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Abstract: Digital tools have become indispensable for the testing and modification of prototypes in
mobile and industrial machine manufacturing. Data that are extracted from virtual experimentation
and analysis are both affordable and valuable, due to their repeatability and because they are close
to real-world observations. Expert knowledge is a prerequisite for full deployment of computer
aided engineering tools in the design phase and concomitant stages of product development.
Currently, such knowledge, for the most part, is provided by the product development team and
the manufacturer. Yet, it is important that manufacturers and designers receive end-user feedback
throughout the product development process. However, end-users often lack sufficient know-how
about the technical and engineering background of the product development, and this lack of
understanding can become a barrier to user-designer communication. The aim of this article is
to present an alternative to traditional design approaches that is based on customized real-time
multibody simulation. This simulation-based approach can be seen as a platform that has the
potential to improve knowledge management systems for product development. End-user feedback
to the designer is given in a systematic manner throughout the design process using a multipurpose
XML-based multibody environment.

Keywords: multibody dynamics; product development; real-time simulation; product-service system;
modular design

1. Introduction

Effective simulation methods are important when the development of a system reflects
multidisciplinary design concerns [1] and when realistic behavior of the model is beneficial for
further investigation. The outcome of any simulation has to be credible as an estimation of real
experiment results. In machine manufacturing, modern simulation tools can provide interaction
between the machine (virtually presented) and the human in real time. In many cases, the machine
modeling comprises investigation of the dynamic behavior of a model made of interconnected bodies,
namely multibody simulation, combined with simulation models of electrical, hydraulic, and contact
forces [2,3].

Early efforts to improve the efficiency of real-time simulation of multibody dynamics focused on
kinematics and dynamics [4]. Nowadays, as a result of improvements to simulation design, together
with a rapid increase in computing power, modern simulator designs are able to handle complex
process models with high fidelity using groups of connected simulation elements [5]. These improved
capabilities have resulted in effective real-time simulation. In real-time simulation, a user has online
interaction with the model, so the user can utilize outcome response to investigate the behavior
of the system to their input instantly. Such systems are commonly used for operator training in
aviation, marine, mobile machinery, and other industries. In training scenarios, the system user (who
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is considered the operator of the machine) is given tasks to complete, and the supervisor can observe
the reaction of the trainee to different training scenarios [6,7].

In design processes, even though the user, unlike the designer, might not have comprehensive
theoretical understanding of the machine components, providing the user with choices for actions
can generate valuable information for analysis of the best practice. These data can be used for the
assessment and improvement of performance and productivity, because they are representative of
real-life reactions and behavior. Users spend considerably more time with the machine than any
designer when testing machines.

Figure 1 shows the underlying structure of traditional design methods, as presented by
Tomiyama [8,9] (on the right) and its suggested improvement (on the left). In the figure, VDI 2221
(Verein Deutscher Ingenieure or Association of German Engineers) Systematic Approach to the Design
of Technical Systems and Products [8] represents conventional design processes for mechanical parts.
The design steps start with definition of the requirements and initial searching for a solution. The
requirements are the needs of the customer, which, following clarification, often specify how the
product is planned to be operated and what expectations need to be fulfilled, including prioritization
of performance aspects of the product. In the second step, the conceptual design phase, solutions are
sought to provide a basis for addressing the problem, which requires further analysis. More complete
details, including layout and placement of the components, are generated in the third step. Extras and
additional components (e.g., for decoration purposes) are also added in this phase. This step can be
divided into modules or elements which are based on solution principles (step 2). Here, the modules
are parts that are difficult to alter but are taken as a whole to serve a purpose (e.g., engines in vehicles
are not product-specific). Concurrently, elements are specifically designed to fit product specifications.
Step 4 considers the compatibility of the system to different components and manufacturing methods
and includes cost analysis. The knowledge gained enables the designer to produce the final design.
Then, in the last step, step 5, documentation is prepared before manufacturing [8].
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Alongside such methods, product-service systems (PSS) have been introduced, with the aim of
serving users (customers) by associating physical commodities with services designed to help users
make optimal use of an already purchased product [9]. Improving services provision and satisfying
user needs to obtain higher loyalty can be addressed using the PSS concept. In the model presented in
this paper, these aims are examined through use-oriented and results-oriented consideration of the
product before design finalization. Additionally, better communication and project knowledge transfer
between the consumption and production parts of the PSS are expected [12,13].

