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Abstract: This paper presents a semi-automated design algorithm for computing straight bevel gear
involute profiles. The proposed formulation is based on the Tredgold approximation method. It allows
the design of a pair of bevel gears with any desired number of teeth and relative axes inclination angles
by implementing additive manufacturing technology. A specific case study is discussed to calculate the
profiles of two straight bevel gears of a biomedical application. Namely, this paper illustrates the design
of the bevel gears for a new laparoscopic robotic system, EasyLap, under development with a grant
from POR Calabria 2014–2020 Fesr-Fse. A meshing analysis is carried out to identify potential design
errors. Moreover, finite element-based tooth contact analysis is fulfilled for determining the vibrational
performances of the conjugate tooth profiles throughout a whole meshing cycle. Simulation results
and a built prototype are reported to show the engineering feasibility and effectiveness of the proposed
design approach.
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1. Introduction

Over the last decades, robotic systems have improved the performance in terms of time-consuming and
quality of many biomedical applications. In particular, endoscopic surgical operations requiring accurate
movements and minimal invasion may get significant advantages from robotic assistance. Laparoscopy was
firstly promoted as a diagnostic modality [1,2] and later it was used for operations in the fields of gynecology,
urology, and cardiac surgery [3–5]. AESOP, the automated endoscope system for optimal positioning,
represented the first solution eliminating the need for one additional person at the operating table. It is
a computer-controlled robot positioner that holds the laparoscope and is moved by means of surgeon’s
foot and hand controllers [6]. Another kind of computer-assisted system has been developed to give
assistance in endoscopic coronary artery surgical procedures. The so-called ZEUS system is a 5-degrees
of freedom (DOF) voice-controlled robotic surgical system [7], which allows duplicating the DOFs of a
standard endoscopic instrument controlled by the hand of a surgeon. Additionally, the da Vinci robotic
surgical system adopts the principle of a master–slave manipulator, in which the handle of the instrument
and its top part are physically divided [8]. Although da Vinci and ZEUS provided certain advantages
like high visual magnification, movement scaling, tremor filtering, and dexterity, some drawbacks must
be underlined, such as interference among the robotic arms, excessive encumbrances, and lack of tactile
feedback. These drawbacks motivated the exploration of other design solutions such as the EasyLap
robotic system [9], which uses instrumentation already available in hospitals.
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The aim of this work is to improve the performances of the EasyLap robotic system for laparoscopic
surgery operations [9]. It is made of four to five arms, which are fixed on a common base frame, each being
passively self-balanced with five DOFs, while the sixth is supplied by the instrument in use turning about
its axis. Four arms are usually actuated, while one is dedicated to the optics and is automatically moved,
pointing to the region in which the instruments are manipulated by the doctor. The attention is focused on
the design of the adaptor that handles the movements of the traditional surgical instrument that must turn
along its axis to modify the plane of opening of the forceps, which needs a particular attention being the
most significant part, especially for endoscopic surgery operations.

One of the key features of the EasyLap robotic system is the possibility to fully detach the
sterile component (holding the forceps) from the non-sterile part (containing the motors, force sensor,
and electronics). For this purpose, it is necessary to keep the motors parallel and, at same time, it is
necessary to provide a low-cost transmission solution for the rotation of the end-effector with specific
small relative axes inclination angles and reducing ratios of approximately 0.5. A careful search found
that there is no off-the-shelf solution being able to satisfy both required transmission and geometric
constraints. Accordingly, there has arisen a need to design a customized bevel gear solution, which can
satisfy all the design constraints such as inclination/transmission angles with a low-cost and compact
solution. Additionally, standard gear design solutions fail to provide a customized design with the
desired design characteristics and performance, especially for reducing the encumbrance and, at the
same time, ensure good vibrational behavior of the end-effector.

The traditional manufacturing processes are mainly cutting methods that strictly influence the
tooth profile of a gear and, thus, its performance. Face milling and face hobbing are two of the
main generating methods. However, they do not guarantee customizable control of the tooth profile
and good vibrational performances when applying small loads [10]. Accordingly, a specific design
methodology is herewith proposed. This design methodology is based on an extension of the Tredgold
approximation method [11]. It is intended for miniaturized straight bevel gears with any desired
number of teeth and relative axes inclination angles.

