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Abstract: A new index for a precise calculation of a manipulator’s stiffness isotropy is introduced.
The proposed index is compared with the conventionally used stiffness isotropy index by making
use of the investigation on R-CUBE manipulator. The proposed index is shown to produce relatively
more precise results from which a higher number of isotropic poses are detected.
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1. Introduction

In industrial robotics, stiffness property has great importance especially when they are used in
manufacturing processes. Production quality during milling and drilling operations depends on the
stiffness performance of the robot. Thus, many academic studies are devoted to the stiffness analysis
and evaluation of industrial robots [1–7].

One reason for the stiffness performance evaluation of a manipulator is to determine the
capabilities of manipulators [4,8–11]. There are several evaluation approaches of stiffness properties.
One is commonly used in industrial robots that consider the absolute end-effector deflection. In this
approach, a specific position or a trajectory is given to the robot, and its positioning error is observed
under external wrenches [8,12,13]. The procedures of this kind of evaluation are given in ANSI and
ISO standards [4,14]. These methods are suitable to have a general idea on stiffness performance,
but they may not distinguish whether forces or moments cause the elastic translational or rotational
displacements. Depending on the performance output, a suitable manipulator for the desired task can
be selected.

Another reason is to optimally design the manipulator parameters by considering the stiffness
performance [5–7,13,15–17]. The optimal design process of a manipulator requires objective functions
that include the stiffness performance indices. These indices are mainly used to achieve high rigidity
while preserving low inertia and high kinematic performance.

In parallel robots, stiffness modulation can be achieved by introducing redundancy in
actuation [18,19] and/or kinematics [20–22]. Stiffness characteristics of the manipulator are regulated
by applying suitable redundancy resolution algorithms in control [19–21,23,24]. A common way
of redundancy resolution is via null-space control [25] in which a performance index is designed.
This performance index is defined as a stiffness performance index when it is required to modulate
the stiffness of the manipulator [18–24]. A key aspect of this performance index is that it should be
computationally efficient.

Optimal design and control processes require a mathematical stiffness model (stiffness matrix)
of the manipulator to use the stiffness performance indices. These indices adopt common matrix
operations such as the determinant, norm, or singular value decomposition (SVD) in defining the
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performance indices [3–6,8–11,13,14,16,17,26–35]. Each of them investigates a different property of
the stiffness matrix. For instance, the determinant is accepted as a scalar indication of stiffness
magnitude [3,11,14,16,26,28]. SVD computes the eigenvectors and eigenvalues that show the
most/least stiff directions and their magnitudes [3,4,6,8,9,11,13,14,17,26–28,30]. Once the stiffness
model is known these approaches are quite handy and they provide detailed stiffness information of
the manipulator. However, their general problems are that they are calculated locally.

Isotropy is having the same stiffness performance distribution in all directions. In the literature,
eigenvalues of the stiffness matrix are used for relative stiffness resolution evaluation. The evaluation
is carried out by calculating the ratio of the maximum to the minimum eigenvalue. The index is named
as stiffness condition number, stiffness dexterity, or stiffness isotropy index [10,13,14]. It obtains a
directional stiffness resolution compared to the maximum eigenvalue. However, only focusing on
maximum and minimum eigenvalues hides the effect of intermediate eigenvalues on the performance.
For instance, there exist four possible cases for the distribution of eigenvalues of a 3 × 3 stiffness
matrix.The first case is the one that has all different eigenvalues. The second case has two equal
minimum eigenvalues. The third case has two equal maximum eigenvalues. The fourth case has all
equal eigenvalues. For the first three cases, if the minimum and maximum eigenvalues are the same,
then, the stiffness isotropy index computation will output the same value. However, it is clear that the
isotropy of first, second, and third cases should be different from each other. This problem can only be
resolved by taking into account the intermediate eigenvalues in stiffness isotropy computation.

In this study, special attention is directed towards this intermediate eigenvalue problem. In this
regard, a new performance index is proposed. This index composes a volumetric isotropy index
by considering intermediate eigenvalues. As a case study, an R-CUBE [36] parallel manipulator is
considered. A comparison is conducted between the proposed volumetric isotropy index and existing
isotropy index. R-CUBE is selected for this analysis since it has relatively trivial kinematics to be in
conveniently used in the formulation of its stiffness model [36].