The frame of reference of the methodology in this process is constructed around decision making
and systematic data acquisition in steps 2 and 3 of the design phase of product development, and the
methodology also incorporates concepts of PSS. The first step in this process follows the traditional
guideline of the design process with a statement of need from the user side, e.g., from the user
of the machine. This stage normally includes a combination of several concepts or modules that
together form an interdisciplinary task (e.g., the design of hydraulics and the sizing of the bucket).
The specification is then produced based on the user needs and the next step, i.e., concept design of the
product, commences [13]. Preliminary sketches are made, which are then assessed based on cost or
performance priorities, providing a path towards detailed design. This stage is normally constructed
with careful consideration of boundaries and limitations, for example, total acceptable weight or
overall dimensions, unless there is a very specific requirement governing the design concept (e.g., a
requirement for operability in extreme arctic conditions). Mechanical strength calculation and other
detailed design processes then complete draft revisions. Once final optimization and reviews have
been performed, engineering drawings can be produced and further steps towards manufacturing
started [10,11].

In complex systems, the machine is not a final product but plays the role of a tool. Consequently, it
has to be able to fulfil a variety of tasks and operate in different environmental conditions; furthermore,
it is influenced by the techniques and the skills of the user. Forklifts, excavators, and wheel-loaders
are examples of industrial machines for which the designer might not have all necessary input data
about machine operations [12,14] at the design clarification stage. This uncertainty regarding operating
conditions and constraints becomes even more marked when the tasks that users should carry out
are case-dependent on other variables, such as environmental conditions. The design process then
becomes highly fluid and numerous cases and scenarios need to be investigated for successful selection
of the final design. The interplay between the product and the desired outcome of product utilization
is in line with the PSS orientation, i.e., consumers are not demanding the product itself but are in
pursuit of the utility deriving from utilization of the product in their application area [2].

Several studies have been conducted around the development of PSS and design knowledge-reuse
as a knowledge management framework [15,16]. These works aim to develop an effective and
appropriate platform for knowledge flow that is suitable for different disciplines and stages of the
product life cycle. Even though knowledge-reuse was modeled and applied in the above papers,
information and communication of information resources (i.e., the data that are collected from the
user, including associated processed information) are considered to remain within the domain of the
manufacturing company side. The user is involved in the initial need and task clarification, but user
involvement is limited or non-existent in the following stages.

This paper demonstrates integration of simulator use into the concept design stage and detailed
design stage of product development. The simulator functions on the basis of dynamic computation in
a real-time multibody approach, where bodies, joints, and forces interact with each other. The objective
of the study is to introduce a design methodology in which customization is available for defined
modular parameters of machine components. In parallel, this study aims to present the potential of a
multibody dynamics approach to solve real-world problems. The example case discussed consists
of one hydraulic part and one mechanical part. The user, as the client, has the freedom to customize
the machine model without needing in-depth knowledge or special expertise in engineering and
simulation. Consequently, user contribution to product design enhancement is possible from early
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stages of prototyping—as shown in step 2 and step 3 in Figure 1—and improvements in decision
making are achievable in terms of features of the multibody system dynamic real-time simulation. To
shed light on the introduced design concept, an excavator is considered as an example. Excavators are
among the most commonly used mobile machinery equipment in civil engineering and their design
and use include complex interconnected bodies and sophisticated design [17]. The digging mechanisms
and complex components of excavators mean that they are a suitable example for examination of the
potential of the proposed approach for product development of mobile machinery.

2. Materials and Methods

In this section, a schematic of the idea is first explained and the multibody real-time simulation
part, which is the backbone of the method, is then described as it relates to the PSS concept. Next,
the background for the hydraulic design, the modularity using XML (Extensible Markup Language)
format, and the customer interface are presented.

One iteration of the design process is explained for the case example. In each iteration, the model
was updated based on the outcome of the previous step until the desired results were achieved. It was
assumed that more than one part of the machine was involved in the design case and that the parts
interacted, and their performance was interdependent. In the illustration of the applicability of the
method, the goal was to make decisions about proper bucket size and the arm-attached hydraulic
cylinder, which represent the goals in the mechanical and hydraulic design, respectively.