The proposed design method assumes the use of an additive manufacturing technology that
was not considered in conventional design methods such as those proposed in literature [12,13].
The proposed method implements a semi-automated pre-processing tool to generate a point-based
description of the tooth flank surfaces and then to create a desired finite element (FE) model of the
gear pair. The FE model has been used to compute a tooth contact analysis (TCA) of the mating
gears in order to determine their vibrational performances, which are extremely significant for the
considered biomedical application. The TCA is performed by means of nonlinear FE simulations in
the NX Nastran (SOL 601) environment. Simulation results are discussed to attest to the engineering
feasibility and effectiveness of the proposed design approach. A 3D-printed prototype of the designed
mating elements has been manufactured and mounted on the end-effector of the EasyLap.

2. Tredgold-Based Tooth Profile Generation

Bevel gears are used when the motion has to be transmitted between intersecting shaft axes.
In this work, straight bevel gears with involute tooth profiles were considered in order to actuate
the end-effector of the robotic system EasyLap when used for laparoscopic surgery operations.
Since encumbrances must be minimized, it is necessary to perform a careful design of the mating gears.
Small gears and small shaft angle represent the main topics of the proposed gear design.

Traditionally, bevel gears are manufactured by using cutting methods such as gear hobbing, bevel
gear generators, or CNC milling. These methods start from a bulk workpiece and remove material to
generate a correctly profiled tooth form [14–16]. These manufacturing processes do not allow for an
easy customization and miniaturization. Other manufacturing methods can be based on die casting or
injection molding [17]. These methods are suitable only for large production lots, since they require an
expensive mold design and production. New production processes such as 3D printing have been
changing the time-to-market of industrial products but also the design process. In this work, the use
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of 3D printing techniques is taken into account for modifying the generating method that is used to
design a desired straight bevel gear pair. This method can be very fast and cost effective for small
production lots of small size plastic gears, such as those considered for the EasyLap robotic system.
However, it is necessary to fully design the bevel gear mating profiles in terms of a cloud of points
to be provided as input of a 3D printer. Accordingly, this paper proposes a specific semi-automated
design algorithm for computing straight bevel gear involute profiles.

The Tredgold approximation method [11] is usually adopted to study bevel gears, reducing the
problem to that of ordinary spur gears. In the proposed approach, the aim is not only to study bevel
gear problems but also to design the bevel gear pair starting from its equivalent spur one. As seen in
Figure 1, r1, and r2 are the pitch radii, respectively, for the pinion and the gear. The angles γ1 and γ2

are defined as pitch angles and their sum is equal to the shaft angle Σ.
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The gear ratio is defined in the same manner as for spur gears:

τ =
ω1

ω2
=

r2

r1
=

z2

z1
, (1)

where ω and z are, respectively, angular speed and number of teeth of the considered gear. Since the
distance OP can be written as

OP =
r1

sinγ1
=

r2

sinγ2
, (2)

then combining them gives

sinγ1 =
r1

r2
sinγ2 =

r1

r2
sin(Σ − γ1) =

r1

r2
(sin Σ cosγ1 − sinγ1 cos Σ). (3)
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Rearranging Equation (3) gives
tanγ1 = sin Σ

r2
r1
+cos Σ

= sin Σ
z1
z2
+cos Σ

tanγ2 = sin Σ
r1
r2
+cos Σ

= sin Σ
z2
z1
+cos Σ

. (4)

The pitch radius ri for the i-th gear is defined as

ri(w) = m(w)
zi
2

, (5)

where m(w) is the module. Considering the bevel gears, m varies as a function of the face width of the
considered gear. Focusing the attention on Equations (4) and (5), once the shaft angle, the number
of teeth, and the function of the module are fixed, it is possible to obtain the pitch cones of the gear
pair elements.

The Tredgold approximation method allows starting from the pitch back-cone representation of a
bevel gear pair in order to build an equivalent problem of spur gears. As long as the gear is made
up of eight or more teeth, the method is accurate enough for practical purposes [12]. According to
the Tredgold method, an equivalent spur gear is built whose pitch radius re is equal to the back-cone
radius, such as the radius of the cone whose elements are perpendicular to those of the pitch cone at
the largest end of the teeth. Once the equivalent spur gears are obtained, the tooth profiles can then be
defined. The results obtained by tooth contact analysis of the equivalent gears correspond closely to
those of the bevel gears.