The remaining sections of this paper are organized as follows; in Section 2 stiffness model of
the R-CUBE is obtained, and notations are given. Then, in Section 3, currently used performance
indices are discussed, and a new performance index is introduced. In Section 4, results of conventional
isotropy index and the new index computations are presented. Finally, conclusions are stated in
Section 5.

2. Stiffness Model of R-CUBE

The R-CUBE manipulator is introduced by [36]. The manipulator composed of revolute joints,
only. In total, 3 serial chains exist, and each one of them controls their respective translational DoF in
Cartesian space. In Figure 1 the kinematic model is illustrated.

In Figure 1a, first refecence frames of the each serial chain are located on ~u(0)
k orthogonal axes

along kth axis for k = 1, 2, 3. ij stands for the jth frame in ith serial chain as shown in Figure 1b.
~u(0)

k ‖ ~u(p)
k due the kinematic constraints. p is mobile platform frame. Besides, ~u(15)

3 ,~u(25)
3 ,~u(35)

3 are

always aligned with ~u(35)
1 ,~u(15)

1 ,~u(25)
1 vectors, respectively. The forward kinematics is given as:

ri = S + l1 sin ϕi1 for i = 1, 2, 3 and r̄ =
[
r1 r2 r3

]T
(1)

where S is a constant distance from 0th frame to ~u(i0)
3 frame. r̄ denotes position vector with respect to

the origin.
Commonly used stiffness (elasto-static) modeling methods are classified as Finite Element Method

(FEM) [37,38], Matrix Structural Method (MSM) [39,40], and Virtual Joint Method (VJM) [28,41–45].
FEM exhibits the highest accuracy in exchange of computation cost due to its numerical approach.
Besides, a meshing operation must be conducted for each pose of the manipulator. VJM and MSM
are faster in this evaluation since they construct semi-analytical or analytical models. Thus, stiffness
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performance metrics are used via VJM and MSM for evaluation of a manipulator in any of its pose.
In this study, VJM approach is adopted.
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Figure 1. Kinematic sketches of the R-CUBE mechanism: (a) The manipulator, (b) variables of ith serial
chain where i is one of the serial chains.

Stiffness model of the R-CUBE manipulator is computed by combining the stiffness models of
each serial chain. Compliance model of ith serial chain and its connection to base and mobile platforms
are illustrated in Figure 2. Passive and active joints have 1 degree-of-freedom (DoF) while virtual joints
have 6 DoF (3 translations + 3 rotations). A virtual joint is defined as:

Hv(θ̄ij) = T1(θ
1
ij)T2(θ

2
ij)T3(θ

3
ij)R1(θ

4
ij)R2(θ

5
ij)R3(θ

6
ij) (2)

where Hv denotes the homogeneous transformation matrix (HTM). Tk and Rk are pure translational
HTM along and pure rotational HTM about ~ukth axis for k = 1, 2, 3. θ̄ij is a vector that contains virtual
joint variables. Superscripts of θij represents the element number.
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Figure 2. Compliant kinematics of the manipulator where AJ is active joint, PJ is passive joint, VJ is
virtual joint, MP is mobile Platform, and B is base.

The compliant kinematic model is computed as follows:

H(i0,Ki1) = R3(ϕi1)T1u(l1)Hv(θ̄i1)

H(Ki1,Ki2) = R3(ϕi2)R1(−π/2)R3(ϕi3)T1(l2)Hv(θ̄i2)

H(Ki2,Ki3) = R3(ϕi4)T1(l3)Hv(θ̄i3)

H(Ki3,i5) = R3(ϕi5)

HKi = H(0,i0)H(i0,Ki1)H(Ki1,Ki2)H(Ki2,Ki3)H(Ki3,i5)H(i5,p)

