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Abstract: In this research work, a new method for solving forward and inverse dynamic problems
of mechanical systems having an underactuated structure and subjected to holonomic and/or
nonholonomic constraints is developed. The method devised in this paper is based on the
combination of the Udwadia-Kalaba Equations with the Underactuation Equivalence Principle.
First, an analytical method based on the Udwadia-Kalaba Equations is employed in the paper for
handling dynamic and control problems of nonlinear nonholonomic mechanical systems in the
same computational framework. Subsequently, the Underactuation Equivalence Principle is used
for extending the capabilities of the Udwadia-Kalaba Equations from fully actuated mechanical
systems to underactuated mechanical systems. The Underactuation Equivalence Principle represents
an efficient method recently developed in the field of classical mechanics. The Underactuation
Equivalence Principle is used in this paper for mathematically formalizing the underactuation
property of a mechanical system considering a particular set of nonholonomic algebraic constraints
defined at the acceleration level. On the other hand, in this study, the Udwadia-Kalaba Equations
are analytically reformulated in a mathematical form suitable for treating inverse dynamic problems.
By doing so, the Udwadia-Kalaba Equations are employed in conjunction with the Underactuation
Equivalence Principle for developing a nonlinear control method based on an inverse dynamic
approach. As shown in detail in this investigation, the proposed method can be used for analytically
solving in an explicit manner the forward and inverse dynamic problems of several nonholonomic
mechanical systems. In particular, the tracking control of the unicycle-like mobile robot is considered
in this investigation as a benchmark example. Numerical experiments on the dynamic model of the
unicycle-like mobile robot confirm the effectiveness of the nonlinear dynamic and control approaches
developed in this work.

Keywords: nonholonomic mechanical systems; forward and inverse dynamics; Udwadia-Kalaba
Equations; Underactuation Equivalence Principle; unicycle mobile robot

1. Introduction

In this section, background information is provided first. Subsequently, the problem of interest
for this investigation is formulated and a brief literature survey is reported. Then, the scope and the
contributions of this paper are described and the organization of the manuscript is summarized.

1.1. Background

In industrial applications, the final design solution of a new product is almost always an
engineering approximation that is intrinsically prone to unpredictable uncertainties [1–7]. A viable
approach to the analysis of the approximation in a given design solution is based on the use of a
reasonably complex mathematical model of the mechanical system at hand [8–11]. A mathematical
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model covers almost all physical, economical, biological, industrial, and technical phenomena [12–18].
In particular, dynamic models can be used for the development of new control algorithms suitable
for solving several engineering problems [19–24]. This process is particularly effective in the field
of robotics for controlling mobile robots that represent the main object of the present research
work [25–30].

1.2. Formulation of the Problem of Interest for This Study

In the last thirty years, the use of mobile robots has gained great attention because of their
broad potential in practical applications oriented toward the solution of important engineering
problems [31–36]. For this purpose, several control approaches were developed for obtaining the
stabilization and the trajectory tracking control of mobile robots [37–43]. In particular, in the field
of robotics, the advantage of using wheeled mobile robots instead of legged mobile robots is widely
accepted. When compared with legged mobile robots, wheeled mobile robots have a simple mechanical
structure and, consequently, a mathematical model of this class of robots can be easily obtained. Legged
mobile robots, on the other hand, are more versatile machines which make use of mechanical limbs for
their movement and, therefore, can easily traverse several different terrains. The advantages in terms of
dexterity of legged mobile robots over wheeled mobile robots involve a more complex structural design,
a different paradigm for the construction of the robot, an increased power consumption, and require the
development of a more complex control system. However, in general, both wheeled and legged mobile
robots are subject to some degree of complexity in their mechanical behavior and, more importantly,
their motion must satisfy some geometric constraints in order to be suitable for widely exploring the
external environment [44–48]. One of the fundamental challenges associated with dynamic and control
problems of both wheeled and legged mobile robots arise from the mathematical representation of
their mechanical models which can be classified as underactuated nonholonomic dynamical systems.
Underactuated mechanical systems are dynamical systems in which the number of control actuators
is lower than the number of degrees of freedom. Moreover, nonholonomic dynamical systems are
mechanical systems in which the constraint equations are of holonomic as well as nonholonomic
nature, namely, they involve the complete set of generalized coordinates and their first and second
time derivatives [49–52]. Thus, underactuated nonholonomic nonlinear mechanical systems represent
a broad class of dynamical systems that are particularly challenging to analyze and control.

1.3. Literature Review

In the field of robotics, stabilization and tracking problems of mobile robots have grown in
importance in recent years, as testified by a large number of research projects devoted to the
investigation of these topics [53–55]. Furthermore, the nonlinear control problem focused on mobile
robots have recently attracted significant attention in the control community because of the wide
scope of applications of these mechanical systems [56–63]. In several engineering applications, mobile
robots are often treated as mechanical systems constrained by holonomic and/or nonholonomic
algebraic equations, which can be modeled employing nonlinear dynamics techniques such as the
multibody approach to the dynamics of mechanical systems. In particular, wheeled mobile robots,
which represent the mobile robots of interest for this investigation, must be modeled as nonholonomic
mechanical systems to capture the pure rolling conditions of the wheels. Thus, the nonlinear control
problem of this family of mechanical systems represents a challenging engineering issue [64–67]. In the
literature, the nonlinear control methods employed for this class of mechanical systems are based
on non-standard approaches that cannot be easily extended to both holonomic and nonholonomic
mechanical systems [68–70]. For example, neural networks have been effectively used in recent
years to approximate the dynamic behavior of mobile robots and for developing advanced nonlinear
control strategies [71,72]. The control algorithms obtained by integrating kinematic controllers and
neural network computed-torque controllers can be used for the solution of the three basic navigation
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problems associated with nonholonomic mobile robots, namely the tracking of a reference trajectory,
the following of a prescribed path, and the stabilization around the desired configuration [73,74].