The geometrical relations that occur between the bevel and spur gears are

req,i(w) =
ri(w)

cosγi
, (6)

zeq,i(w) =
2 π req,i(w)

p(w)
=

zi(w)

cosγi
, (7)

where req,i and zeq,i are, respectively, the pitch radius and the number of teeth, usually a non-integer,
of the i-th equivalent spur gear; p is the circular pitch of the bevel gear measured at the width w of the
gear. In order to make the following discussion easier to understand, the procedure will be shown
for a single gear pair element and for a fixed value of the module m, which would be repeated for a
discrete number n of intermediate values between mbc (module at the back cone) and mfc (module at
the front cone).

Once the geometrical parameters of the equivalent gears are obtained, it is possible to focus the
attention on the 2D design of the involute profiles using the following Cartesian equations:{

xeq = rb,eq(sinθ− θ cosθ)
yeq = rb,eq(cosθ+ θ sinθ)

, (8)

where rb,eq is the radius of the fundamental circle of the equivalent gear and θ is the involute angle that
varies between zero and θt.

θt =

√(
rt,eq

rb,eq

)2

− 1, (9)

where θt is the angle at which the involute reaches the addendum circle and rt,eq is its radius. It is
usually useful to adopt the polar coordinates (ρ,φ) where ρ =

√(
xeq2 + yeq2

)
φ = atan

(
xeq
yeq

) . (10)
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A significant value that will be useful for 3D parameterization is φp, which is the value of φ at θp,
where the involute meets the pitch line. The 3D parameterization of the single tooth of the bevel gears
is shown in Equation (11): 

x = R sin
(

δ
cosγ

)
cosγ

y = R cos
(

δ
cosγ

)
cosγ

z = rvag + req tanγ−R sinγ

, (11)

where R and δ are the polar coordinates, while rvag is the radius of the virtual auxiliary gear. The latter
should mesh with the equivalent spur gear, but it is only used to define the z-coordinate of the gear
flank parameterization. They can be defined as reported in Equations (12)–(14).

R =


r f ,eq = req − 1.25 m root part
ρ active f lank part

rt,eq = req + m top part
, (12)

δ :



−
π

zeq
≤ δ ≤ − π

2 zeq
−

(
φp −φ

)
le f t root part

−
π

2 zeq
−

(
φp −φ

)
< δ ≤ −

(
φp −φ

)
le f t active f lank part

−

(
φp −φ

)
≤ δ ≤

(
φp −φ

)
top f lank part(

φp −φ
)
≤ δ <

(
φp −φ

)
+ π

2 zeq
right active f lank part

π
2 zeq

+
(
φp −φ

)
≤ δ ≤ π

zeq
right root part

, (13)

rvag = req sinγ. (14)

3. The Proposed Semi-Automated Design Method

The proposed semi-automated process to generate the design of straight bevel gears and the
contact performance of the prescribed gear pair can be divided into three main phases, as described in
Figure 2.
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Figure 2. Logical sequence of the proposed semi-automated design method.

The Tredgold profile generation phase is based on Equations (1)–(14) as outlined in the previous
section. The flow-chart in Figure 3 provides a detailed description of the calculation process that can be
iterated in order to compute the straight bevel gear tooth profiles with desired performance. The idea
is that, having fixed the relative incidence angle between the axes Σ of the gears, the relative number of
teeth z1 and z2, the module m, and the pitch angles γ1 and γ2 can be consequently obtained. Each gear
can be treated with the Tredgold method in an iterative manner by considering a certain number of
discrete values for the module along the width of the considered gear. It is also possible, for each
gear pair element, to obtain a second gear having an orthogonal axis and ensuring conjugate motion.
We define them as virtual auxiliary gears. They can have a non-integer number of teeth and cannot be
built. However, the gears we are designing will have the same module, and the involutes meshing in a
cone perpendicular to their pitch cone do surely mesh.