HKi =

[
RKi r̄Ki
0̄T 1

]
(3)

where HKi is the compliant transformation matrix of the ith serial kinematic chain of R-CUBE,
and HK1 = HK2 = HK3 by the assumption of a rigid mobile platform.
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Active joints are assumed to be rigidly locked to exclude actuation stiffness in the structural
stiffness calculations. Then, virtual and passive joint variables are arranged in a matrix form as follows:

q̄pi =
[

ϕi2 ϕi3 ϕi4 ϕi5

]T

4×1
, θ̄i =

[
θ̄T

i1 θ̄T
i2 θ̄T

i3

]T

18×1
, Q̄i =

[
θ̄T

i q̄T
pi

]T

22×1
(4)

where q̄pi denotes passive joint variables, Q̄i is generalized coordinates of ith serial chain. Q̄i is used to
obtain Jacobian matrices as follows:

∂HKi
∂Qik

=

[
∂RKi
∂Qik

∂r̄Ki
∂Qik

0̄T 1

]
for k = 1, 2, ..., 22 (5)

where subscript k denotes the kth variable of Q̄i.
The Jacobian matrix JKi for passive and virtual joints is given as follows:

JKi =
[

J̄Ki1 J̄Ki2 ... J̄Ki22

]
6×22

(6)

where J̄Kik for k = 1, 2, ..., 22 denotes the Jacobian column matrices that are related with k th variable
of Qi.

JKi can be divided into sub-matrices as Jθi and Jpi. They denote Jacobian matrices of virtual and
passive joints. Sub-matrices are presented as follows:

Jθi =
[

J̄Ki1 J̄Ki2 ... J̄Ki18

]
6×18

Jpi =
[

J̄Ki19 J̄Ki20 J̄Ki21 J̄Ki22

]
6×4

JKi =
[

Jθi Jpi

]
6×22

(7)

Note that, except in a kinematically singular configuration, Jθi is always full-rank since the virtual
joints have decoupled DoF. Similarly, Jpi gets rank deficient in kinematic singularities.

Jacobian matrices relate small deflections of joints to task space variables:

X̄i = f̄ (Q̄i), ⇒ ∆X̄i = JKi∆Q̄i

∆X̄i = Jθi∆θ̄i + Jpi∆q̄pi
(8)

where ∆X̄i is 6 × 1 column matrix of translational and rotational compliant deflections in task space
that are calculated for the ith serial chain. ∆ operator denotes the change between initial and final
states. In the initial state, there is no applied wrench. In the final state, an external wrench is applied to
the manipulator.

The relation between the external force/torque applied at the end-effector and joint space
force/torque is provided via a property of Jacobian matrix that is given as follows:

F̄Ki = JT
Ki F̄ext (9)

where [F̄Ki]22×1 is the joint space force/torque vector. [F̄ext]6×1 is the external wrench. F̄Ki is divided
into sub-components and the force/torque vector on each joint are found as follows:

F̄Ki =
[

F̄T
θi F̄T

pi

]T

[
F̄T

θi F̄T
pi

]T
=
[

Jθi 0
]T

F̄ext +
[
0 Jpi

]T
F̄ext

(10)

where F̄θi and F̄pi are force/torque vectors of virtual and passive joints.
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F̄Ki is a function of the stiffness matrix and deflections that are defined in joints space.

F̄Ki = diag(Kθi, Kpi)∆Q̄i and Kθi = diag(Kθi1, Kθi2, Kθi3) (11)

where Kθik denotes stiffness matrix of kth link as expressed in [46] for a beam. Parameters of this
stiffness matrix depends on the link geometry and material property. Kθi denotes the stiffness matrix
of ith serial chain. Kpi denotes stiffness of passive joints. A relation is expressed in Cartesian space
as follows:

JT
Ki F̄ext = diag(Kθi, Kpi)∆Q̄i and J−1

Ki ∆X̄i = ∆Q̄i

⇒ F̄ext = (J−T
θi Kθi J−1

θi + J−T
pi Kpi J−1

pi )∆X̄i
(12)

Passive joints do not generate reaction torques about their rotation axes. Hence, Kpi = 0. Thus,
F̄Ki contains only force/torque of virtual joints. Hence:

F̄ext = (J−T
θi Kθi J−1

θi )∆X̄i

JT
pi F̄ext = 0̄

(13)

The effect of passive joints is included in the stiffness model by inverting the following
homogeneous relation matrix. This matrix is always invertible if det

(
JT

θi Jθi
)
6= 0.[

(JθiK
−1
θi JT

θi) Jpi
JT

pi 0

]−1

=

[
[KCi]6×6 ∼
∼ ∼

]
(14)

where KCi denotes stiffness matrix of ith in Cartesian space. Note that, KCi is rank deficient due to
the passive joints. Cartesian stiffness matrix of the manipulator, KC, is computed as KC = ∑3

i=1 KCi.
If external wrench is assumed to be F̄ext = 0̄, KC takes the following form.

KC =



K(11)
C1

0 0 0 K(15)
C1

K(16)
C1

0 K(22)
C2

0 K(24)
C2

0 K(26)
C2

0 0 K(33)
C3

K(34)
C3

K(35)
C3

0

0 K(24)
C2

K(34)
C3

K(44)
C2

+ K(44)
C3

K(45)
C3

K(46)
C2

K(15)
C1

0 K(35)
C3

K(45)
C3

K(55)
C1

+ K(55)
C3

K(56)
C1

K(16)
C1

K(26)
C2

0 K(46)
C2

K(56)
C1

K(66)
C1

+ K(66)
C2


(15)

For small deflections and loads, this matrix can be used without causing high errors. This matrix
must be re-computed if |F̄ext| >> 0. KC is divided into 3 × 3 sub-matrices.

KC =

[
KA KB
KT

B KD

]
(16)

where KA, KB, KT
B, and KD have the units of N/m, N/rad, N/rad, and Nm, respectively. The kinematic

dimensions and material properties of the links are given in [47]. This study makes use of these
parameters for stiffness evaluation of R-CUBE manipulator.

3. Stiffness Performance Indices

In this section, a review of the existing performance indices in literature is described, and a new
performance index for isotropy evaluation of the stiffness matrix is proposed. Besides, usage of the
indices for the R-CUBE manipulator is given in a table.
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3.1. Performance Indices in the Literature

Stiffness performance indices are computed by obtaining the eigenvalues and eigenvectors.
SVD operation may be used to obtain these properties as follows:

K = QDU (17)

where K is an n × n stiffness matrix defined in Cartesian space for n = 1, 2, ..., 6. Q and U are
orthogonal matrices whose columns are the eigenvectors of K. Since K is a symmetric matrix, Q = UT .
D is a diagonal matrix whose elements denote the positive eigenvalues. These matrices are shown as:

Q =
[
ē1 ē2 ... ē6

]
(18)

D = diag(λ1, λ2, ..., λ6) (19)

λ1 ≤ λ2 ≤ ... ≤ λ6 (20)

where ēi and λi for i = 1, 2, ..., 6 denote the eigenvectors and eigenvalues, respectively. Regardless of
the kinematic DoF of the manipulator, stiffness matrix is always a 6 × 6 matrix because compliant
displacement may occur in any direction in 6 DoF space. Direct evaluation of a 6 × 6 stiffness matrix
causes unit inconsistency in the results. A simple method is to use the normalized stiffness matrix [48].
The proposed method uses pre- and post-multiplication of the matrix with diagonal scaling matrices.
Another method is introduced by Angeles [49]. He used the natural length to obtain normalized
and unity matrix. Plücker Coordinates is preferred by Khan and Angeles to use dimensionally
homogeneous space [50]. Thus, the dimensionally homogeneous matrix is obtained. A separate
evaluation of rotation sensitive and translation sensitive matrices are introduced by Cardou et al. [51].
Hence, it is also possible to use interested sub-matrices of 6 × 6 stiffness matrix. In this way, a certain
aspect of the stiffness model can be placed in focus. In our case, since we focus on the translational
compliant displacements of the mobile platform, we used the top left corner of the stiffness matrix
as indicated in Equation (16). Hence, in this sub-matrix, unit consistency is achieved. Nevertheless,
this produces a lower dimensional stiffness matrix.