The modeling part of a design process traditionally starts with an initial estimation. This initial
estimation is based on prior knowledge and previous experience of the designer. For example; when
the breadth of the bucket for a 20-ton excavator has a range between 300 and 1200 mm, a value of 750
mm is taken as a starting point. The same procedure is possible for hydraulic cylinders with bore
diameter ranges. Figure 2 shows the proposed concept design and detailed design steps (stage 2 and 3
in Figure 1) with respect to the traditional design approach.
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Figure 2. Dynamics data flow for the proposed concept design and detailed design steps.

Three values, i.e., minimum, mid, and maximum, were used for mechanical dimensioning. Based
on the parts, a model could be built as a combination of every single choice (here, nine models, as
a multiplication of three by three). The choices were then given to the target group, i.e., the users,
to utilize in real-time simulation. The designers recorded the simulation data in their area of interest
(see the results section). On the basis of the first results, refinements for the second round of choices (i.e.,
minimum, mid, and maximum values) could be proposed. Once the desired result met the designer
priorities (based on the target requirements of the designer), dimensioning was completed, and the
design process proceeded to the next steps for detailed design, e.g., material selection, tolerances.
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2.1. Multibody Systems

Multibody system dynamics is a straightforward computational approach that can be used to
analyze dynamic responses of bodies that are in interaction with each other, i.e., connected by joints.
The bodies can be defined as either rigid or flexible, and the multibody system dynamics stay valid for
large rotational and translational movements. When this interaction extends from machine components
to a human (as a human-in-the-loop) the real-time simulation concept moves to the foreground.
Running a real-time simulation in practice has challenged simulators, because of the complexity of
finding reliable simulation models and the considerable computational demands. Study of multibody
systems is attempting to address these limitations [18].

Relative coordinates in open chain systems where the main dynamic formulation is founded on a
topological system form the basis of the semi-recursive method. When each body (index j) coordinate
is pointed relative to the previous body (index j − 1) in the model tree, relative accelerations, velocities,
and positions, as well as Lagrange multipliers, are employed to carry out dynamic analysis. In this
approach, the position vector of body j in the global coordinate system can be written as:

r j = Rcm
j−1 + A j−1

¯
u j−1 + d j−1, j, (1)

where Rcm
j−1 is a position vector for the parent of body j − 1 in its center of mass, A j−1 is a rotation

matrix, and
¯
u j−1 is the body coordinate system in the parent body reference. In Equation (1), d j−1, j is

the relative displacement vector for body j with respect to body j− 1, as shown in Figure 3. For body j,
orientation matrix A j can be expressed:

A j = A j−1A j−1, j, (2)

where A j−1, j is the relative rotation matrix of body j referenced to the previous body in the chain.
The velocity associated with body j can be obtained by differentiating Equation (1) with respect to time,
as follows:

.
r j =

.
R

cm
j−1 +

~
ω j−1u j−1 +

.
d j−1, j (3)

where
.

R
cm
j−1 is the velocity vector of the parent body j − 1,

~
ω j−1 is the skew symmetric matrix of the

relative angular velocity (between body j and its previous body in the chain), u j−1 is the result of

multiplication of rotation matrix A j and
¯
u j−1, and eventually

.
d j−1, j is the velocity of the body j to its

precedent body in the chain. Then, the vector of acceleration in the global coordinate system
..
r j of

Equation (3) can be derived as:

..
r j =

..
R

cm
j−1 +

.
~
ω j−1u j−1 +

~
ω j−1

~
ω j−1u j−1 +

..
d j−1, j, (4)

where
..
R

cm
j−1 is acceleration of the body j− 1, in its center of mass,

.
~
ω j−1 is a time derivative of the skew

symmetric matrix of the relative angular velocity, and
..
d j−1, j is relative angular acceleration.