Table 1 reports an example of gear data for a computed bevel gear pair in order to analyze the
contact characteristics of a straight bevel gear pair. Data have been computed with the proposed
Tredgold profile generation algorithm by considering a shaft angle of 12◦. Hence, the flank data
is generated as an ordered set of points, defined by Cartesian coordinates. The cloud-of-points
representation is stored in an Excel file and then given as input to a pre-processing Matlab tool that
automatically creates the FE mesh of each gear pair element in the gear mesher phase.
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The creation of the finite element mesh is customizable by the user. The latter can change the
dimension and the number of elements and provide accuracy of the analysis. Biquadratic interpolation
techniques, presented in [18], are used in order to accurately build the tooth surfaces starting from a
certain number of Cartesian points. Depicted in Figure 4 is an example of the FE mesh creation for the
input gear.
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Table 1. Blank data of the example bevel gear pair.

Gear Data Pinion Gear

Number of teeth 14 27
(mfc, mbc) (mm) (0.9, 1) (0.9, 1)

n 81 81
Face width (mm) 9.797 9.797

Mean cone distance (mm) 93.003 93.003
Pressure angle (◦) 20 20

Pitch radius at midpoint (mm) 3.318 6.694

Machines 2019, 7, x FOR PEER REVIEW 7 of 16 

 

Table 1. Blank data of the example bevel gear pair. 

Gear Data  Pinion Gear 

Number of teeth  14 27 

(mfc, mbc) (mm) (0.9, 1) (0.9, 1) 

n  81 81 

Face width (mm) 9.797 9.797 

Mean cone distance (mm) 93.003 93.003 

Pressure angle (°) 20 20 

Pitch radius at midpoint (mm) 3.318 6.694 

 

  

(a) (b) 

Figure 4. (a) Single tooth finite element mesh; (b) complete gear finite element mesh. 

Once the FE mesh is available, the third part of the semi-automated design process consists of 

numerical tooth contact analysis computation, following the steps below: 

 Creation of the FE assembled model. 

 Definition of the initial gear pair kinematic configuration. 

 Specification of loading campaign and boundary conditions. 

 Multiple static nonlinear simulation. 

 Post-processing of the tooth contact analysis results. 

4. Tooth Contact Analysis 

The tooth contact analysis consists of a computerized and numerical procedure that allows 

identification of the main performance of two mating gears in terms of static transmission error (STE) 

and distribution of contact pressures along the gear flanks. Since the quality of the motion 

transmission is strictly dependent on the gear profiles and mainly on the interaction of the mating 

elements of the gear pair, the TCA plays a key-role in the gear design. Many phenomena occur when 

two mating gears come into contact. Contact conditions can vary depending on arising 

misalignments, assembly errors, or micro-modifications. The variability of the contact mechanics 

leads to nonlinear problems, whose analytical solutions are too difficult to be suitable. Hence, over 

the last decades of the twentieth century, TCA has been commonly extended with finite element 

analysis (FEA) [13] or with analytical multibody approaches [10]. 

In this work, an unloaded tooth contact analysis (UTCA) is computed in order to consider pure 

geometric conditions for contact detection. On the other hand, results of a loaded tooth contact 

analysis (LTCA) are presented to provide a more realistic description of the gear pair contact 

behavior. The load’s application leads to tooth bending deflections. It modifies the overall contact 

Figure 4. (a) Single tooth finite element mesh; (b) complete gear finite element mesh.

Once the FE mesh is available, the third part of the semi-automated design process consists of
numerical tooth contact analysis computation, following the steps below:

• Creation of the FE assembled model.
• Definition of the initial gear pair kinematic configuration.
• Specification of loading campaign and boundary conditions.
• Multiple static nonlinear simulation.
• Post-processing of the tooth contact analysis results.

4. Tooth Contact Analysis

The tooth contact analysis consists of a computerized and numerical procedure that allows
identification of the main performance of two mating gears in terms of static transmission error (STE)
and distribution of contact pressures along the gear flanks. Since the quality of the motion transmission
is strictly dependent on the gear profiles and mainly on the interaction of the mating elements of the
gear pair, the TCA plays a key-role in the gear design. Many phenomena occur when two mating
gears come into contact. Contact conditions can vary depending on arising misalignments, assembly
errors, or micro-modifications. The variability of the contact mechanics leads to nonlinear problems,
whose analytical solutions are too difficult to be suitable. Hence, over the last decades of the twentieth
century, TCA has been commonly extended with finite element analysis (FEA) [13] or with analytical
multibody approaches [10].

