE software
packages require purchasing additional licenses for the use of several cores which makes the analysis
and designing process even more expensive [37].

5. Verification with Experimental Results

The FE simulation results of the Toyota Prius 2004 PM motor obtained with MotorAnalysis-PM
are validated using the experimental data published in [19–21]. Figure 12 shows the comparison
of simulated and measured peak values of the back-EMF. Numerical results are generated by
MotorAnalysis-PM by using time-stepping magnetostatic FE analysis with 200 time steps. Since the
stator current during the test is zero, the rotor is heated by the friction and steel core losses in the
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stator from the rotating magnetic field of the rotor. The temperature of the PMs during the back-EMF
test is not reported in the experimental study, and only the oil temperature range of 25–80 ◦C is
available [19–21]. Authors assumed that the PMs have the same temperature as the oil, therefore,
the simulations are carried out for magnet temperatures of 25 ◦C and 80 ◦C. As can be seen, the
experimental peak back-EMF characteristic is positioned exactly between the two simulated peak
back-EMF lines. For lower speeds, the measured data are closer to simulation results corresponding to
25 ◦C while for higher speeds it is closer to the simulation results obtained for 80 ◦C. Comparison of
the simulated and experimental back-EMF waveforms for 3000 rpm is depicted in Figure 13, which
shows good correlation between the simulated and measured data.
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Figure 14 compares simulated and experimental torque curves. Measured torque versus rotor
position curves are obtained from the experimental locked rotor test carried out for seven peak current
values in the range of 50–250 A. Corresponding simulated torque versus advance angle curves are
generated by d-q analysis of MotorAnalysis-PM for the same current values. It is observed that both
simulated and measured torque curves follow the same trend with maximum values observed in
the same range of advance angle. The distortions of the experimental torque curves are caused by
the slotting since the torque is measured for stationary rotor with different rotor positions. For the
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simulated curves, the torque is measured with rotating rotor and, therefore, the slotting effect is not
visible. The slight discrepancy between simulated and measured curves can be attributed to the change
of the PM properties due to the variation of temperature during the laboratory test, while for the
simulation a constant value of 80 ◦C is considered for the PM temperature.
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6. Conclusions

A unique and powerful PM motor software tool suitable for electric motor designers and researchers
has been presented in this article. The MotorAnalysis-PM is a powerful and freeware software that
allows highly accurate PM motor simulations with reduced computation times comparable to other
commercially available electromagnetic FE software packages. The comparison study for efficiency
map calculation times between MotorAnalysis-PM and ANSYS Maxwell software showed that with
the use of MotorAnalysis-PM the efficiency map calculation time was reduced more than four times
compared to ANSYS Maxwell: 33 minutes for MotorAnalysis-PM versus 2 hours and 19 minutes
for ANSYS Maxwell. The electromagnetic design and analysis methodologies for PM motors using
MotorAnalysis-PM were discussed in detail and can be used as a guide for motor designers interested
in utilizing this tool.

A Toyota Prius 2004 motor was analyzed using the MotorAnalysis-PM software and the results
obtained were compared with the experimental measurements. The comparison between experimental
and simulation results showed high correlation which confirms the accuracy of the software.
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