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Abstract: Outdoor mobile robot applications generally implement Global Positioning Systems
(GPS) for localization tasks. However, GPS accuracy in outdoor localization has less accuracy in
different environmental conditions. This paper presents two outdoor localization methods based
on deep learning and landmark detection. The first localization method is based on the Faster
Regional-Convolutional Neural Network (Faster R-CNN) landmark detection in the captured image.
Then, a feedforward neural network (FFNN) is trained to determine robot location coordinates and
compass orientation from detected landmarks. The second localization employs a single convolutional
neural network (CNN) to determine location and compass orientation from the whole image. The
dataset consists of images, geolocation data and labeled bounding boxes to train and test two proposed
localization methods. Results are illustrated with absolute errors from the comparisons between
localization results and reference geolocation data in the dataset. The experimental results pointed
both presented localization methods to be promising alternatives to GPS for outdoor localization.
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1. Introduction

In present world, mobile robots operate in various fields of applications, such as logistics, medical,
agriculture, health caring and housekeeping. Navigation is one of key elements that mobile robots
need in order to accomplish their given tasks. Success in navigation requires success of different
factors, including localization, in which the robots must be able to determine their positions in the
environments [1]. Recent findings suggested a significant number of localization methods for both
outdoor and indoor environments. For outdoor environments, Global Positioning Systems (GPS) is the
method that has been widely applied among a variety of outdoor applications, some of which are:
the mobile robot for high-voltage transmission line inspection [2], the autonomous position control of
multiple aerial vehicles [3], the mobile robot for gas level mapping [4], the navigation system for mobile
robots using GPS and inertial navigation system (INS) [5], and map building with the simultaneous
localization and mapping (SLAM) for firefighter robots [6].

Despite the large-scale implementation, localization through GPS suffers the decline in accuracy
from several environmental conditions. According to the official U.S. government information about
GPS and related topics [7], common causes of degradation in GPS accuracy are: (1) satellite signal
blockage due to large objects in the environments such as building, bridges and trees; (2) indoor or
underground use; and (3) signal reflected off building or walls. Due to the decline in GPS accuracy and
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reliability, a large number of GPS-based approaches also employ other sensors to improve localization
accuracy. For example, the fusion of captured camera image features with GPS signals [8], the use of
state chi-square test and simplified fuzzy predictive adaptive resonance theory (predictive ART or
ARTMAP) neural network to diagnose sensors in the GPS/INS system [9], and the combination of GPS,
wheel odometry and the received signal strength (RSS) from wireless communication nodes to create a
precise localization approach for mobile robots [10]. Apart from the improvements available, there
are also various alternative localization approaches that aim to replace GPS. Such approaches rely on
odometry [11,12], visual odometry [13], visual patterns [14] and ultra-wideband network [15].

Research on deep learning has extended rapidly in recent years. The implementation of deep
learning has been spreading though many fields of applications. Localization and positioning
applications also adopt deep learning approaches for the tasks. For instance, the deep learning-based
encoder determines locations from low-level features in images [16]. Some of significant fields that
deep learning has been extensively implemented in include object detection and object recognition.
Convolutional Neural Network (CNN) is one particular instance that has been implemented for object
detection and recognition, due to its structure that can effectively handle visual data. CNN has been
implemented as the base for various object detectors, including the Faster Regional Convolutional
Neural Network (Faster R-CNN) [17]. Faster R-CNN is the state-of-the-art object detector based on
region proposals, which surrounds the detected objects with bounding boxes. The approach of the
region proposal-based method for Faster R-CNN object detector is the same as its predecessor, Fast
R-CNN [18]. One major difference between Faster R-CNN and Fast R-CNN is the Region Proposal
Network (RPN), which reduces the Faster R-CNN detection time and increases the accuracy. The
increased speed of Faster R-CNN for object detection makes it suitable for real time applications [17,18].
Implementations of Faster R-CNN spread throughout various applications, such as the detection of
cyclists in depth images [19], pedestrian detection from security cameras [20], and ship detection in
remote sensing images that contain foggy scenes [21]. In [19–21] it is shown that Faster R-CNN has
high accuracy (more than 80%), slightly higher than human volunteers that have approximately 75%
accuracy [22].