In this investigation, an effective control approach based on an inverse dynamic paradigm suitable
for handling underactuated mechanical systems constrained by holonomic and/or nonholonomic
algebraic equations is developed and its use is demonstrated by means of numerical experiments.
The mobile robot that represents the object of this work is a wheeled robot having a unicycle-like
underactuated structure. As described in detail in the paper, a unicycle-like mobile robot is a wheeled
robot having three degrees of freedom that is endowed with a single steering wheel. This is a common
design and is of great interest to engineers. The name unicycle for this type of mobile robot is commonly
used also to remark the difference between this mobile robot and the bicycle mobile robot [75,76].
As mentioned before, the unicycle mobile robot has three degrees of freedom, is controlled by two
control actuators, and is subjected to only one nonholonomic constraint equation associated with the
pure rolling condition of the single wheel. The bicycle mobile robot, on the other hand, is endowed
with four degrees of freedom, is controlled by using two control actuators, and is subjected to two
nonholonomic constraint equations associated with the pure rolling conditions of the two wheels.
Typically, the dynamic behavior of unicycle mobile robots is studied for testing nonlinear control
strategies which can be directly extended to bicycle mobile robots. The performance of these control
algorithms applied to bicycle mobile robots is particularly important because these mobile robots are
kinematically equivalent to car-like mobile robots which are mechanically balanced. In the literature,
the simple kinematic model this mobile robot is often used for investigating the performance of
advanced control algorithms aimed at solving the stabilization, tracking, flocking, and rendezvous
problems [77–81].

1.4. Scope and Contributions of This Research Work

This research work is focused on the dynamics and control of a unicycle-like mobile robot.
The forward and inverse dynamic problems associated with the wheeled mobile robot considered
in the paper represent archetypical examples pertaining to the general dynamic and control analysis
of underactuated nonholonomic mechanical systems. To address these problems, the computational
procedure developed in this investigation is based on an effective combination of the Udwadia-Kalaba
Equations with the Underactuation Equivalence Principle. The Udwadia-Kalaba Equations allows
for obtaining a clear and concise analytical formulation of dynamic problems which involve
holonomic and/or nonholonomic algebraic constraints. Furthermore, as shown in this investigation,
a general inverse dynamic method suitable for controlling nonlinear mechanical systems based
on the Udwadia-Kalaba Equations can be readily devised and implemented. On the other hand,
the Underactuation Equivalence Principle is a method recently developed in the field of analytical
dynamics which allows for extending the application of the Udwadia-Kalaba Equations from fully
actuated mechanical systems to underactuated mechanical systems. Therefore, as illustrated in
this paper by means of detailed analytical derivations and extensive numerical computations,
the Udwadia-Kalaba Equations can be effectively employed for solving forward and inverse dynamic
problems associated with wheeled mobile robots. The Underactuation Equivalence Principle, on the
other hand, is suitable for modeling underactuated nonholonomic mechanical systems and can be
used for the synthesis of effective nonlinear control strategies. A unicycle-like mobile robot having one
steerable drive wheel that is assumed to be always perpendicular to the ground, which represents one
of the most common types of mobile robots employed in engineering applications, is used in this work
for demonstrating the effectiveness of the inverse dynamic method devised in this investigation [82–85].

1.5. Organization of the Manuscript

This manuscript is organized as follows. In Section 2, the mathematical background related to
Udwadia-Kalaba Equations and to the Underactuation Equivalence Principle is described in detail.
In Section 3, the wheeled mobile robot having a unicycle-like underactuated structure used in the
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paper as a benchmark problem is illustrated and the derivation of a nonlinear tracking controller
associated with a planar path described in a parametric form specifically designed for this mobile robot
is analyzed. In Section 4, a discussion on the numerical results found by using the approach developed
in the paper is reported and the directions for future research works are formulated. In Section 5,
the summary of the paper and the conclusions obtained in this investigation are provided.

2. Background Material and Analytical Methods

In this section, the background material and the analytical methods of interest for this investigation
are provided. First, the general form of the fundamental problem of constrained motion is recalled
and, subsequently, these equations are rewritten in an analytical form suitable for solving inverse
dynamics problems. Thereafter, the Udwadia-Kalaba Equations are discussed, and the Underactuation
Equivalence Principle is presented. Moreover, the combined use of the Udwadia-Kalaba Equations
with the Underactuation Equivalence Principle necessary for the development of nonlinear control
laws suitable for controlling underactuated nonholonomic mechanical systems is analyzed.

2.1. Fundamental Problem of Constrained Dynamics

In this subsection, the general form of the fundamental problem of constrained motion is briefly
recalled. In the central problem of constrained dynamics, the main goal is to predict the dynamical
evolution of a mechanical system subjected to a given set of algebraic constraint equations [86–88].
For this purpose, the system initial conditions, namely the initial generalized coordinates and
velocities, are specified data for the problem at hand. The external active forces not related to the
kinematic constraints that are applied to the mechanical system are also assumed as known functions
of time [89,90]. On the other hand, while the algebraic constraint equations represent specified
limitations of the motion of the mechanical system and appear explicitly in the fundamental problem
of constrained dynamics, the generalized constraint forces corresponding to the algebraic equations
are additional unknowns of the dynamic problem to be solved [91,92].

An effective method for computing a closed-form analytical solution of the fundamental problem
of constrained motion is based on the approach originally proposed by Udwadia and Kalaba [93].
The analytical method named after Udwadia and Kalaba is described in detail in a series of papers and
in a book developed by the same authors [94,95]. For the purposes of the present study, the formulation
and the solution of the general form of the fundamental problem of constrained motion developed
by Udwadia and Kalaba can be summarized in the following steps. First, the equations of motion
of a nonlinear mechanical system subjected to a general set of holonomic and/or nonholonomic
constraints are analytically formulated by using the classical principles of analytical mechanics.
Subsequently, the index-three form of the equations of motion is transformed into its index-one
counterpart employing a standard index reduction technique. Finally, the general formulation
of the Udwadia-Kalaba Equations is applied to the index-one form of the differential algebraic
dynamic equations to obtain the system generalized acceleration vector and the generalized force
vector associated with the algebraic constraints. In particular, an equivalent alternative form of the
Udwadia-Kalaba Equations that is more suitable for describing the dynamic behavior of mechanical
systems subjected to nonlinear algebraic constraints, such as multibody mechanical systems and
wheeled mobile robots, is used in this paper.