In this work, an unloaded tooth contact analysis (UTCA) is computed in order to consider pure
geometric conditions for contact detection. On the other hand, results of a loaded tooth contact
analysis (LTCA) are presented to provide a more realistic description of the gear pair contact behavior.
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The load’s application leads to tooth bending deflections. It modifies the overall contact conditions
and specifically the contact ratio that is given as the number of teeth, which are instantaneously in
contact. If the contact ratio varies, the load sharing and the meshing stiffness vary and, consequently,
a vibrational excitation is introduced, as outlined in [19–21].

4.1. FE-Based Tooth Contact Analysis

Due to the occurring nonlinearities, nonlinear FE-based contact simulations have been conducted
by means of a commercial software package. The FE model of the gear pair is created using a dedicated
preprocessing software tool that allows the creation of discretization of the desired gear flank geometry
starting from a cloud-of-points based representation of the three-dimensional gear flanks and the gear
blank data. The in-house code of the preprocessing tool allows the user to fully handle the size and the
density of the mesh, avoiding problems of convergence and stability of the solutions.

4.1.1. FE Model Creation

The aim of the FE-based tooth contact analysis is to perform the static nonlinear solution in order to
investigate the contact zone of the mating gears inside a whole cycle of meshing. Therefore, a FE-based
approach requires:

• Development of the finite element mesh of the gear drives.
• Definition of contacting surfaces.
• Establishment of boundary conditions in terms of load and constraints.
• Post-processing of the results.

The FE model of the straight bevel gear pair is obtained by discretizing the gear geometry as
a connected set of 3D elements. In this work, six-sided solid elements (HEXA8) have been chosen.
Since static nonlinear simulations have significant computational times, the FE model of each gear is
characterized by a combination of three FE mesh sections, each with its own mesh density:

• The finer part includes the teeth most likely to enter in contact as the load increases.
• The very coarsely meshed section holds most of the gear that will not be in contact during the

contact simulations. It is necessary only to correctly approximate the overall blank stiffness
without introducing additional and unneeded degrees of freedom to the model.

• The third part is made up of two small intermediate sections (each on every side) to connect the
fine and the coarse mesh parts. Its main task is avoiding discontinuities between the fine and the
coarse parts, which could provide bad results or convergence problems for the simulations.

Figure 5 shows the final FE model of the analyzed gear pair.
For the finer part, the number of elements that characterizes the active flanks of the gears is equal

to the number of elements of the cloud-of-points representation given as input in the preprocessing
phase. This choice has been adopted in order to use the proper input data, while avoiding errors of
interpolation techniques during the preprocessing phase.

As it can be seen in Figure 5, 2D rigid body elements (RBE2) were used at the inner part of each
gear in order to force the same boundary conditions, defined at the single central node, to all the nodes
that lies on the inner cones of the gear pair elements. During the simulation, the gear was kept fully
constrained, while the pinion was allowed to rotate about its rotational axis.

The external torque was applied on the pinion’s rotational axis. In this work, TCA was performed
for five different load cases: 0.01 Nm, 0.1 Nm, 0.5 Nm, and 1 Nm. The studied load cases were
chosen considering a maximum load of 0.02 Nm as constrained by the expected operating conditions.
The 0.01 Nm load case was defined as the “unloaded case”. This was the load that allowed consideration
of the pure geometric condition, with no bending tooth deflections, in the mating gears contact
analysis. The aim of this work was to propose a suitable design approach for straight bevel gears.
The methodology can be used to generate straight bevel gear pairs with any material. In a preliminary
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prototyping phase, the 3D printed gears represented a proof of the design methodology concept.
Moreover, future developments aim at adopting metal powders and sintered element gears. For this
reason, the simulations were computed by setting the properties of steel, which is the standard material
for geared transmissions. The chosen steel material provided the values of E = 200 GPa (Young
modulus) and ν = 0.3 (Poisson ratio) that were assigned to both pinion and gear.

Machines 2019, 7, x FOR PEER REVIEW 9 of 16 

 

For this reason, the simulations were computed by setting the properties of steel, which is the 

standard material for geared transmissions. The chosen steel material provided the values of E = 200 

GPa (Young modulus) and ν = 0.3 (Poisson ratio) that were assigned to both pinion and gear. 