It is well known that humans and other animals can use landmarks to determine where they
are in the world and generate the path to destinations [23]. For localization of mobile robots in
outdoor environments, signs and landmarks are commonly visible and usually distinct. CNN and
CNN-oriented Faster R-CNN are very useful for handling 2D data such as images. Therefore, it is
an advantage to use deep learning-based object detection approaches for mobile robot localization
in outdoor environments. Visual based mobile robot localization will mimic the way humans and
animals determine their locations and directions. In addition, other conventional sensors such as
GPS or compass will be replaced by vision. Therefore, this paper aims to propose and compare two
localization methods based on CNN and Faster R-CNN. In the CNN-based method, CNN analyzes
the robot captured image and determines the current location and orientation of the robot. In Faster
R-CNN-based method, Faster R-CNN is used to detect landmarks within the image, before sending
detected landmarks to the feedforward neural network (FFNN) that generates the current location and
compass orientation. Data amount becomes a challenge in deep learning, since the performances of
deep learning approaches rely on a large amount of data [16,21]. Thus, we also aim to develop and
test the performances of proposed methods using a smaller amount of data than other deep learning
implementations. The proposed method has been implemented as follows: first, the image dataset with
geolocation data that contains 1625 sets of data is created. Second, we develop the localization methods
based on CNN and Faster R-CNN using the created dataset. Finally, we evaluate the performance of
the developed localization methods through the test set of the dataset created in the first contribution.

The paper is organized as follows: Section 2 describes two proposed localization methods, and
their essential components. Section 3 explains the experimental results, and Section 4 concludes
this paper.
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2. Localization Methods

Two localization methods based on CNN are proposed in this paper. We investigated the object
detection capabilities of CNN and one of its successors, Faster R-CNN, to be used for localization based
on visual landmarks. The first localization method is the two-step procedure based on Faster R-CNN
object detector. Faster R-CNN is used to detect visible landmarks from a camera image. Labeled
bounding boxes of detected landmarks are then used as inputs for the FFNN that generates location
coordinates and compass orientation from landmarks. The second localization method is based on
conventional CNN. In the second method, the whole camera image is processed through CNN to
directly generate location coordinates and compass orientation. Further details of two localization
methods and their components are described in following subsections.

2.1. Faster R-CNN Localization

The overview structure of the Faster R-CNN based localization method is illustrated in Figure 1.
The Faster R-CNN based method is a two-step procedure. Faster R-CNN object detector and FFNN are
two main components of the first outdoor localization method. During the robot navigation, Faster
R-CNN detects landmarks in the camera captured image. This landmark detection process generates
three types of answers for each instance of the detected landmarks, which are bounding box, label and
score. Bounding box contains the position and size of the detected landmark in the input image. Label
indicates the class name of the detected landmark. Score refers to an objectness score, which measure
membership of the bounding box to classes of landmarks or background [17]. The components of
each detected landmark are then sent to FFNN for localization. The localization part uses detected
landmarks from the Faster R-CNN to localize the robot in the real-world environment. FFNN for
localization utilizes bounding boxes and labels of detected landmarks to generate geolocation data as
the result of the localization system. The generated geolocation data includes location coordinates and
compass orientation, in which location coordinates are in the form of latitude and longitude angles,
and orientation is in the form of magnetic-referenced compass orientation.
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Figure 1. System flows of the Faster Regional-Convolutional Neural Network (Faster R-CNN) based
localization method.

Further details on two main components of the Faster R-CNN-based localization method are
described in the following subsections.



Machines 2019, 7, 25 4 of 14

2.1.1. Faster R-CNN for Landmark Detection

Landmark detection is the first process of our Faster R-CNN localization method. We employ the
standard version of the Faster R-CNN object detector for landmark detection tasks. Typically, Faster
R-CNN comprises two modules, i.e., Fast R-CNN object detector and region proposal network (RPN).
The structure of Fast R-CNN object detector contains several convolutional and max pooling layers,
a region of interest (RoI) pooling layer, and a sequence of fully connected layers. In Fast R-CNN,
a set of convolutional layers and max pooling layers constructs a convolutional feature map from an
entire input image. RoI pooling extracts a fixed-length feature vector from the feature map at each
region, which is used as input of the Fast R-CNN. At final points of the Fast R-CNN, fully connected
layers estimate classes of feature vectors from RoI pooling and refine result bounding boxes from these
feature vectors [18]. The RPN is a deep fully convolutional neural network that shares full-image
convolutional features with the detection network, Fast R-CNN. RPN proposes high-quality regions to
the Fast R-CNN module. In addition, it helps guiding the Fast R-CNN over locations of objects in the
captured image [17].