The first step for the formulation and the solution of the fundamental problem of constrained
dynamics is the analytical derivation of the equations of motion of a general mechanical system
constrained by holonomic and/or nonholonomic constraints. To this end, the classical principles
of analytical mechanics, such as the D’Alembert-Lagrange principle of virtual work formulated in
conjunction with the Lagrange multiplier technique or the Lagrange equations, can be effectively used.
To illustrate this fact, consider a nonlinear mechanical system described by a set of nb generalized
coordinates that are used to represent the configuration space of the dynamical system [96]. Assume
that the nonlinear mechanical system is initially unconstrained, namely the number of generalized
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coordinates nb of the dynamical system is equal to the number of the system degrees of freedom m f .
In this case, it is well known that the equations of motion of a general unconstrained mechanical
system can be directly obtained by using the Lagrange equations of the second kind. Thus, one can
write:

d
dt

(
∂L
∂q̇

)T
−
(

∂L
∂q

)T
= Qe,nc (1)

where t is time, q ≡ q(t) ∈ Rnb denotes the generalized coordinate vector of the unconstrained
mechanical system having dimension nb = m f , L ≡ L(q, q̇, t) identifies the Lagrangian function
associated with the dynamical structure of the mechanical system, and Qe,nc ≡ Qe,nc(q, q̇, t) ∈ Rnb

represents the generalized force vector associated with the nonconservative external forces acting on
the mechanical system. The generalized force vector associated with the nonconservative external
forces Qe,nc can be found by calculating the virtual work of the nonconservative external forces
as follows:

δWe,nc = QT
e,ncδq (2)

where δWe,nc ≡ δWe,nc(q, q̇, δq) denotes the virtual work of the nonconservative external forces applied
on the mechanical system. For a given instant of time t, the generalized coordinate vector q and the
generalized velocity vector q̇ serve to determine uniquely the positions and the velocities of all the
material points and rigid bodies that form the mechanical system [97]. Moreover, one can readily
express the Lagrangian function of a mechanical systems as follows:

L = T −U (3)

where T ≡ T(q, q̇, t) identifies the kinetic energy associated with the inertial effects of the mechanical
system and U ≡ U(q, t) denotes the potential energy relative to the conservative external forces acting
on the dynamical system. For a mechanical system composed of rigid bodies, one can write the total
kinetic energy of the nonlinear dynamical system in the following general form:

T =
1
2

q̇TMq̇ (4)

where M ≡ M(q, t) ∈ Rnb×nb is a positive-definite symmetric matrix that represents the system mass
matrix. Considering the definition of the kinetic energy T given by Equation (4) as well as the general
structure of the potential energy U, the application of the Lagrange equations of the second kind (1)
leads to:

Mq̈ =

(
∂T
∂q

)T
− Ṁq̇−

(
∂U
∂q

)T
+ Qe,nc (5)

or equivalently:
Mq̈ = Qv + Qe,c + Qe,nc (6)

where Qv ≡ Qv(q, q̇, t) ∈ Rnb is the inertia quadratic velocity vector which absorbs the generalized
inertia effects associated with the squares of the generalized velocities and Qe,c ≡ Qe,c(q, t) ∈ Rnb

is the generalized force vector relative to the conservative external forces [98]. The inertia quadratic
velocity vector Qv and the generalized force vector associated with the conservative external forces
Qe,c are respectively given by:

Qv =

(
∂T
∂q

)T
− Ṁq̇, Qe,c = −

(
∂U
∂q

)T
(7)

It is, therefore, apparent that the definition of the Lagrangian function L of a nonlinear mechanical
system and the specification of the virtual work associated with the nonconservative external forces
δWe,nc allow for calculating the equations of motion of a nonlinear mechanical system by using the
Lagrange equations of the second kind given by Equation (1). For simplicity, one can rewrite the
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general form of the equations of motion of an unconstrained mechanical system given by Equation (6)
as follows:

Mq̈ = Qb (8)

where Qb ≡ Qb(q, q̇, t) ∈ Rnb represents the total generalized force vector of the body forces relative
to the mechanical system given by:

Qb = Qv + Qe,c + Qe,nc = Qv + Qe (9)

where:
Qe = Qe,c + Qe,nc (10)

where Qe ≡ Qe(q, q̇, t) ∈ Rnb identifies the total generalized force vector associated with the external
active forces. The equations of motion of a mechanical system written in the form given by Equation (8)
constitute a nonlinear set of Ordinary Differential Equations (ODEs) in which the effect of the kinematic
constraints is intrinsically embedded. This analytical description of the motion of a mechanical
system is referred to as Minimal Coordinate Formulation (MCF) since by using this approach the
general configuration of the mechanical system is represented employing a minimal set of generalized
coordinates q formed by a vector of nb = m f variables [99]. In particular, the analytical approach
based on the MCF leads to a set of equations of motion given by Equation (8) in which the generalized
force vector associated with the algebraic constraints does not appear explicitly in accordance also with
the basic assumption of ideal kinematic constraints or workless constraint forces. On the other hand,
in principle, the same mechanical system can be equally described by using a Redundant Coordinate
Formulation (RCF) in which an analytical approach based on a redundant set of generalized coordinates
q is employed in order to univocally describe the geometric configuration of the mechanical system
under consideration. In this case, the dimension of the generalized coordinate vector nb is larger than
the number of the system degrees of freedom m f . In the RCF, the equations of motion can be readily
obtained considering the Lagrange equations of the first kind as follows:

d
dt

(
∂L
∂q̇

)T
−
(

∂L
∂q

)T
= Qe,nc + Qc (11)

where q identifies the redundant set of generalized coordinates having dimension nb > m f ,
L ≡ L(q, q̇, t) denotes the Lagrangian function associated with the redundant set of generalized
coordinates, Qe,nc ≡ Qe,nc(q, q̇, t) ∈ Rnb is the generalized force vector of the nonconservative external
forces, and Qc ≡ Qc(q, q̇, t) ∈ Rnb represents the total generalized force vector associated with the
algebraic constraints applied to the mechanical system. Following the same mathematical manipulation
previously used for the Lagrange equations of the second kind, the equations of motion of a general
mechanical system expressed employing the analytical approach based on the RCF can be written as:

Mq̈ = Qb + Qc (12)

where M ≡ M(q, t) ∈ Rnb×nb denotes the system mass matrix associated with the redundant
generalized coordinate vector and Qb ≡ Qb(q, q̇, t) ∈ Rnb is the total generalized force vector of
the body forces described by using the redundant coordinate approach. In the fundamental problem
of constrained motion, the generalized force vector associated with the kinematic constraints Qc

represents a set of additional unknowns of the problem. However, one can effectively use the Lagrange
multiplier technique to express the analytical form of the generalized constraint force vector in terms
of the vector of the Lagrange multipliers [100]. To this end, the algebraic equations that model the
kinematic constraints can be effectively used.
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2.2. Udwadia-Kalaba Equations in Forward and Inverse Dynamic Problems

In this subsection, the use of the Udwadia-Kalaba Equations for solving dynamic and control
problems of nonlinear mechanical systems constrained by a general set of algebraic equations is
discussed [101–103]. To this end, consider the following general form of the differential algebraic
equations of motion of a mechanical system represented by using a redundant set of nb generalized
coordinates whose motion is restricted by a set of nc algebraic constraints:

Mq̈ = Qb −ATλ

Aq̈ = b
(13)

where t is the time variable, q ≡ q(t) ∈ Rnb is the generalized coordinate vector that represents that
configuration of the mechanical system, q̇ ≡ q̇(t) ∈ Rnb represents the system generalized velocity
vector, q̈ ≡ q̈(t) ∈ Rnb identifies the system generalized acceleration vector, M ≡ M(q, t) ∈ Rnb×nb

denotes the system mass matrix, Qb ≡ Qb(q, q̇, t) ∈ Rnb identifies the total generalized force vector that
acts on the mechanical system which includes the generalized external forces and the quadratic velocity
inertial forces, λ ≡ λ(t) ∈ Rnc represents the total vector of Lagrange multipliers associated with
the constraint equations, A ≡ A(q, t) ∈ Rnc×nb is the total Jacobian matrix relative to the constraint
equations, and b ≡ b(q, q̇, t) ∈ Rnc is the total constraint quadratic velocity vector. The index-three
differential algebraic form of the dynamic equations is a general mathematical representation of the
equations of motion of a nonlinear mechanical system that includes the effect of holonomic as well
as nonholonomic constraints. In fact, considering a set of n f holonomic constraints defined at the
position level, a set of ng nonholonomic constraints defined at the velocity level, and a set of nh
nonholonomic constraints defined at the acceleration level, one can write the following general form
of the algebraic equations: 

f = 0

g = 0

h = 0

(14)

where f ≡ f(q, t) ∈ Rn f is a nonlinear vector function associated with the holonomic constraint
equations defined at the position level, g ≡ g(q, q̇, t) ∈ Rng denotes a nonlinear vector function relative
to the nonholonomic constraint equations defined at the velocity level, and h ≡ h(q, q̇, q̈, t) ∈ Rnh

identifies a nonlinear vector function corresponding to the nonholonomic constraint equations defined
at the acceleration level. This general set of constraint equations is included in the general form of
the equations of motion by means of the total constraint Jacobian matrix denoted with A as well as
considering the total constraint quadratic velocity vector indicated with b, which can be respectively
obtained as follows:

A =

 A f
Ag

Ah

 , b =

 b f
bg

bh

 (15)

where the total number of algebraic constraints is given by nc = n f + ng + nh, whereas
A f ≡ A f (q, t) ∈ Rn f×nb , Ag ≡ Ag(q, t) ∈ Rng×nb , and Ah ≡ Ah(q, t) ∈ Rnh×nb respectively
represent the Jacobian matrices relative to the algebraic constraint equations f, g, and h, while b f ≡
b f (q, q̇, t) ∈ Rn f , bg ≡ bg(q, q̇, t) ∈ Rng , and bh ≡ bh(q, q̇, t) ∈ Rnh respectively represent the
quadratic velocity vectors associated with the algebraic constraint equations f, g, and h. These matrix
and vector quantities are respectively defined as follows:
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A f = fq

Ag = gq̇

Ah = hq̈

,



b f = −
(
fqq̇
)

qq̇− 2fqtq̇− ftt

bg = −gqq̇− gt

bh = −c

(16)

where, for simplicity, the following structure of nonholonomic constraint equations defined at the
acceleration level is assumed: 

fqq̈ +
(
fqq̇
)

qq̇ + 2fqtq̇ + ftt = 0

gq̇q̈ + gqq̇ + gt = 0

hq̈q̈ + c = 0

(17)

where the partial derivatives and the Jacobian matrices that appear in these equations are respectively
defined as: 

fq = ∂f
∂q ,

(
fqq̇
)

q =
∂(fqq̇)

∂q , fqt =
∂2f

∂q∂t , ftt =
∂2f
∂t2

gq̇ = ∂g
∂q̇ , gq = ∂g

∂q , gt =
∂g
∂t

hq̈ = ∂h
∂q̈

(18)

where the term c ≡ c(q, q̇, t) ∈ Rnh is assumed as a known nonlinear vector function. On the other
hand, the Udwadia-Kalaba Equations can be written in a general form suitable for handling dynamic
problems of nonlinear mechanical systems constrained by a general set of holonomic as well as
nonholonomic constraints [104]. For this purpose, one can write:

q̈ = ab + ac

λ = −Fe
(19)

where ab ≡ ab(q, q̇, t) ∈ Rnb is the generalized acceleration vector of the mechanical system released
from the constraint equations, ac ≡ ac(q, q̇, t) ∈ Rnb is the generalized acceleration vector of the
mechanical system induced by the constraint equations, F ≡ F(q, q̇, t) ∈ Rnc×nc represents the
constraint feedback matrix, and e ≡ e(q, q̇, t) ∈ Rnc is the error vector associated with the generalized
accelerations. The unconstrained acceleration vector ab can be explicitly computed by ignoring the
action of the generalized constraint forces as follows:

ab = M−1Qb (20)

Furthermore, the acceleration error vector e can be analytically obtained by substituting the
generalized acceleration vector corresponding to the unconstrained mechanical system ab into the set
of constraint equations written in the standard form defined at the acceleration level:

e = b−Aab (21)

The constraint feedback matrix F, on the other hand, can be obtained by computing the
Moore-Penrose pseudoinverse matrix of a special matrix associated with the constrained mechanical
system. To this end, one can write:

F = K+ (22)
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where the + symbol in the superscript indicates the Moore-Penrose pseudoinverse matrix and
K ≡ K(q, q̇, t) ∈ Rnc×nc is called the kinetic matrix of the constrained mechanical system. The kinetic
matrix K is defined as follows:

K = AM−1AT (23)

The kinetic matrix K of a mechanical system constrained by a general set of holonomic as well as
nonholonomic constraint equations completely defines the dynamic structure of a mechanical system
as a result of the application of the nonlinear algebraic equations which represent general restrictions of
the system motion. By using the Udwadia-Kalaba Equations, the generalized force vector Qc induced
by the algebraic constraints can be readily obtained as follows:

Qc = ATFe (24)

Finally, one can easily compute the generalized acceleration vector induced by the algebraic
constraints ac as follows:

ac = M−1Qc (25)

The complete set of equations which form the Udwadia-Kalaba Equations can be effectively used
for solving forward and inverse dynamic problems of nonholonomic mechanical systems modeled in
a seamless analytical framework.

2.3. Underactuation Equivalence Principle

In this subsection, the Underactuation Equivalence Principle is presented. For this purpose,
the key aspects of this complementary principle of mechanics can be described as follows. Firstly,
underactuated mechanical systems are dynamical systems in which the number of the control actions
nu is lower than the number of the system degrees of freedom nb. The general structure of the equations
of motion of an underactuated mechanical system can be written as follows:

Mq̈ = Qb + Buu (26)

where Bu ≡ Bu(q, t) ∈ Rnb×nu is an influence matrix associated with the input control actions that
defines the collocations and the combinations of the control inputs, whereas u ≡ u(t) ∈ Rnu is
vector of control inputs. If a mechanical system is underactuated, then the rank rBu of the input
influence matrix Bu is lower than the number of the system degrees of freedom nb [105]. According to
the Underactuation Equivalence Principle, one can replace the previous set of ordinary differential
equations of motion with the following set of differential algebraic equations which involves a zero
generalized constraint force vector: {

Mq̈ = Qb + Buu
Aq̈ = b

(27)

where it can be proved that the corresponding generalized constraint force vector Qc is identically equal
to the zero vector. If a mechanical system is underactuated, the rank of the input influence matrix Bu is
lower than the number of system degrees of freedom, namely rank(Bu) < nb. Therefore, it is apparent
that the inverse dynamic problem for an underactuated mechanical system is a challenging control
problem even if the generalized control force vector Qc can be simply written as a linear combination
of the entries of the vector of control actions u. However, for a general class of constrained
mechanical systems, the inverse dynamic problem for underactuated mechanical systems can still be
addressed using the Udwadia-Kalaba Equations considering the Underactuation Equivalence Principle.
This principle states that an unconstrained mechanical system having an underactuated structure of
the control actions is dynamically equivalent to a constrained mechanical system subjected to a set
of nonholonomic constraints defined at the acceleration level that generates a generalized constraint
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force vector identically equal to the zero vector. In general, two different mechanical systems are said
to be dynamically equivalent when they are characterized by the same generalized acceleration vector.
The validity of the Underactuation Equivalence Principle can be readily demonstrated by means of
simple mathematical derivations. For this purpose, assume for simplicity the following simplified
form of the input influence matrix Bu:

Bu =

[
I O
O O

]
(28)

One can partition the equations of motion of an unconstrained mechanical system having an
underactuated structure as follows:[

M1,1 M1,2

M1,2 M2,2

] [
q̈1

q̈2

]
=

[
Qb,1
Qb,2

]
+

[
I O
O O

] [
u1

0

]
(29)

where:

q =

[
q1

q2

]
, u =

[
u1

0

]
, M =

[
M1,1 M1,2

M1,2 M2,2

]
, Qb =

[
Qb,1
Qb,2

]
(30)

where u1 ≡ u1(t) represents the effective vector of control actions, q1 ≡ q1(t) is the set of
generalized coordinates directly influenced by the control actions, and q2 ≡ q2(t) denotes the set
of generalized coordinates not directly influenced by the control actions, whereas M1,1 ≡ M1,1(q, t),
M1,2 ≡ M1,2(q, t), and M2,2 ≡ M2,2(q, t) represent the block matrices that form the partition of the
mass matrix, while Qb,1 ≡ Qb,1(q, q̇, t) and Qb,2 ≡ Qb,2(q, q̇, t) identify the partitions of the total
generalized force vector. Employing the Underactuation Equivalence Principle, one can consider the
underactuated structure of the control actions applied to mechanical system as an equivalent set of
nonholonomic constraints defined at the acceleration level. Therefore, one can demonstrate that the
following set of equations of motion are associated with a mechanical system that is dynamically
equivalent to the system under study:{

Mq̈ = Qb + Buu + Qc

Aq̈ = b
(31)

where Qc is the generalized force vector associated with the set of nonholonomic constraints that
represent the underactuation property of the original mechanical system, while the constraint matrix
A and the constraint quadratic velocity vector b can be readily obtained by using the Underactuation
Equivalence Principle applied to the partitioned equations of motion (29). These matrix and vector
quantities are respectively given by:

A =
[

M1,2 M2,2

]
, b = Qb,2 (32)

It can be easily demonstrated that the nonholonomic constraint equations associated with the
Underactuation Equivalence Principle given by Equation (32) lead to an identically zero generalized
constraint force vector Qc. To this end, assume that the block matrix M1,1(q, t) is not a singular matrix
and consider the Woodbury matrix identity. By doing so, the inverse of the mass matrix M can be
obtained as follows:

M−1 =

[
M−1

1,1 + C1G−1C2 −C1G−1

−G−1C2 G−1

]
(33)

where the matrices C1 ≡ C1(q, t), C2 ≡ C2(q, t), and G ≡ G(q, t) are respectively defined as:

C1 = M−1
1,1 M1,2, C2 = M1,2M−1

1,1 , G = M2,2 −M1,2M−1
1,1 M1,2 (34)
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Considering the analytical formulation of the inverse of the mass matrix M, the central equations
of constrained motion can be readily applied to the problem at hand. For this purpose, the generalized
acceleration vector of the mechanical system obtained in absence of the algebraic constraints can be
computed as follows:

ab = M−1Qb

=

[ (
M−1

1,1 + C1G−1C2

)
Qb,1 − C1G−1Qb,2

−G−1C2Qb,1 + G−1Qb,2

]
(35)