Velocity and the acceleration vector in the center of mass are written based on relative rotation
matrices and relative skew symmetric matrices of angular velocity [19,20]. Solving such a system of
equations consisting of generalized coordinate systems demands considerable computation resources,
while practical requirements for running a real-time simulation must not be neglected. To overcome
this barrier, velocity transformation can be employed to express the equation of motion in terms of the
generalized velocity and acceleration. Generalized velocity and acceleration, correspondingly, can be
written as:

.
q = V

.
z, (5)

..
q = V

..
z +

.
V

.
z, (6)
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where
.
q and

..
q are generalized velocity and acceleration, respectively, V is a velocity transformation

matrix,
.
z and

..
z are relative joint velocity, and acceleration

.
V is the first derivative of the velocity

transformation with respect to time. In three-dimensional space, the velocity transformation matrix
for each body—without a parent body—is a matrix of six rows by c-columns, where c is the number
of constraints of degrees of freedom. As an example, a spherical joint in body j had a six by three
transformation matrix, which was multiplied by all its parent bodies (Bodies j − 1, j − 2 . . . ) in the
model tree to form a full velocity transformation [19]. The equation of motion, using Equation (5), can
be written as:

M(V
..
z +

.
V

.
z) + Qv = Qe, (7)

where M is the mass matrix,
..
q is the generalized accelerations, and Qe and Qv are vectors of generalized

forces and quadratic velocity, respectively. In the semi-recursive method, the equation of motion
in the form of Equation (5) is multiplied by the transpose of the velocity transformation matrix to
assure invertibility of the mass matrix. Computationally parallelizable [20] Q∗ and M∗ terms can be
introduced as:

Q∗ = VT(Qe −M
.

V
.
z−Qv), (8)

M∗ =VTMV, (9)

and the solvable form of the equation can be combined with penalty terms to account for closed loops.
So, the final form of the equation of motion is written as:

(M∗ +αΦT
z Φz)

..
z = Q∗ −αΦT

z (Φzt
.
z + Φtt + 2ξΩ

.
Φ + Ω2Φ), (10)

where Φz and Φzt are Jacobians of the constraints with respect to the relative joint displacement vector
and its first derivative, and matrix α contains values of the penalty term, as well as Ω and ξ, which are
matrices for corresponding natural frequency and damping ratios of the penalty systems defined for
each constraint condition [18,21,22].
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2.2. Hydraulics

Hydraulics in this study were modeled using a semi-empirical method that assumed that the
pressure variation within a volume was negligible. In this approach, valves and long hose lines were
modeled as throttles. A pressure within a hydraulic volume index i (pi) can be estimated using a first
order differential equation as:

.
pi =

Bei
Vi

(Qin,i −Qout,i −
.

Vi), (11)

where
.
pi is the derivative of pressure pi with respect to time, Vi and

.
Vi are volume size and its derivative

with respect to time, Bei is effective bulk modulus, and Q is flowrate, with Qin,i and Qout,i the entering
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and outgoing flow rates of the control volume, respectively. Hydraulic valves introducing pressure
losses and flow rate through a valve can be estimated as:

Q = CvU
√

dp, (12)

where Cv is a semi-empiric flow constant, dp is the pressure difference between two sides of the flow,
and U, as the spool position symbol, is calculated by integration of the following equation with respect
to time

.
U:

.
U =

Ure f −U

τ
, (13)

where Ure f is the reference spool position, and τ is a time constant [23].

2.3. Collision and Soil Model

The computational cost of collision detection algorithms is a key concern in real-time simulation.
This challenge increases exponentially with respect to the number of colliding elements. Contact force
is only calculated when a collision between bodies is identified in a prior time step, so contact forces
are dismissed when there is a gap between two bodies. This approach is possible through multi-stage
collision detection strategies, such as rough spherical boundaries and detailed spherical boundaries, as
explained in [24]. Spherical and cylindrical geometries were employed to approximate the outermost
boundaries of a body and elevate the computational efficiency of the real-time simulation. At the same
time, the contact forces were sensitive to the time step of the simulation, since high velocity actuation
can introduce inaccuracy in the behavior of colliding bodies, leading to dynamic instabilities in the
real-time simulation.

Contacts and collisions are one of the most complex parts of real-time simulated models. Bounding
geometries methods like oriented bounding box (OBB) can be applied to calculate the interaction forces
after intersection between objects is detected. Triangular definition of the geometry to formulate the
model average and its covariance matrix can be considered as:

u =
1
3b

∑
(hi + li + mi), (14)

C jk =
1
3b

b∑
i=1

(hi
jh

i
k + lijl

i
k + mi

jm
i
k), j ≤ 1, k ≤ 3, (15)

where u is model average, b is number of triangles, vertices of triangle i are shown by hi, li and mi, and
C jk is the correlated covariance matrix [21,25].