Architecture of the implemented standard Faster R-CNN is shown in Figure 2. The whole
input image is processed through the set of convolutional and max pooling layers of the CNN to
generate a convolutional feature map. The feature map is then input to RPN to generate a set of
rectangular region proposals. Since the feature map is shared across RPN and the detection network,
the generated feature map is also input to the RoI pooling layer. This is used to extract fixed-length
feature vectors, with help of region proposals generated from the RPN. Extracted feature vectors from
the RoI pooling layer are then processed through a series of fully connected layers to estimate classes
of each feature vector through classifiers and refine result region proposals form the feature vectors
through regression process. Thus, refined and classified region proposals, or bounding boxes are
generated from Faster R-CNN.
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The structure of CNN used in our Faster R-CNN is also shown in Figure 2. As mentioned earlier in
this subsection, the set of convolutional layers of the CNN analyzes the whole input image to construct
a convolutional feature map. As the size of the smallest landmarks in the utilized dataset is nearly
32 × 32 pixels, the input size is set to 32 × 32 × 3, where the last 3 is for three color channels: red, green
and blue. The set of convolutional layers contains two, two-dimensional convolutional layers, with
a rectified linear unit (ReLU) attached after each convolutional layer. The set also includes one max
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pooling layer for down-sampling purposes. Each convolutional layer employs a 3 × 3 filter and has
the stride settings of 1 pixel for both horizontal and vertical strides. The number of filters in the first
convolutional layer is 48, while 96 filters are used for the second convolutional layer. The max pooling
layer is placed at the end of the layers set, in which the pooling size is 2 × 2 and the stride settings is 1
pixel for both horizontal and vertical strides. This small pooling size is applied to prevent premature
down-sampling of the input image, which may cause the loss of features in the result feature map.

Training of the Faster R-CNN consists of the following four steps: Step 1—RPN training;
Step 2—Fast R-CNN training using region proposals from Step 1; Step 3—RPN re-training using the
weight sharing with the Fast R-CNN for fine-tuning the RPN; and Step 4—Fast R-CNN re-training
using the updated RPN. These steps are the same as the original Faster R-CNN training [17]. The
training uses the whole images as input, and the labeled bounding boxes as the target. Training
continues for 20 epochs, with 1 × 10−4 initial learning rate.

2.1.2. Feedforward Neural Network for Localization

The localization part generates the robot location using bounding boxes and labels of detected
landmarks from the Faster R-CNN. Since the bounding boxes and labels are generated through the
features in an image during the detection process in Faster R-CNN, bounding boxes of detected
landmarks are arranged according to labels of landmark classes without further processing. The
localization part of the Faster R-CNN method has a single FFNN as its core component, which
uses arranged bounding boxes as input. The output units are location coordinates and magnetic
compass orientation.

The implemented FFNN consists of 72 input neurons, 48 hidden neurons and three output neurons,
as shown in Figure 3. The 72 inputs are slots of bounding box elements of detected landmarks. Each
bounding box contains four elements for positions and sizes of the box. We have limited the number
of landmark classes to nine due the number of landmark classes in the experiments. Further details of
nine landmark classes will be given in Section 3. Each class has the limitation of maximum of two
detection instances. For example, if there are three ‘Crossing’ landmarks detected, two instances with
the highest objectness scores will be used for localization. This results in the total of 72 (9 × 2 × 4)
input neurons. Default value of input neurons is zero if there is no detected instance for each slot of
landmarks. The three output neurons correspond to latitude, longitude and compass. The number
of hidden neurons, however, are acquired from trial-and-error tests. Activation function of FFNN
neurons is the symmetric saturating linear transfer function.
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Figure 3. Feedforward neural network (FFNN) for localization with detected landmarks from
Faster R-CNN.

Training of FFNN for localization utilizes labeled bounding boxes and geolocation data for training,
with Bayesian regularization as the training algorithm. Bounding boxes are arranged according to the
labels attached to boxes. Elements of arranged bounding boxes are used as the input of the training
data. Geolocation data which includes latitude angles, longitude angles, and magnetic compass
orientations, are used as the target training data.
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2.2. CNN Localization

Convolutional neural network (CNN) is one type of deep neural networks that is suitable for
two-dimensional array implementations, such as images. Typically, CNNs are applied for object
detection and recognition purposes, in which final parts of CNNs mostly employ layers for classification.
For instance, Softmax classifier. However, in our CNN localization method, CNN is used to directly
determine the proper geolocation data from the image and its features within. The implemented CNN
for localization has its final parts replaced with regressors instead of classifiers. Consequently, our
CNN determines the geolocation data through regression output, instead of classification. Similar to
the Faster R-CNN localization, the camera image is used as input for the CNN localization, where the
whole input image is processed through all layers of the CNN. The result of our CNN localization
method is the geolocation data, which consists of latitude angle, longitude angle, and magnetic compass
orientation, the same as the Faster R-CNN localization results.