Subsequently, using the analytical expression of the generalized acceleration vector associated
with the unconstrained mechanical system ab, one can compute the acceleration error vector e as:

e = b−Aab

=
(
−M1,2M−1

1,1 −M1,2C1G−1C2 + M2,2G−1C2

)
Qb,1

+
(
I + M1,2C1G−1 −M2,2G−1)Qb,2

= 0

(36)

This equation shows that the acceleration error vector e associated with the mechanical
system subjected to the nonholonomic constraints defined at the acceleration level arising from
the Underactuation Equivalence Principle is identically equal to zero and, therefore, the corresponding
generalized constraint force vector Qc is a zero vector as well. When this condition is met, there is
a particular set of generalized accelerations that cannot be altered by the implementation of any
vector of control inputs u. Thus, there are some trajectories in the configuration space of the
underactuated mechanical system that cannot be imposed to follow by using any external control
actions. This analytical result is consistent with the fact that the set of nonholonomic underactuation
constraints arises from a subset of the equations of motion of the unconstrained mechanical system that
leads to the unconstrained generalized acceleration vector ab. Consequently, the acceleration vector
arising from the underactuation constraints is consistent with the space of the unconstrained motion
of the mechanical system. Considering the Underactuation Equivalence Principle, the underactuation
property of a dynamical system can be converted into a set of acceleration nonholonomic constraints to
be able to analytically solve the inverse dynamic problem relative to underactuated mechanical
systems employing the Udwadia-Kalaba Equations. Thus, the analytical method based on the
Underactuation Equivalence Principle allows for extending the Udwadia-Kalaba nonlinear control
approach to underactuated mechanical systems. By using the Underactuation Equivalence Principle,
the Udwadia-Kalaba Equations can be applied to underactuated mechanical systems by formulating
a proper set of nonholonomic constraints at the acceleration level that consistently reflects the
underactuation property of the mechanical system. By doing so, the underactuation property of
a mechanical system is recognized as a limitation of the system motion arising from the collocation
of the control actuators and this property is correctly taken into account in the formulation of the
stabilization or tracking control problem to be solved. To achieve this goal, one can assume that the
constraint equations represent the desired behavior of the mechanical system on hand instead of
modeling some physical limitations on the motion of the system. Therefore, the control analyst needs
to formulate in a proper manner the constraint equations associated with the mechanical joints as well
as the constraint equations representing the desired behavior of the mechanical system under study.
Consequently, both the forward and inverse dynamic formulations are carried out in the same analytical
framework and can be analytically treated by using the Udwadia-Kalaba Equations combined with the
Underactuation Equivalence Principle discussed in this section. It is important to note that, by using
the approach described in this section, one can formulate some control requirements expressed also in
terms of nonholonomic constraint equations instead of using only holonomic algebraic constraints,
leading to a more flexible and general formulation of the goals for the control problem to be solved.
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3. Numerical Results

In this section, a set of numerical results and an evaluation of the performance of the method
proposed in the paper are provided to demonstrate the application of the Udwadia-Kalaba Equations
in conjunction with the Underactuation Equivalence Principle to nonlinear control problems.
For this purpose, the problem of the tracking control of a wheeled mobile robot is considered.
First, the description of the unicycle-like mobile robot employed as a benchmark problem is illustrated.
Subsequently, the derivation of a nonlinear tracking controller is analyzed, and the numerical results
found using the approach developed in the paper are presented. To achieve these goals, the equations of
motion of the wheeled robot are obtained in a compact analytic form. Finally, the numerical simulations
performed in the dynamic analysis are described considering different operative conditions.

3.1. Unicycle-Like Mobile Robot Model

In this subsection, the description of the unicycle-like mobile robot used as a demonstrative
example is presented. A schematic representation of the wheeled mobile robot considered herein is
shown in Figure 1.

x

y G

O

θ

2L

R

R

u1

u2

m
Izz

2H

Figure 1. Unicycle-like mobile robot.

The dynamical system considered in this subsection is endowed with nb = 3 degrees of freedom.
This mechanical system is subjected to a nonlinear force field which mathematically represents the
dissipation phenomena. Furthermore, the mobile robot must satisfy a nonholonomic constraint
equation which represents the pure rolling condition and, therefore, nc = 1. Thus, the unicycle-like
mobile robot is described by the following symbolic set of equations of motion:{

Mq̈ = Qσ + Qr

Arq̈ = br
(37)

where q is the configuration vector of the mobile robot, M represents the mass matrix of the mobile
robot, Qσ is the generalized force vector associated with the dissipative effects which influence
the dynamic behavior of the mobile robot, Qr identifies the generalized force vector arising from
the pure rolling nonholonomic constraint equation that can be explicitly obtained by applying the
Udwadia-Kalaba Equations, Ar is the pure rolling constraint Jacobian matrix, and br represents the
pure rolling constraint quadratic velocity vector. These vector and matrix quantities are respectively
given by:

M =

 m 0 0
0 m 0
0 0 Izz

 , Qσ =

 −σẋ
−σẏ

0

 , Qr =

 −m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

0

 (38)
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and

q =

 x
y
θ

 , Ar =
[
− sin(θ) cos(θ) 0

]
, br = cos(θ)θ̇ẋ + sin(θ)θ̇ẏ (39)

where m is the robot mass, Izz denotes the robot moment of inertia, σ is the viscous damping coefficient
that models the dissipation forces acting on the mobile robot, x represents the abscissa of the robot
center of mass, y represents the ordinate of the robot center of mass, and θ is the angular orientation of
the mobile robot. In particular, the generalized force vector arising from the pure rolling nonholonomic
constraint Qr was explicitly obtained by applying the general form of the Udwadia-Kalaba Equations
to the pure rolling constraint equations defined in the standard form described by the vector and matrix
quantities Ar and br. To this end, Equation (19) can be effectively used. To achieve this goal, the pure
rolling condition of the mobile robot is modeled as a nonholonomic constraint equation assuming that
the velocity vG of the robot center of mass G must be orthogonal to the direction vector j associated
with the robot wheels for each instant of time. Therefore, the vectors vG and j must be orthogonal for
each instant of time to model the pure rolling of the wheeled mobile robot. Thus, one can write:

vT
Gj = 0 (40)

where:

vG =

[
ẋ
ẏ

]
, j =

[
− sin(θ)
cos(θ)