In a real-time environment, a realistic soil model plays an important role in the dynamics of mobile
machinery. A number of methods for soil modeling are available in the literature using algorithms such
as RAPID, V-Collide and I-Collide [25], which are based on the principles of OBB. In such models, the
best-fitting polygon breaks into triangulated geometries. Overlapping geometries are then treated using
an impulse-based or constraints-based approach. When contact is not detected, particles follow their
trajectory under the influence of gravity until they either land on each other, bounce, or slide through
each other. The stacked particles from a planar soil surface simulate shrinkage and compression by
consideration of a soil recovery factor and the time history of the normal terrain stress. In the case
example under consideration, the excavator remained stationary and the excavation maneuver was
performed by movements of the cabin (see Figure 4), boom, and other connected bodies. Since crawlers
(which are attached to the carriage) were not active, the tread pattern of the excavator grouser shoes
was not modeled and the crawlers were presented as a flat surface rather than a corrugated pattern [26],
which helped channel computational power and avoid unnecessary complications.
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Figure 4. Topological schematic for the studied multibody model.

2.4. Excavator Model

In this paper, the pair (as the part 1 and the part 2 which previously were mentioned in Figure 2)
in the design process were the bucket size and the arm-attached double-acting hydraulic cylinder,
considering that the bucket should be functional such that the user has enough force to excavate
and fill the bucket. The excavator in this case example was modeled using 10 independent bodies.
The bucket was used as a tool to transfer sand with a density of 2000 kg/m3 to a destination (a hopper).
The carriage of the excavator was floated on the ground, which made it the only non-holonomic
constraint in the model. The topological map of the excavator is presented in Figure 4. The chain of
bodies of the excavator was contiguous and the structure of the excavator was robust in exposure to
normal excavation maneuvers, so the flexibility of parts such as the arm and boom (rigid bodies) was
minimal. For simplification of the topology, tracked parts of the excavator, which produced traction in
interaction with the ground, are not illustrated in the figure.

The mathematical representation of the system, including definition of the bodies, constraints,
and forces, was implemented in an XML database, where each component of the machine sat in one
subfolder, accompanied by its attributes. Storage of the data in this way benefited the modeling within
the context of knowledge management as the two correlated key components of the excavator served
the proposed method. These components remained independent and discrete, while the whole model
stayed integrated as a group of segmented components in XML format. First and foremost, bucket
size—which is also representative of bucket capacity—was taken as an alternative that was determined
by the operator of the excavator. Three different bucket sizes were used in this experiment so the user
could select their own configuration. The other optional key component was the hydraulic actuator
that generated the force between the arm body (stick) and bucket connector link. Figure 5 presents the
interface for user selection. The software replaced the modular properties of the component based on
the selection made by the operator.
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The risk of collision for larger bucket sizes was higher as handling a larger bucket is geometrically
challenging. Collisions were possible between the bucket and hopper edge, and also between the
boom/arm and an obstacle, which in the case under study was an electric pole. The obstacle was
intentionally placed near the operation area, so if the user slewed further than the required maneuver,
the boom, arm, or bucket may approach the pole. As an example, Figure 6 shows a top view of the
initial location of the excavator and a schematic of the main objects located nearby.Machines 2019, 7, x FOR PEER REVIEW 9 of 15 
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Figure 6. Top view of the excavation environment to introduce collision risk.

There is a trade-off for bucket size in an excavator; a higher bucket volume helps operators
achieve higher productivity of soil excavation, but large, bulky buckets can lead to higher risk of
collision, controllability problems, difficulties in soil excavation, and more demanding hydraulic
circuits to actuate.

A similar trade-off was seen for actuation of the bucket with the hydraulics of the arm, as illustrated
schematically in Figure 7. The bucket excavation force, which is an important parameter for
excavation productivity, must be considered together with the cycle time. This helps to determine the
most suitable cylinder geometry and to address user needs—involving soil properties and the site
field situation—accordingly.