The graphical illustration of eigenvectors and eigenvalues generates an n-dimensional surface.
This surface becomes a line for n = 1, an ellipse for n = 2, an ellipsoid for n = 3, and a hyper-ellipsoid
for n = 4, 5, 6. The radii and axes of ellipsoids are defined by eigenvectors and eigenvalues as shown
in Figure 3 for n = 3 [26].

ē2

ē1

λ1

λ3

λ2

ē3

Figure 3. Illustration of eigenvalues (λi for i = 1, 2, 3) and eigenvectors (ēi for i = 1, 2, 3) as an ellipsoid
for a 3 × 3 stiffness matrix.

Eigenvalues indicate the magnitude of the stiffness along their respective eigenvectors.
Hence, the volume of this ellipsoid indicates the stiffness capacity. This volume is proportional to the
determinant of the stiffness matrix [3,11,14,16,26–28,32]. Thus, stiffness value is commonly computed as:
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γV = det(K) =
n

∏
i=1

λi (21)

where γV denotes an average stiffness magnitude, and λi is the ith eigenvalue. γV equals to zero when
inspected pose of the manipulator has at least one free motion direction. This case corresponds to a
stiffness singularity. Thus, such a singular pose can be determined by investigating γV .

The Euclidean norm ‖.‖E, which is also named as 2-norm ‖.‖2, computes the square root of the
largest positive eigenvalue (or singular value) of the square of a matrix, KKT shown as follows:

‖K‖E = max(
√

λ̃i) (22)

where λ̃i denotes the ith eigenvalue of matrix KKT . This norm exhibits the maximum eigenvalue of
K which is also the largest radius of the ellipsoid. The direction of this eigenvalue is the direction of
the displacement which exhibits the highest stiffness. Euclidean norm of K−1 reveals the minimum
eigenvalue of K, which indicates the most compliant direction [14,17,27,29,30,33]. In optimization
problems, it is common to only focus on minimum eigenvalue in the workspace in order to maximize it.

Other norms are 1 norm ‖.‖1, infinity norm ‖.‖∞ (also named as Chebyshev norm ‖.‖C),
and Frobenius norm ‖.‖F. 1 norm computes the maximum of the summation of absolute values
of column elements of a matrix. Infinity norm makes this computation for rows. Since the stiffness
matrix is symmetric, both norms result in the same values. These norms denote a combined total
resistive force and moment against a unit displacement in Cartesian space. Frobenius norm, on the
other hand, has more meaning in terms of average stiffness. It focuses on diagonal elements of KKT .
It is computed as follows:

‖K‖F =
( n

∑
i=1

n

∑
j=1

(Kij)
2
)1/2

=
√

tr(KKT) =
√

λ2
1 + λ2

2 + ... + λ2
n (23)

where tr is the trace operator and subscript ij denotes the ijth element of the matrix. All norms result
in higher values in stiff poses and lower values in compliant poses. Hence, they show similar relative
distribution throughout the workspace. Therefore, an evaluation of one of the norms is sufficient to
have an idea of stiffness distribution depending on manipulator pose.

Stiffness condition number, stiffness dexterity, or stiffness isotropy index is computed as the ratio
of the maximum eigenvalue to the minimum eigenvalue [3,6,10,14,17,26,28,31]. This ratio reveals
stiffness value distribution among eigenvectors. The minimum ratio of 1 indicates equal stiffness
distribution. The calculation of this index is given as:

γC =
λn

λ1
= ‖K‖E

∥∥∥K−1
∥∥∥

E
(24)

where γC is stiffness condition number.
Another stiffness performance index is the uniformity index which compares the maximum and

minimum values of γC. This index is formulated as follows:

γCU =
max(γC)

min(γC)
(25)

γCU ≥ 1 (26)

where γCU is the uniformity index. Notice that, the minimum value of γC is bounded by 1 and so
γCU ≥ 1. Here, γCU = 1 can only be achieved when the maximum and minimum values of γC are
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equal to each other. The only condition that satisfies this equality is when all γC in all poses are equal
to each other.