]
(41)

Equation (40) represents a nonholonomic constraint equation that involves the generalized
configuration vector of the mobile robot q and its time derivative q̇. By imposing this nonlinear
condition, one obtains an algebraic equation which involves both the system generalized positions
and velocities. This algebraic equation cannot be rewritten only in terms of the system generalized
configuration vector q. Therefore, the pure rolling condition is a nonholonomic constraint equation.
The Udwadia-Kalaba Equations, on the other hand, were used for obtaining in a concise form the
generalized force vector Qr starting from the analytical definition of the pure rolling nonholonomic
constraint equation given by Equation (40). To achieve this goal, one can effectively employ the
following step-by-step derivation. First, the kinetic matrix Kr associated with the mobile robot
subjected to the pure rolling condition can be computed as follows:

Kr = ArM−1AT
r =

[
− sin(θ) cos(θ) 0

]  1
m 0 0
0 1

m 0
0 0 1

Izz


 − sin(θ)

cos(θ)
0

 =
1
m

(42)

where Ar and br are the vector and matrix quantities that represent the pure rolling condition in the
standard form associated with nonholonomic constraint equations. The constraint feedback matrix
Fr corresponding to the kinetic matrix Kr relative to the pure rolling condition of the mobile robot is
given by:

Fr = K+
r = K−1

r = m (43)

The unconstrained generalized acceleration vector ar obtained in absence of external force fields
acting on the mobile robot is a zero vector:

ar = 0 (44)

Therefore, the error vector obtained by introducing the unconstrained generalized acceleration
vector ar into the pure rolling nonholonomic constraint equation can be readily calculated to yield:

er = br −Arar = cos(θ)θ̇ẋ + sin(θ)θ̇ẏ (45)
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Finally, one can obtain the generalized force vector Qr associated with the pure rolling condition
of the mobile robot as follows:

Qr = AT
r Frer =

 − sin(θ)
cos(θ)

0

m
(
cos(θ)θ̇ẋ + sin(θ)θ̇ẏ

)
=

 −m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)
m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

0

 (46)

The explicit calculation of the generalized force vector Qr is one of the main results of this work
which allows for performing dynamical simulation by using standard numerical integration techniques
based on a sequential marching of the numerical solution on the time grid.

3.2. Nonlinear Trajectory Tracking

In this subsection, the derivation of a nonlinear tracking controller based on the inverse dynamic
approach developed in the paper is presented. For this purpose, consider the application of an external
control action on the mobile robot having an underactuated structure, which implies the following set
of equations of motion:

Mq̈ = Qσ + Qr + Buu (47)

where u is a vector of external control actions and Bu denotes an input influence matrix that are
respectively given by:

u =

[
u1

u2

]
, Bu =


cos(θ)

R
cos(θ)

R
sin(θ)

R
sin(θ)

R
L
R − L

R

 (48)

where the number of the active control actions is nu = 2, while u1 is the control torque applied on
the right wheel of the mobile robot, u2 is the control torque applied on the left wheel of the mobile
robot, L denotes half the length of the robot axle track, and R corresponds to the radius of the robot
wheels. To obtain a nonlinear tracking controller for the mobile robot and, at the same time, to impose
the underactuation property of this mechanical system by considering a nonholonomic constraint
equation defined at the acceleration level, one can assume the following nonholonomic constraint
equations defined in the standard form:

Atq̈ = bt (49)

where At is the trajectory tracking constraint Jacobian matrix and bt represents the trajectory tracking
constraint quadratic velocity vector. These matrix and vector quantities are respectively defined as:

At =


mR

cos(θ) − mR
sin(θ) 0

1 0 0
0 0 1

 , bt =



R
cos(θ)

(
−σẋ−m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

)
+

− R
sin(θ)

(
−σẏ + m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

)
ξ̈

ϕ̈


(50)

where ξ represents a prescribed function of time for the abscissa x of the robot center of mass and
ϕ denotes a prescribed function of time for the angular orientation θ of the robot chassis, whereas
the first equation in these matrix expressions is a mathematical representation of the underactuation
requirement which can be readily obtained by applying the Underactuation Equivalence Principle
given by Equation (29). These equations are written at the acceleration level and arise from the
following set of nonholonomic constraint equations:
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mR

cos(θ) ẍ− mR
sin(θ) ÿ = R

cos(θ)

(
−σẋ−m sin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

)
− R

sin(θ)

(
−σẏ + m cos(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ)

)
x = ξ

θ = ϕ

(51)

By imposing the previous set of constraint equations on the unicycle-like mobile robot, one obtains
the generalized force vector associated with the nonlinear controller for the trajectory tracking by
means of the Udwadia-Kalaba Equations given by Equation (19). This generalized force vector is
denoted with Qt and is given by:

Qt = AT
t Ftet =

 σẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈

tan(θ)
(
σẋ + msin(θ)θ̇ (cos(θ)ẋ + sin(θ)ẏ) + mξ̈

)
Izz ϕ̈

 (52)

This generalized force vector allows for imposing on the unicycle-like mobile robot a set of
control actions suitable for tracking a prescribed state-space trajectory defined in terms of the arbitrary
functions ξ and ϕ. However, it is important to note that the functions ξ and ϕ, which define the
desired state-space trajectory, must be also consistent with the pure rolling condition imposed on the
unicycle-like mobile robot.

3.3. Dynamic Analysis

In this subsection, the numerical results found using the approach developed in the paper are
presented. For this purpose, consider the numerical data for the unicycle-like mobile robot reported
in Table 1.

Table 1. Mobile robot data.