 

Figure 5. The finite element model of the analyzed straight bevel gear pair. 

4.1.2. Kinematic Configuration 

Each geared body has to be analyzed in its own kinematic configuration in order to obtain high 

power transmission performance. Conjugate motion consists of perfect motion transfer that can be 

maintained for every considered roll angle during a complete meshing cycle. The latter is defined as 

𝜙𝑚𝑐 =
2 𝜋

𝑧
, (15) 

where 𝜙𝑚𝑐 is expressed in radians and z is the number of teeth of the considered gear. In this work, 

the results refer to the pinion’s meshing cycle that is equal to about 0.449 rad. However, toothed 

bodies have to transmit a certain load during the engagement. Since they are not characterized by 

infinite stiffness, their profile elastically deforms, giving rise to an unsteady component in the relative 

angular motion of the mating gears. This component is due to the periodic variation in the stiffness 

of the gear mesh that can be mainly ascribed to the fluctuation of the contact ratio. The latter is the 

instantaneous number of teeth in contact during the rotation. Since the meshing stiffness varies, no 

perfect motion can be transmitted and the mating teeth can no longer be considered conjugate. The 

condition of non-conjugacy is one of the main sources of dynamic excitation that a gear design tries 

to minimize at operating conditions. 

The static transmission error is an index of the excitation that occurs on the geared systems and 

of their performances. It considers the difference in rotation between the actual position of the output 

gear and the position that the gear would occupy in the case of perfect drive.  

𝑆𝑇𝐸 = 𝜙2 −
𝑧1
𝑧2
𝜙1 = 𝜙2 − 𝜏𝜙1, (16) 

where 𝜙1  and 𝜙2  represent the rotational angles of the pinion and the driven gear around the 

correspondent axis of rotation, respectively; 𝑧1  and 𝑧2  are the numbers of teeth and 𝜏  is the 

transmission ratio.  

In the presence of pure kinematic motion, the STE should be ideally equal to zero. Equation (16) 

allows the expression of the STE in μrad as a relative rotation, but it might be usually converted into 

relative displacement μm by using the pitch radius of the considered gear. 

Figure 5. The finite element model of the analyzed straight bevel gear pair.

4.1.2. Kinematic Configuration

Each geared body has to be analyzed in its own kinematic configuration in order to obtain high
power transmission performance. Conjugate motion consists of perfect motion transfer that can be
maintained for every considered roll angle during a complete meshing cycle. The latter is defined as

φmc =
2 π
z

, (15)

where φmc is expressed in radians and z is the number of teeth of the considered gear. In this work,
the results refer to the pinion’s meshing cycle that is equal to about 0.449 rad. However, toothed bodies
have to transmit a certain load during the engagement. Since they are not characterized by infinite
stiffness, their profile elastically deforms, giving rise to an unsteady component in the relative angular
motion of the mating gears. This component is due to the periodic variation in the stiffness of the gear
mesh that can be mainly ascribed to the fluctuation of the contact ratio. The latter is the instantaneous
number of teeth in contact during the rotation. Since the meshing stiffness varies, no perfect motion
can be transmitted and the mating teeth can no longer be considered conjugate. The condition of
non-conjugacy is one of the main sources of dynamic excitation that a gear design tries to minimize at
operating conditions.

The static transmission error is an index of the excitation that occurs on the geared systems and of
their performances. It considers the difference in rotation between the actual position of the output
gear and the position that the gear would occupy in the case of perfect drive.

STE = φ2 −
z1

z2
φ1 = φ2 − τφ1, (16)

whereφ1 andφ2 represent the rotational angles of the pinion and the driven gear around the correspondent
axis of rotation, respectively; z1 and z2 are the numbers of teeth and τ is the transmission ratio.



Machines 2019, 7, 38 10 of 16

In the presence of pure kinematic motion, the STE should be ideally equal to zero. Equation (16)
allows the expression of the STE in µrad as a relative rotation, but it might be usually converted into
relative displacement µm by using the pitch radius of the considered gear.

Regarding the starting configuration of the static simulations, the gear pair was oriented in such a
way that the mating flanks were in close contact. This operation was not manually done, because the
required initial rotational angle of the input gear was determined considering the mean value of the
unloaded transmission error (UTE), which is equal to 0.001679 rad. It represents an offset value, since
the mean value of STE related to a conjugate gear pair should be null.