Selections by the user led to the implementation of changes in the model tree. Changes had effects
in different areas, for example, bucket selection would merge a subfolder in the XML-based model.
Definition of the mass and inertia, as well as the graphics and geometrical definition of the bucket,
were provided through the correlated subfolder. Three-dimensional geometries were introduced in
3DS (3D Studio) format [27]. An example of properties for hydraulic components is shown in Table 1,
which presents data for a sample hydraulic cylinder.
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Table 1. Sample of stored properties for a hydraulic cylinder.

Property Value/Units

Cylinder type double acting
Friction properties defined as a spline

Cylinder piston diameter 190 mm
Cylinder piston rod diameter 95 mm

Cylinder inner pipe inner diameter not used
Piston length 150 mm

Cylinder attachment length 2150 mm
Minimum stroke 100 mm
Maximum stroke 1600 mm

Cylinder material bulk modulus 210 GPa
Oil bulk modulus 1.3 GPa

Cylinder coefficient 0.95
Leaks between cylinder chambers 0.01 L/min
Pressure difference for rated leak 130 MPa
End damper damping coefficient 8.2 × 107 N/m

End damper spring coefficient 3 × 105 Nm/s
Hydraulic end damper not used

Damper length 0
Viscous damping coefficient 0

User selections for the cylinder led to the implementation of an XML subfolder, as displayed in
Figure 8, including graphical representation, geometrical specifications, stiffness/damping properties,
relevant friction coefficients, and connecting hydraulic elements, as an interpretation of Table 1.
It should be mentioned that the bulk modulus of the hydraulic oil in the system was here assumed
to be constant with respect to pressure, and the bulk modulus presented in the table belongs to the
cylinder alone and does not include other connected volumes.
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The XML definitions allowed the user to make the model communicate with a variety of other
components. Here, the model tree, which was the input of the simulation software, was also based on
XML format, and components could therefore be integrated to make a complete model that included



Machines 2019, 7, 70 11 of 15

all bodies, constraints, forces, input definitions, environment data, and colliding geometries in the
final stage [22]. A dynamic solver then processed the XML files to make a real-time physics-based
visualization. The data required for post-processing were obtainable visually and numerically,
and produced based on user inputs. A sample of numerical results is presented in the next section.

3. Results

During the product development process, the designer considers different aspects of the design
with the aim of moving towards reduced energy and material consumption. It is thus beneficial to
study the effect of changes to different components on the dynamic behavior of the real-time simulation;
an example of such studies is presented in [3]. In this case study, samples were taken from the effect of
changing the arm-attached cylinders on excavation force or the effect of change in bucket size on the
fuel consumption, applicability, and speed of the process. These samples were meant to demonstrate
how the capability of coupled parts can be checked to answer user needs based on user criteria
and preferences.

Samples of such collected data are presented in Figures 9a and 10. Considering the actuator force,
the figures show change in the performance of three different arm-attached cylinders in response to an
input signal. The maximum values for the small, the medium, and the large actuator are marked in
the figure to ease comparison of generated forces. The forces in the figures are for a sample trenching
movement filling the bucket with sand. The fluctuations represent the friction and separation forces
needed to excavate the ground during the operation shown in Figure 9b.

One difficulty in design work for complicated machine-like excavators is ambiguity about the
consequences of changes that do not exhibit a direct effect or have a linear relationship with respect
to changing parameters. This challenge can be tackled in two ways. Firstly, the designer is free to
choose and try a different setup through initial estimation, which results in a rapid trial-and-error
process to outline a general plan and can help to define the boundaries. Secondly, optimization in
certain ranges can be performed through a loop by adding a small amount of change (as a step) in
one variable, followed by analysis of the result, especially when a mechanical part (e.g., a bearing) is
chosen from a catalogue.
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Fuel consumption is an issue that is difficult to investigate with simple mathematical formula.
The difficulty is a consequence of the multi-lateral dependency of engine fuel consumption on other
variables, such as actuation of components in the hydraulic circuit. Figure 10 shows the effects on fuel
consumption for three types of arm-attached cylinder when the excavator was in a parked position
(i.e., when the crawlers were not operated for transferring the bulk material) in response to a similar
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control input signal for the arm-attached cylinder. As can be expected, the highest value of fuel
consumption was found for the largest rod area. It should be noted that higher productivity depends
on the excavation application and comes at the expense of higher fuel consumption. Therefore, in the
final selection of the size, this interplay needs to be taken into account simultaneously.
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4. Analysis and Discussion

Small bucket size and small cylinder size were taken as the first guess of the design process. The
results section presented one step for the design iteration and expected outcome from each iteration.
The process was repeatable, and users were therefore trained through their choices of combinations
of bucket selection and hydraulic-circuit selection. This approach can be employed for other similar
mobile machinery using a bucket for loading bulk material (e.g., wheel loaders) or with a similar group
of mechanical or hydraulic parts.