Design of the implemented CNN is shown in Figure 4. The best architecture is determined by
trial-and-error method and the combination from different CNN examples and principles available [24].
The CNN for localization comprises 37 layers in total. The input layer of the CNN has the size of
320 × 240 × 3 (320 pixels width, 240 pixels height and three color channels: red, green and blue). There
are 10 sets of convolutional layers, batch normalization and ReLU included within 37 layers of the
CNN, where convolutional layer, batch normalization and ReLU are displayed together as one green
layer in the diagram. There are different sizes and different amounts of filters among the implemented
convolutional layers. The earliest convolutional layer employs the largest filter size of 5 × 5, while the
filter size is decreasing as the network continues deeper, to the last convolutional layers which apply
the filter size of 2 × 2. On the contrary, the number of filters begins with a small number of 24 filters
in the first convolutional layer. The number of filters in each convolutional layer set increases as the
network progresses deeper, to the amount of 64 filters in last layers. We employ four max pooling
layers at the size of 3 × 3, 3 × 3, 2 × 2, and 2 × 2, with the stride settings as 2, 2, 1, and 1 respectively.
Final parts of the CNN for localization consist of a fully connected layer and the regressor. Since the
localization is determined based on latitude, longitude, and compass orientation, only three neurons
are employed in the fully connected layer of the CNN.
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The implemented CNN training employs a whole captured image as the input, and geolocation
data as the training target. Setup for CNN training includes 48 training epochs, batch size of 64 and
1 × 10−6 initial learning rate. The learning rate decreases at the rate of 0.1 every 20 epochs.



Machines 2019, 7, 25 7 of 14

3. Experimental Results

Experiments of our localization methods start from the dataset construction. The geotagged image
dataset is constructed to provide the data for both training and testing of our localization methods.
In total we created a dataset of 1625 data, which is relatively small compared to most of deep learning
implementations. From 1625 sets of data in the dataset, 1198 sets were randomly selected for the
training process, while the remaining 427 sets were used to test the performance. Reducing the amount
of training data is a very important research issue in the deep learning community. Our developed
localization methods were tested in terms of localization accuracy. The Faster R-CNN localization
method was also tested in terms of landmark detection accuracy.

3.1. Geotagged Image Dataset

Similar to other deep learning systems, the Faster R-CNN, FFNN and CNN employed in our
localization methods require data for both training and test. The dataset was constructed from
1625 images in the form of JPEG color images at the size of 320 × 240 pixels. Each image was tagged
with the corresponding geolocation data, including location coordinates, in the form of latitude
and longitude angles, and compass orientation. Geotagged images were labeled with bounding
boxes of landmarks in each image. In summary, one set of data consists of an image, latitude angle,
longitude angle, magnetic compass orientation, bounding boxes of landmarks in the image and labels
of landmarks for bounding boxes.

The training set, which includes randomly-selected 1198 sets of data, was employed for training
all components of both Faster R-CNN and CNN localization methods. Faster R-CNN for landmark
detection used whole images and labeled bounding boxes of landmarks for training. FFNN for
localization in the Faster R-CNN localization method used labeled bounding boxes and corresponding
geolocation data for training. CNN for localization used whole images and corresponding geolocation
data for training.

Experimental results of proposed localization methods were generated with the data in test set as
the input of both localization methods. The landmark detection tested the Faster R-CNN performance
with all images in the test set as inputs, and compared the results with corresponding bounding boxes
of test images. The proposed localization methods were tested using all images in the test set as
inputs. The results from both localization methods were evaluated by comparing with corresponding
geolocation data of each test image.

3.1.1. Data Gathering

Geotagged images in the dataset were taken by a wheelchair robot equipped with camera, GPS
receiver and compass sensor (Figure 5). The wheelchair robot is 55 cm in width, 120 cm in length and
140 cm in height. Sensors for data gathering were attached above the seat. We used a Logitech C920
HD (Logitech, Lausanne, Switzerland) as the robot camera, BU-353S4 (GlobalSat, Taipei, Taiwan ) as
the GPS receiver and an Octopus 3-axis digital compass sensor. All images in the dataset were taken
from the area near Koganei campus of Hosei University, Japan. Two areas were selected for robot
localization in outdoor environments, as shown in Figure 6. The length and width of area 1 is 70 and
30 m, respectively. Area 2 is 75 m in length and 30 m wide. The two areas for experiments were in a
distance of 250 m from each other. There are different types of landmarks available in each area, which
distinguished one experimental area from the another.