The determination of both stiff and isotropic poses is a problem. A solution is proposed in [15]
that evaluates the stiffness magnitude and isotropy, simultaneously. The formulation of this index is
given below.

γG =
λ2

nλ2
1

λn + λ1
(27)

γG value increases as the manipulator approaches a stiff and isotropic pose. This index is more suitable
for 2 × 2 stiffness matrices. For higher dimensions, this approach is not appropriate because the
problem turns into a volumetric problem while γG solves a surface equation.

Energy index computation depends on whether a constant payload is applied or a constant
compliant displacement is given to a manipulator. For a constant payload, stiff poses of the manipulator
result in smaller deflections. Since the energy has a quadratic relationship with elastic displacements,
stiff manipulators store less energy for the same payload. Therefore, the highest stored energy is
observed when the elastic displacement is along the eigenvector direction that has the minimum
eigenvalue for a payload. On the other hand, when a constant compliant displacement is given to
manipulator, obviously stiff poses store more energy. It means the highest energy for a constant
displacement is observed when this displacement is given along the eigenvector that has the highest
eigenvalue. For a unit displacement, stored energy equals to the half of the maximum eigenvalue.
The index formulation is given as:

γε =
1
2

∆X̄TK∆X̄ ⇒ γε =
1
2

ēT
n Kēn ⇒ γε =

1
2

λn ⇒ γε =
1
2
‖K‖E (28)

where γε is the energy index [5,7,11,52].
Unfortunately, all the above indices are computed numerically. In addition, they are local

indices (except γCU). Hence, they are pose dependent, and they only indicate local performances.
Thus, a globalization process is necessary for these indices [35]. This globalization can be achieved
for the abovementioned indices to obtain an average value of performance of the whole workspace
as follows:

µ̄ =

∫
µdv∫
dv

(29)

σ =

√∫
(µ− µ̄)2dv∫

dv
(30)

where µ denotes any of the performance indices. µ̄ is an average value, and σ is the standard deviation.
It is desired to have a low deviation to have a uniform stiffness performance distribution.

3.2. Proposed Performance Index

As can be seen in Section 3.1, many of the indices mostly rely on the maximum and minimum
eigenvalues for performance evaluation. However, this causes a lack in proper stiffness isotropy
evaluation for n × n dimensional stiffness matrix where n > 2. In this respect, a revision is required
for stiffness isotropy index.

While stiffness condition number for a 2 × 2 stiffness matrix regarded as the ratios of radii of a
stiffness ellipse, the mathematical meaning behind is the comparison of the areas of a circle and an
ellipse. Area of this circle indicates an ideal (desired) performance value which has high isotropy and
rigidity. Hence, the square of the maximum eigenvalue is an indication of the area of the circle. Area of
the ellipse is the multiplication of all eigenvalues (determinant). The ratio between these areas gives
the stiffness condition number. For a 2 × 2 stiffness matrix, this index is formulated as follows:
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γC =
λ2

2
λ1λ2

=
λ2

λ1
(31)

γC ≥ 1 (32)

The current γC is a 2 DoF evaluation approach and has a lack of performance in the evaluation
of 3 or more DoF problems. Therefore, γC cannot distinguish the performances of poses whose
eigenvalues λ1 = λ2 < λ3, λ1 < λ2 = λ3, or λ1 < λ2 < λ3 for 3 × 3 matrix. Poses that have closer
eigenvalues to maximum one are more isotropic. Hence, γC must be revised for higher DoF evaluation.
Higher dimensional isotropy index is the comparison of volumes of an ideal n-dimensional sphere and
an n-dimensional ellipsoid. In this regard, the extension of the condition number for n × n stiffness
matrix is a volumetric condition number or volumetric isotropy index that is formulated as follows:

γI =
‖K‖n

E
det(K)

(33)

γI ≥ 1 (34)

where γI volumetric stiffness isotropy index and n is the dimension of the stiffness matrix, nth power
of ‖K‖E indicates the volume of the ideal sphere while det(K) represented the volume of the ellipsoid.
γI = 1 indicates the isotropic poses in terms of stiffness. Since this index also considers the intermediate
eigenvalue contribution, the ambiguity of stiffness performance between the poses that have same
γC can be accurately distinguished. Hence, it is expected to have a lower standard deviation of σI
compared to σC. The standard deviation in such a comparison can be regarded as the preciseness of
the performance index.