4.1.3. Contact Detection Strategy

In order to analyze the contact behavior of the considered gear pair, it was useful to adopt the
finite element analysis (FEA). The used contact detection strategy takes place from an FE discretization
of the contact interfaces. In this work, the so-called node-to-surface approach was used, which is based
on the definition of two kind of contact surfaces: the slave and the master surfaces. According to the
considered method, the nodes on the slave surface cannot penetrate the segments of the master surface.
The selection of these regions is relevant and results from several considerations about mesh size,
surface curvatures, and material. Here, the pinion was chosen to be the slave, while the driven gear
was identified as the master.

The node-to-surface method provides a way to find the point x(M)(ξ,η) on the master surface Σ(M)

that minimizes the distance between a given node x(S) of the slave surface Σ(S) and the master surface
Σ(M) [22]. This distance is called gap (g) and it can be expressed as:

g =
[
x(S) − x(M)(ξ,η)

]
·n(M), (17)

where the gap g is computed as the distance between the position vectors of the slave point x(S) and
the master point x(M), projected onto surface normal n(M) that is assessed at the contact point on the
master surface. If no friction is considered during the contact, the Hertz–Signorini–Moreau (HSM)
condition, presented in Equation (18), can be used as the no-penetration condition in order to impose
contact along the normal direction [22].

gN ≥ 0, λ ≤ 0, λ·gN = 0. (18)

While gap is detected, there cannot be a contact force. The latter is expressed in the form of the
Lagrange multiplier λ. Conversely, if a contact force is identified, the gap must be null.

In the considered numerical solution, the HSM-condition is replaced by the constraint function
presented in Equation (19), where εN is a small parameter defined by the user [23]:

w(gN,λ) =
gN + λ

2
−

√(
gN − λ

2

)2

− εN. (19)

It is possible to assign a finite compliance to the contact surface. Thus, a user-specified amount of
interpenetration between the contacting surfaces is allowed in order to simulate the contact between
soft or compliant surfaces. The amount of penetration δp is defined as:

δp = εp pN = εp
λ
A

, (20)

where εp is the contact surface compliance parameter and pN is the normal surface contact pressure.
Figure 6 shows how the constraint function w(gN, λ) = 0 is altered by introducing the contact
compliance εp. The latter allows the emulation of the presence of a unidirectional spring with
stiffness constant A/εp, where A is the contact surface and λ is the contact force that is applied on the
contact interface.
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Earlier obtained results indicated a maximum contact pressure of about 500 MPa at a load of 1 Nm.
Such a high value of the maximum contact pressure and discontinuity of contact patterns induced us
to introduce a compliance to the contact surfaces.

Taking into account the size of the gear pair, δ = 2.5 µm of interpenetration was allowed between
both surfaces, yielding a contact compliance value equal to:

εp =
δp

pN
→ εp =

2.5 µm
500 MPa

= 0.005
µm

MPa
= 5× 10−9 mm3

mN
. (21)
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4.2. STE Results

An overview of the STE results for the different processed loaded cases is given in Figure 7.
The STE analysis allowed us to deduce that in kinematically ideal conditions, the designed straight
bevel gears were close to conjugate. This was proved by the flat trend of the unloaded transmission
error (UTE). Increasing the applied load, the effect of tooth bending could be observed. Indeed, when
bending deformations occurred, the number of teeth in contact changed, as did the mesh stiffness and
the peak-to-peak (p-p) of the STE curves, as reported in Table 2.
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Table 2. Calculated peak-to-peak values under different loading conditions.

Peak-to-Peak STE (µrad)

0.01 Nm 0.1 Nm 0.5 Nm 1 Nm

22.67 23.65 43.35 73.10

Figure 8 shows the STE curve for 1 Nm. Two different regions are highlighted: the first part is
characterized by small values of STE, because in those configurations two pairs of teeth were in contact
and so the mesh stiffness was bigger; the second part presents higher values of STE, which means that
the mesh stiffness decreased. A decrease of mesh stiffness was due to the reduction of the number of
teeth in contact, from two pairs to only one pair.
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A parameter that quantifies the instantaneous number of teeth pairs in contact is the contact ratio
mc. For straight bevel gears, it is possible to adopt the spur gears’ expression, as reported in [12],
considering the back-cone equivalent gears:

mc =
ga

rp
= 1.53, (22)

where ga is the length of path contact and rp is the base pitch. The next lower integer of mc indicates
the average number of pairs of teeth in contact. Thus, a contact ratio of mc = 1.53 means that there
is always at least one pair of teeth in contact and there are two pairs of teeth in contact 53% of the
meshing cycle.