During data gathering, the robot was pushed by a human, and images were taken manually. Each
time an image was taken, the corresponding geolocation data was tagged to the image automatically. The
tagged geolocation data includes location coordinates and compass orientation. Location coordinates
were received from the GPS receiver in the form of a GGA message. Latitude and longitude information
inside the GGA message was extracted and tagged to the image. Compass orientation was received
from the compass sensor, converted to magnetic compass orientation, before being tagged to the
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3.1.2. Image Labeling

All gathered images in the dataset were hand-labeled with bounding boxes of landmarks in images.
Nine types of landmarks were utilized for robot localization: ‘FamilyMart’, ‘CocaCola’, ‘BicycleLane’,
‘NoTruck’, ‘Crossing’, ‘Lawson’, ‘TimesParking’, ‘LawsonParking’, and ‘RoadSign 1’. Figure 7 shows
pictures of these nine landmarks in the area of experiments. Each bounding box is in the form of a
vector with four member elements, which contains horizontal and vertical position coordinates of
the top-left corner, width, and height of the bounding box in the image. Unit of position coordinates,
width, and height of the bounding box is determined by the number of pixels. Horizontal and vertical
position coordinates are referenced from top-left corner of the image. For example, a bounding box
that has a vector of {10, 20, 56, 72} has its top-left corner at the pixel number 10 horizontally and 20
vertically, and the width and height of the box are 56 and 72 pixels, respectively.
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3.2. Detection Experiments

The goal of the landmark detection experiments was to evaluate the performance of the Faster
R-CNN, since the localization part is strongly related with the landmark detection. All 427 images in
the test set were processed through the Faster R-CNN, and embedded with bounding boxes and labels
of landmarks detected by Faster R-CNN. Evaluation of detection results includes the qualitative and
quantitative tests.

The qualitative evaluation was done by analyzing the detection results through human eyes.
Some of detection results from the Faster R-CNN on images in the test set are shown in Figure 8.
Most of generated bounding boxes are placed well on detected landmarks with proper positions and
sizes. Labels attached to the boxes correspond to the classes of landmarks shown in Figure 7. However,
some landmarks such as ‘CocaCola’ in Figure 8c has its bounding box placed in the area of the actual
landmark, but the box size did not match with the landmark size.Machines 2019, 7, 10 of 14 
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Mean Average Precision (mAP) was used for the quantitative evaluation in landmark detection
experiments. mAP is considered to be the actual metric to measure the accuracy of object detectors.
The mAP is the mean value of average precisions (AP) from all object classes. In this paper, we refer to
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this as landmark classes. AP is the average of maximum precisions at different recall values, in which
both precision and recall can be calculated by the following equations:

P =
TP

TP + FP
, (1)

R =
TP

TP + FN
, (2)

where P is the precision, R is the recall, TP is the amount of the correct bounding boxes comparing
from detection and reference boxes in the dataset, FP is the amount of missed or misplaced bounding
boxes that appeared in detection results, and FN is the amount of missed bounding boxes that did
not appear in detection results, but existed in the reference dataset. The correct bounding boxes were
measured from the ratio of intersection over union (IoU), which is the ratio between the intersection
area and union area of bounding boxes, comparing detection results with reference data. The higher
IoU ratio means less detection error allowance, which can also reduce the outcome of AP values. In
this paper, the IoU of 0.5 and 0.7 were employed for measuring detection accuracy, similar to [17]
which used an IoU of 0.7. AP values of all landmark classes and the mean values (mAP) of 0.5 and 0.7
IoU ratio values are displayed in Table 1.

Table 1. Average precision values of detection results from Faster R-CNN, with 0.5 and 0.7 intersection
over union (IoU).