A volumetric uniformity index γIU may also be defined as an extension to γI . The uniformity
index is defined as follows:

γIU =
max(γI)

min(γI)
(35)

γIU ≥ 1 (36)

Since the preciseness of the volumetric stiffness isotropy index is expected to be relatively better,
the volumetric uniformity index is expected to be more accurate compared to γCU .

3.3. Construction of Performance Indices for R-CUBE

Previously mentioned indices are utilized for the stiffness evaluation R-CUBE manipulator,
and they are tabulated in Table 1. Since the mobile platform of the manipulator has only translational
DoF, translational compliant displacements are our primary interest. Hence, KA sub-matrix is in the
focal point of this study.

Table 1. Utilized stiffness performance indices.

Index Matrix Computed Function µ̄ σ Unit

γV KA det(KA) µ̄V σV (N/m)3

‖.‖E KA ‖KA‖E µ̄E σE (N/m)
‖.‖1 KA ‖KA‖1 µ̄1 σ1 (N/m)
‖.‖∞ KA ‖KA‖∞ µ̄∞ σ∞ (N/m)
‖.‖F KA ‖KA‖F µ̄F σF (N/m)
γε KA

1
2 ‖KA‖E µ̄ε σε (Joule)

γI KA ‖KA‖3
E/det(KA) µ̄I σI -

γC KA ‖KA‖E/
∥∥∥K−1

A

∥∥∥
E

µ̄C σC -
γIU KA max(γI)/min(γI) - - -
γCU KA max(γC)/min(γC) - - -
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4. Results and Discussion

In this section, only the results on isotropy index calculations are given to present a comparison
between the conventional and proposed isotropy index. γI , and γC values are computed throughout
the workspace, and their results are compared with each other. These computations are carried out by
using KA sub-matrix. A normal distribution plot is presented for both indices to illustrate the relative
preciseness of the proposed index γI . Isotropy indices are computed for each discrete pose of the
workspace. Then, the computed indices are illustrated via color mapping.

The maximum and minimum values, average values, standard deviations of isotropy indices
are presented in Table 2. Having the minimum value of 1 for γC and γI indices shows that there at
least one isotropic pose. By definition of both indices, the isotropy is observed in the same poses.
Even though both indices compute the same stiffness matrix, their maximum values differ from each
other as expected. The effect of intermediate eigenvalue causes this difference. These maximum values
indicate the worst isotropy performance. The number of worst isotropic poses with respect to γC is
higher compared to γI because γC does not consider the intermediate eigenvalues. However, the worst
isotropic poses concerning γI are also the worst isotropic poses with respect to γC, but vice-versa is
not necessarily valid for all least isotropic poses.

The values of γC and γI are normalized as γ∗C and γ∗I to carry out a fair comparison among them.
Accordingly, µ̄∗I , µ̄∗C, σ∗I , and σ∗C are obtained in a normalized space. γC and γI are normalized such
that the worst performance is denoted by 1 and the highest isotropy is given by 0.

Table 2. Results of isotropy indices.

Max Min µ̄ σ

γI 5.45 1 µ̄I = 1.80 σI = 0.68
γC 2.37 1 µ̄C = 1.42 σC = 0.26
γIU 5.45 5.45 - -
γCU 2.37 2.37 - -
γ∗I 1 0 µ̄∗I = 0.19 σ∗I = 0.15
γ∗C 1 0 µ̄∗C = 0.31 σ∗C = 0.19

The normal distribution of both indices is compared in a normalized space and shown in Figure 4.
Probability density in the vertical axis indicates the number of poses that have the isotropy value
denoted in the horizontal axis. Mean values µ∗I , and µ∗C indicates the average isotropy of the workspace.
γ∗I results indicate that the workspace is more isotropic with respect to γ∗C results since µ∗I < µ∗C.
In addition, the probability distribution of isotropic poses is higher by using γI index. The standard
deviation σ∗I is lower than σ∗C. Hence, γ∗I is more sensitive to isotropy changes between poses, and this
new index can detect slightest changes.