The same result could be obtained focusing the attention on Figure 8, because the STE curve along
the meshing cycle can be divided in two parts that have similar lengths.

A contact pressure analysis was considered in order to give a whole TCA scenario. The mesh
stiffness variation up to 1 Nm was confirmed, as seen in Figure 9, where the transition between two
pairs (a) and one pair (b) of teeth in contact is shown. The contact pattern consisted of a line as expected
for straight bevel gears. Similarly, the maximum contact pressure decreased when two pairs of teeth
were in contact due to the load sharing. It is also important to note that increasing the contact ratio
implied increasing load sharing, reducing the maximum contact pressures, and improving motion
transmission smoothness.
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5. Discussion

The obtained numerical results, depicted in Figure 7, allow us to underline the effectiveness of the
proposed design algorithm for the considered case of study. Namely, it is considered a biomedical
application, where the gear train will operate with very slow and accurate motions. It is worth
noting that the main source of dynamic excitation of the geared transmission systems comes from the
variability of the meshing stiffness at operating conditions. Consequently, small variations of STE,
and thus small values of peak-to-peak (p-p), represent a desired outcome of the design procedure for
the considered gear pair.

As reported in the literature [19], reasonable levels of TE peak-to-peak depend on the specific
application of the geared system. Two gear pairs that differ in size or in shape can be compared in
terms of noise and vibration performance if their STE are expressed in µm [19]. Large values of STE
p-p would be permissible on large, slow-speed geared machinery, where the gear noise usually does
not represent a significant problem. At the ultra-precision end, a TE of 1 µm p-p could be considered
as extremely good.
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Focusing the attention on Table 2, the peak-to-peak TE values increase with the applied load,
because of the increasing of tooth bending. The highest value is about 73.10 µrad. If the latter is
multiplied by the pinion’s pitch radius, as reported in Table 1, the maximum peak-to-peak value
is obtained at about 0.24 µm. Hence, this value confirms a good vibrational performance and the
designed gear pair can be considered as suitable for the specific application for the transmission system
of the EasyLap robotic system, where high precision and small footprint are prescribed.

Future developments of the presented algorithm could include:

• Adding the STE as an optimization variable in the process of calculation of the radii and the angles,
while the objective function could be represented by the minimum allowable encumbrance.

• The possibility of introducing micro-geometry modifications of the tooth profile in order to
minimize the STE peak-to-peak values, as reported, for example, in [21].

A 3D printed prototype is shown in Figure 10. This prototype has been successfully mounted at
the wrist of the EasyLap operating arm. Figure 11 shows the sterilizable component of the adaptor for
standard laparoscopic instruments using the designed couple of small size bevel gears.
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6. Conclusions

This paper has proposed a semi-automated design algorithm for computing straight bevel gear
involute profiles by taking into account a 3D printing manufacturing process. The proposed formulation
relies on Tredgold approximation, and is suitable for any desired number of teeth and relative axes
inclination angles. A specific case study was carried out to design a miniaturized bevel gear pair in order
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to minimize the encumbrance for a new laparoscopic robotic system, EasyLap. A meshing analysis and
a finite element-based tooth contact analysis were carried out in order to evaluate the behavior of the
geared transmission under a set of different loads that did not overcome the applied working conditions.
The numerical simulations demonstrated that the proposed non-traditional design approach provides
conjugate tooth profiles of the contacting surfaces as well as their suitable vibrational performances.
The latter are properly used to guarantee high precision for biomedical applications. Finally, a prototype
was also built and successfully installed on an EasyLap robotic system, proving engineering feasibility and
effectiveness of the proposed design procedure. Future developments will extend the proposed algorithm,
including an STE-based optimization in the calculation of the radii and angles.
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