Class AP0.5 AP0.7

1 (‘FamilyMart’) 0.9024 0.8786
2 (‘CocaCola’) 0.8281 0.5823

3 (‘BicycleLane’) 0.8040 0.5466
4 (‘NoTruck’) 0.8573 0.8573
5 (‘Crossing’) 0.8500 0.8500
6 (‘Lawson’) 0.7682 0.7206

7 (‘TimesParking’) 0.6156 0.4966
8 (‘LawsonParking’) 0.8360 0.7815

9 (‘RoadSign 1’) 0.9904 0.9235

Mean 0.8280 0.7375

From Table 1, the mAP values are 0.8280 and 0.7375 for 0.5 and 0.7 IoU, respectively. This
implies that the landmark detection accuracies of Faster R-CNN are 82.80% for 0.5 IoU and 73.75%
for 0.7 IoU. Though mAP values were higher than 80% when IoU is 0.5, mAP decreased to around
70% as IoU increased to 0.7. This means landmarks could be detected but may not be precise or have
high accuracy. Comparing to well-configured examples presented in [19–21], the accuracy of our
Faster R-CNN was moderately lower. This reduction in detection accuracy is the cause of a lower
localization accuracy, as landmark detection results are required to generate localization results in the
Faster R-CNN localization method.

3.3. Localization Experiments

The localization methods presented in this paper were implemented and evaluated in several
localization experiments. All images in the test set were processed in the Faster R-CNN localization and
CNN localization methods to generate localization results. In addition to two proposed localization
methods, we added a CNN localization method based on the well-known CNN for classification called
‘AlexNet’ [25]. We replaced the last layers of AlexNet with regression layers, similar to our second
localization method. Training of the AlexNet was the same as our CNN in the second localization
method. We employed AlexNet for localization as the reference for our second localization method,
since there was no evaluation metric for testing our CNN design. Results from localization methods,
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including location coordinates in latitude and longitude, and compass orientations were then passed
on to the evaluation.

Evaluation of localization results was done by calculating absolute errors and the distance between
two points, the generated results and the reference geolocation data in the test dataset. Three absolute
errors were considered in the experiments: mean, minimum and maximum absolute errors. The mean
absolute error is calculated from the following equation:

MAE =
1
n
×

n∑
i=1

|ai − bi|, (3)

where MAE is the mean absolute error, a is the result from localization, b is the reference value in
the test dataset, and n is the amount of data in the test set, which was 427 in the experiments. The
minimum and maximum absolute errors are the smallest and largest values in absolute errors.

The distances between two points were calculated from the location coordinates of the generated
and reference data. We used the haversine formula to calculate distances from latitude and longitude of
two points. The haversine formula is widely used in computer programming to determine the distance
between two points on a great sphere, which commonly referred to as the Earth. The implemented
haversine formula is as follows:

D = 2× r× arcsin

√sin2
( y2 − y1

2

)
+ cos(y1) × cos(y2) × sin2

(x2 − x1

2

), (4)

where D is the distance between two points in kilometers, r is the earth radius, which were applied as
6378.1 km [26], y1 is latitude of localization results in radius, y2 is the reference latitude in radius, x1 is
longitude of localization results in radius, and x2 is the reference longitude in radius.

In addition to absolute errors and distance errors, we also calculated the standard errors from
localization results and distance errors. The standard errors were calculated to measure deviations of
all results, in which the equation for standard errors can be described mathematically as;

SE =
σ
√

n
, (5)

where SE is the standard error, σ is the standard deviation of the result, and n is the amount of data,
which was 427 for the test set.

Table 2 shows each localization error and the distances between the real and generated robot
location. The mean, minimum, maximum and standard errors are calculated from absolute errors.
Localization errors are the distances in meters calculated from location coordinates. It can be seen from
Table 2 that Faster R-CNN localization method outperforms both CNNs in terms of the location and
distance errors. Mean absolute errors of latitude and longitude from the Faster R-CNN method are
slightly lower than CNN methods, while minimum errors are also slightly lower in the case of Faster
R-CNN. There are some differences in maximum errors of latitude and longitude for Faster R-CNN,
CNN and the AlexNet. The AlexNet has lower errors than CNN localization, while the Faster R-CNN
yields the least errors. These small errors in latitude and longitude cause significant differences in
distance errors. The average distance error of the Faster R-CNN is 28 m which is less than half of the
distance error of the CNN method (70 m). The reference AlexNet has an average distance error around
50 m. In the case of minimum errors, the distance error from Faster R-CNN is less than 1 m, while both
CNNs for localization have distance errors around 3 m. On the maximum errors, the Faster R-CNN
method has a distance error around 177 m, which is lower than CNN localization methods that have a
distance error of 238 m. The reference AlexNet, however, gave the distance error of 322 m which is the
highest among maximum distance errors.
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Table 2. Localization errors of proposed methods.