Normal Distribution

Figure 4. Normal distribution of γI and γC.

For illustration purposes, 9 planes are selected in the workspace. These planes are parallel to~u1−~u2,
~u2−~u3, and~u1−~u3 orthogonal planes. They are divided into 3 groups. In each group, 3 planes are intersect



Machines 2019, 7, 44 11 of 15

at [−60,−60,−60] mm, [0, 0, 0] mm, [60, 60, 60] mm locations of the workspace. Figures 5a and 6a, show
the outermost surfaces of the workspace where the planes are placed at [60, 60, 60] mm. Figures 5b and 6b,
show the planes that are coincident at [0, 0, 0] mm. Figures 5c and 6c, show the most inner surfaces of
the workapce at [−60,−60,−60] mm. Due to the symmetric topology of the manipulator, computed
performance indices have the same value in several poses. Hence, a symmetric distribution is observed in
the results of both indices throughout the workspace.

Due to the definition of both indices, lower values (represented with blue zones) indicate higher
isotropy. These areas mainly are observed at the innermost corner, the outermost corner, and at the
center of the workspace. However, isotropy distribution differs for γ∗I and γ∗C for the rest of the
workspace. The transition between low isotropy and high isotropy is more smooth in γ∗C compared
to γ∗I . This smooth transition is a consequence of relatively less precise results obtained with γC.
Hence, γC cannot precisely distinguish the isotropy levels among poses. However, the transition from
low to high isotropy in γ∗I results illustration is sharper and more distinguishable compared to γ∗C.

a) b) c)

Figure 5. Isotropy distribution: (a) Outer surfaces, (b) middle surfaces, (c) inner surfaces.

a) b) c)

Figure 6. Volumetric isotropy distribution: (a) Outer surfaces, (b) middle surfaces, (c) inner surfaces.

Figures 7 and 8 show the iso-curves in ~u1 − ~u2 planes for γ∗C, and γ∗I , respectively. These planes
are positioned along ~u3 and they are located at 60 mm,0 mm,−60 mm. Figure 8 shows that the covered
area by the iso-curves for γ∗I = 0.1, 0.2 is higher than the area of γ∗C = 0.1, 0.2 in Figure 7. Hence, γI
captures more isotropic poses. Accordingly, iso-curves for γ∗C = 0.3, 0.4, ..., 0.8 cover more area than
the area covered by the same value of γ∗I . This indicates that the manipulator is less isotropic with
respect to γC. In addition, notice that the distance between the iso-curves are less for γ∗I in Figure 8
compared to γ∗C in Figure 7. Therefore, γI is more sensitive to isotropy changes.
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a) b) c)

Figure 7. Normalized isotropy iso-curves: (a) 60 mm along ~u3, (b) 0 mm along ~u3, (c)−60 mm along ~u3.

a) b) c)

Figure 8. Normalized volumetric isotropy iso-curves: (a) 60 mm along ~u3, (b) 0 mm along ~u3, (c)
−60 mm along ~u3.

5. Conclusions

In this study, a stiffness model for the R-CUBE manipulator is derived via VJM. A volumetric
isotropy index was proposed and compared with the isotropy index that is used in the literature.
The proposed index enables a precise evaluation of n-dimensional stiffness problem. The comparison of
indices was achieved in a normalized domain. The isotropy distribution is illustrated in 3-dimensional
figures using color mapping and by sketching iso-curves. In addition, the normal distribution is
given for both indices. It was observed that the proposed isotropy index is more sensitive than
the conventional one. It has a lower standard deviation. Hence, it can distinguish isotropic and
non-isotropic poses for spatial stiffness matrices, precisely.

While in this paper VJM is chosen to compute the stiffness model, other stiffness model
computation can be employed, and the proposed stiffness index and the other indices can be calculated
by using these models as well. As a future study, an optimal design will be conducted for R-CUBE
mechanism by using the volumetric isotropy index.
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