One element of the design iteration, based on Figure 1, was an integration check, which also
included evaluation of the practicality of use of different bucket sizes and possible risks (as introduced
by the number of collisions) associated with such design alternatives. Productivity was measured by
the amount of sand delivered to the designated destination in a limited time span. Change in bucket
size and attached hydraulics could be adopted based on the preferred strategy by considering budget,
safety, or machine performance.

Figure 11 depicts the optimization and integration check initially introduced in the first chapter
on the basis of modeling, customization, interaction, and results. The key idea in this method was
communication of information about the effects of component design decisions via an accurate real-time
simulation that showed the combined impact of parameter changes (for the example in Figure 11,
the first component and second component). Evaluating such multi-dimensional outcomes is extremely
challenging and often impossible using traditional design approaches alone.
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This work demonstrated a method for decision making about the size of the bucket and/or sizing
of the arm-attached hydraulic actuator (also known as dipper arm). The described approach can benefit
designers when it is used as a tool for product development and design optimization. The excavator
model was used as a virtual test bench for the project. Easy customization was available and allowed
users (e.g., end-users as machine operators) to choose and try different components of the excavator.
In previous methods, as presented by Zheng [28] or Xu [29], even though the model parameters were
partly adjustable, the options were not meant to make an interactive model with operator contribution,
and model components were thus fixed from the operator’s point of view and the focus was on the
compatibility of components in modules. Different aspects of inter-disciplinary engineering design
and the data circulation of the design work were addressed in [30] and [31], but user interaction in
these works considered user input mainly in the final stages of the design and product process.

In the work in this paper, validation of the proposed method was performed using a desktop
computer with Logitech Force 3D pro joysticks. A PC with an Intel Core i7-6700 processor equipped
with 64 GB of RAM and an NVIDIA Quadro M2000 GPU was able to run the simulation with a 1
millisecond time step, which permitted user interaction as real-time simulation. An example test screen
is given in Figure 12. Based on the on-screen images, the excavator operators could instantly observe
the effects of their selections on aspects such as productivity (here this was excavation cycle times) and
fuel consumption.
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Test results are also available to be recorded and collected for further analysis, where simulation
repeatability provides a basis for decision making about the real product and the simulated product can
be seen as a digital twin. Combining parameterizations of different components, which is discernable
as rapid prototyping in designers’ hands, reduces the time required for modeling, validation, and
testing, as modular component modeling is used for the machine to be designed. Additionally, the
proposed approach is suitable for use in crowdsourcing [32].

5. Conclusions

This paper described an approach for customized modeling for machine design using
state-of-the-art multi-body simulation techniques that made it possible to run a complicated multi-aspect
real-time simulation on a normal budget PC. Use of this methodology provides the designer with the
data required to meet customer needs already in the early and middle steps of the design process.
To illustrate application of the methodology, the paper presented an example of the design of an
excavator bucket for bulk material excavation. The proposed approach paves the way for faster product
development and improved user satisfaction. User priorities can be met in a more systematic manner
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when the product development process is handled on the basis of user-generated data that do not
require the user to consider complex engineering details.

The proposed method creates a basis for introducing user feedback through an XML-based
multibody model of an excavator, and clients who use the machine as a tool can make a meaningful
contribution to the design when searching for optimum parameters for the specific application and
environment conditions. Environment conditions here were interpreted as soil density, cohesive
modulus, friction modulus, and other terramechanical variables that may affect the excavation process,
such as risk of collision with obstacles.

When interrelated design factors are involved in product design of a complex system, the presented
approach can benefit the designer by enabling better visualization of the impact of changes—through
customized modular parameters—on other components and related processes of the system.
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