Errors Faster R-CNN CNN CNN (AlexNet)

Mean Latitude 2.4367 × 10−4 5.2166 × 10−4 3.4441 × 10−4

Errors Longitude 4.0868 × 10−5 2.7269 × 10−4 2.2187 × 10−4

Compass 54.9425 32.0381 17.0498
Distance (m) 28.4739 70.5796 49.8166

Min Latitude 1.0000 × 10−6 2.4417 × 10−6 2.3391 × 10−6

Errors Longitude 1.8654 × 10−7 3.4527 × 10−7 2.4863 × 10−7

Compass 0.3826 0.1986 0.0374
Distance (m) 0.5396 3.3217 3.3838

Max Latitude 0.0011 0.0021 0.0026
Errors Longitude 1.6409 × 10−4 0.0010 0.0013

Compass 179.0098 152.3111 173.2717
Distance (m) 176.9496 238.2083 321.9153

Standard Latitude 4.0797 × 10−5 4.0797 × 10−5 4.0797 × 10−5

Errors Longitude 2.1783 × 10−6 2.1783 × 10−6 2.1783 × 10−6

Compass 6.0188 4.7458 4.9259
Distance (m) 1.4299 2.0971 1.5464

However, performances of Faster R-CNN localization suffer a decline in compass accuracy.
On average, compass orientations from the Faster R-CNN method can have the errors around 55◦.
Comparing to average errors of compass orientations from both CNNs, error from the Faster R-CNN is
higher, in which the mean of orientations errors from CNN is only around 32◦ for our CNN and only
17◦ for AlexNet. In the best case with minimum errors, CNN methods also gave good results with
the minimum compass error of around 0.2◦ from our CNN and 0.03◦ error from AlexNet, which are
smaller than the minimum compass error from the Faster R-CNN method of 0.3◦. For the worst case,
all localization methods have the maximum compass errors near 180◦, while our CNN gives the error
of 152◦ which is the smallest among maximum compass errors.

The standard errors indicated that latitude and longitude coordinates resulted from all localization
methods share the similar deviation, while the Faster R-CNN method has higher compass differences,
and CNN methods have higher distance error differences in the results.

4. Conclusions

This paper proposed and tested two outdoor localization methods based on CNN and Faster
R-CNN for mobile robots. The performance was evaluated in outdoor environment localization tasks.
In addition, the AlexNet was implemented in order to compare the performance. Faster R-CNN
localization method was also tested for landmark detection. Results from landmark detection yielded
good performance, with more than 70% detection accuracy. Good detection performance of the Faster
R-CNN led to good localization performance of the Faster R-CNN based method, with approximately
less than 1 m distance error and less than 1◦ compass error in the best case. The CNN localization
method also had good performance in the best case, with approximately 3 m location error and less
than 1◦ compass error. The results from the average and worst cases pointed that the Faster R-CNN
performs best among the tested approaches for localization tasks, while the performance declines for
compass orientations.

However, there is still space to improve the localization results. The average location errors of
proposed methods were relatively high, compared to the GPS that has approximately 4.9 m error [7].
The orientation errors of our proposed methods were relatively high resulting in a poor performance
compared with the reference AlexNet. Some possible causes of high orientation errors are as follows:

• The development and experiments of the proposed localization methods were done with a small
amount of data compared with other works that use more than half a million data.
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• There were less environmental variations during data gathering, despite attempts on gathering
the data in multiple environmental conditions. Small environmental variations can be the cause
of poor performance.

• The performance of the Faster R-CNN localization method relied on landmark detection. If we
improve the landmark detection, it will improve the performance of Faster R-CNN localization.

Despite the small amount of data, the proposed Faster R-CNN and CNN localization methods
performed well for robot localization tasks. In the future we will focus on improving the performance
of localization methods and implement them on the real robot. We will focus on continuous learning
or transfer learning, in order to improve the performance without increasing the amount of data.
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10. Santos, E.R.S.; Azpurua, H.; Rezeck, P.A.F.; Corrěa, M.F.S.; Freitas, G.M.; Macharet, D.G. Global localization of
mobile robots using local position estimation in a geo tagged wireless node sensor network. In Proceedings
of the Latin American Robotic Symposium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop
on Robotics in Education (WRE), Joao Pessoa, Brazil, 6–10 November 2018.

11. Nilesh, S.; Peshala, G.J.; Takashi, K. 3D pose tracking for GPS-denied terrain rovers by fast state variable
extension and enhanced motion model. In Proceedings of the 2017 17th International Conference on Control,
Automation and Systems (ICCAS), Jeju, South Korea, 18–21 October 2017.

http://dx.doi.org/10.1186/s40648-018-0104-z
https://www.gps.gov/systems/gps/performance/accuracy/


Machines 2019, 7, 25 14 of 14

12. Zhou, B.; Tang, Z.; Qian, K.; Fang, F.; Ma, X. A LiDAR Odometry for Outdoor Mobile Robots Using NDT
Based Scan Matching in GPS-denied environments. In Proceedings of the IEEE 7th Annual International
Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Honolulu, HI,
USA, 31 July–4 August 2017.

13. Kottath, R.; Yalamandala, D.P.; Poddar, S.; Bhondekar, A.P.; Karar, V. Inertia constrained visual odometry for
navigational applications. In Proceedings of the 2017 4th International Conference on Image Information
Processing (ICIIP), Shimla, India, 21–23 December 2017.

14. Saska, M.; Baca, T.; Thomas, J.; Chudoba, J.; Preucil, L.; Krajnik, T.; Faigl, J.; Loianno, G.; Kumar, V. System
for deployment of groups of unmanned micro aerial vehicles in GPS-denied environments using onboard
visual relative localization. Auton. Robots 2017, 41, 919–944. [CrossRef]

15. Hannes, S.; Peter, Z.; Frank, H.; Eric, S. GPS-independent localization for off-road vehicles using
ultra-wideband (UWB). In Proceedings of the 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017.

16. Shuhui, J.; Yu, K.; Yun, F. Deep Geo-constrained Auto-encoder for Non-landmark GPS Estimation. IEEE
Trans. Big Data 2017, in press. [CrossRef]

17. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems (NIPS),
Montreal, QC, Canada, 7–12 December 2015.

18. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015.

19. Saleh, K.; Hossny, M.; Hossny, A.; Nahavandi, S. Cyclist detection in LIDAR scans using faster R-CNN
and synthetic depth images. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent
Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017.

20. Zhang, H.; Du, Y.; Ning, S.; Zhang, Y.; Yang, S.; Du, C. Pedestrian Detection Method Based on Faster R-CNN.
In Proceedings of the 2017 13th International Conference on Computational Intelligence and Security (CIS),
Hong Kong, China, 15–18 December 2017.

21. Wang, R.; You, Y.; Zhang, Y.; Zhou, W.; Liu, J. Ship detection in foggy remote sensing image via scene
classification R-CNN. In Proceedings of the 6th IEEE International Conference on Network Infrastructure
and Digital Content (IC-NIDC), Guiyang, China, 22–24 August 2018.

22. Robert, G.; David, H.J.J.; Heiko, H.S.; Jonas, R.; Matthias, B.; Felix, A.W. Comparing deep neural networks
against humans: Object recognition when the signal gets weaker. arXiv, 2017; arXiv:1706.06969v2.

23. Epstein, R.A.; Vass, L.K. Neural systems for landmark-based wayfinding in humans. Philos. Trans. R. Soc. B
Biol. Sci. 2013, 369, 1–7. [CrossRef] [PubMed]

24. Bayar, B.; Stamm, M.C. Design Principles of Convolutional Neural Networks for Multimedia Forensics.
Electron. Imaging Med. Watermark. Secur. Forensics 2017, 10, 77–86. [CrossRef]

25. Alex, K.; Ilya, S.; Geoffrey, E.H. ImageNet classification with deep convolutional neural networks.
In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS’12),
Lake Tahoe, NV, USA, 3–6 December 2012. [CrossRef]

26. Mamajek, E.E.; Prsa, A.; Torres, G.; Harmanec, P.; Asplund, M.; Bennett, P.; Capitaine, N.;
Christensen-Dalsgaard, J.; Depagne, É.; Folkner, M.W.; et al. Resolution B3 on Recommended Nominal
Conversion Constants for Selected Solar and Planetary Properties. In Proceedings of the 29th IAU General
Assembly (IAU 2015), Honolulu, HI, USA, 3–14 August 2015.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10514-016-9567-z
http://dx.doi.org/10.1109/TBDATA.2017.2773096
http://dx.doi.org/10.1098/rstb.2012.0533
http://www.ncbi.nlm.nih.gov/pubmed/24366141
http://dx.doi.org/10.2352/ISSN.2470-1173.2017.7.MWSF-328
http://dx.doi.org/10.1145/3065386
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Localization Methods 
	Faster R-CNN Localization 
	Faster R-CNN for Landmark Detection 
	Feedforward Neural Network for Localization 

	CNN Localization 

	Experimental Results 
	Geotagged Image Dataset 
	Data Gathering 
	Image Labeling 

	Detection Experiments 
	Localization Experiments 

	Conclusions 
	References