Descriptions Symbols Data (Units)

Half Length of the Axle Track L 0.15 (m)
Radius of the Wheels R 0.025 (m)
Robot Mass m 3 (kg)
Robot Moment of Inertia Izz 0.0625 (kg×m2)
Viscous Damping Coefficient σ 0.1 (kg

/
s)

In the dynamic analysis, a time span equal to T = 10 (s) is considered and a step size equal
to ∆t = 10−3 (s) is assumed. The computational algorithm used for performing the time marching
of the numerical solution of the equations of motion is the sixth-order Adams-Bashforth method.
To demonstrate the effectiveness of the proposed method for performing the tracking controller of the
unicycle-like mobile robot, consider the following parametric form for the system path and time law:

ξ = C + acos3(γ)

η = D + bsin3(γ)

ϕ = atan2( dη
dγ , dξ

dγ )

γ = 1
2 αt2 + βt + δ

(53)

where ξ is the assigned horizontal displacement, η is the assigned vertical displacement, ϕ is the
assigned angular displacement, and γ is the assigned time law. Thus, the time law chosen for the
mobile robot is a uniformly accelerated motion whereas the planar curve considered for the path
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is an astroid. The numerical values of the constant parameters that appear in these equations are
respectively defined in Table 2.

Table 2. State-space trajectory parameters.

Descriptions Symbols Data (Units)

Path parameter C 0 (m)
Path parameter D 0 (m)
Path parameter a 2.0 (m)
Path parameter b 1.0 (m)
Time law parameter α 0.1 (s−2)
Time law parameter β 0.2 (s−1)
Time law parameter δ 0 (−)

To test the performance of the inverse dynamic method developed in this paper in multiple
scenarios, three different sets of initial conditions are considered for the unicycle-like mobile robot.
For simplicity, the three set of initial conditions considered in this work are respectively labeled with
the numbers 1, 2, and 3 as shown in Table 3.

In Table 3, considering a general set of initial conditions labeled with the number i = 1, 2, 3, xi
0 is

the initial horizontal displacement, yi
0 represents the initial vertical displacement, θi

0 denotes the initial
angular displacement, ui

0 is the initial horizontal velocity, vi
0 represents the initial vertical velocity, and

ωi
0 denotes the initial angular velocity. The resulting horizontal displacement, vertical displacement,

and angular displacement of the mechanical system obtained in the dynamical analysis by using the
designed tracking control actions are respectively shown in Figure 2a–c.
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Figure 2. Robot displacement. Initial conditions 1 (solid lines), initial conditions 2 (dashed lines), initial
conditions 3 (dotted lines).
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The time law used for performing the dynamic analysis is represented in Figure 3a, while the
planar path of the unicycle-like mobile robot resulting from the application of the control inputs
obtained by using the proposed inverse dynamic approach is represented in Figure 3b.
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(b)Planar path

Figure 3. Robot trajectory. Initial conditions 1 (solid lines), initial conditions 2 (dashed lines), initial
conditions 3 (dotted lines).

The resulting horizontal velocity, vertical velocity, and angular velocity of the mechanical system
obtained in the dynamical analysis by using the designed tracking control actions are respectively
shown in Figure 4a–c.

0 2 4 6 8 10
t (s)

-4

-2

0

2

4

dx
/d

t (
m

/s
)

(a) Horizontal velocity

0 2 4 6 8 10
t (s)

-2

-1

0

1

2

dy
/d

t (
m

/s
)

(b) Vertical velocity

0 2 4 6 8 10
t (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

d3
/d

t (
ra

d/
s)

(c) Angular velocity

Figure 4. Robot velocity. Initial conditions 1 (solid lines), initial conditions 2 (dashed lines), initial
conditions 3 (dotted lines).
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Table 3. Sets of initial conditions.

Descriptions Symbols Data (Units)

Initial horizontal displacement x1
0, x2

0, x3
0 1.5 (m), 2.0 (m), 2.5 (m)

Initial vertical displacement y1
0, y2

0, y3
0 0 (m), 0 (m), 0 (m)

Initial angular displacement θ1
0 , θ2

0 , θ3
0 0 (rad), 0 (rad), 0 (rad)

Initial horizontal velocity u1
0, u2

0, u3
0 0 (m/s), 0 (m/s), 0 (m/s)

Initial vertical velocity v1
0, v2

0, v3
0 0 (m/s), 0 (m/s), 0 (m/s)

Initial angular velocity ω1
0 , ω2

0 , ω3
0 −0.0667 (rad

/
s), −0.1 (rad

/
s), −0.12 (rad

/
s)

Furthermore, the right and left control actions which allow for performing the tracking control in
correspondence of the designed state-space trajectory are respectively shown in Figure 5a,b.
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(a) Right control torque
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(b) Left control torque

Figure 5. Control actions. Initial conditions 1 (solid lines), initial conditions 2 (dashed lines), initial
conditions 3 (dotted lines).

In Figures 2a–c, 3a,b, 4a–c and 5a,b, the solid lines refer to the set of initial conditions labeled with
the number 1, the dashed lines refer to the set of initial conditions labeled with the number 2, and the
dotted lines refer to the set of initial conditions labeled with the number 3, respectively.

4. Discussion

In this section, a critical discussion of the numerical results obtained in the paper is reported and
some directions for future research are provided.

4.1. Performance Analysis

The motion of the mobile robot represented in Figure 2a,b demonstrates that the method proposed
in the paper can be effectively used for devising nonlinear control actions for mechanical systems
constrained by holonomic as well as nonholonomic constraints. To quantify the performance of the
proposed approach, one can compute the deviation of the actual state-space trajectory obtained by
using the nonlinear controller from the theoretical state-space trajectory imposed as the reference
solution. To this end, the absolute errors between the actual state-space trajectory and the desired
state-space trajectory can be used for evaluating the performance of the control method proposed in
the paper. The absolute error for the planar path is simply defined as:

ex(t) = |x(t)− ξ(t)|

ey(t) = |y(t)− η(t)|
(54)
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where ex(t) and ey(t) respectively denote the absolute errors of the horizontal and vertical
displacements x and y. Figure 6a shows the time evolution of the absolute error related to the
horizontal displacement, while Figure 6b shows the time evolution of the absolute error related to the
vertical displacement.
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(a) Horizontal displacement absolute error
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Figure 6. Displacement absolute errors. Initial conditions 1 (solid lines), initial conditions 2 (dashed
lines), initial conditions 3 (dotted lines).

In Figure 6a,b, the solid lines refer to the set of initial conditions labeled with the number 1,
the dashed lines refer to the set of initial conditions labeled with the number 2, and the dotted
lines refer to the set of initial conditions labeled with the number 3, respectively. Furthermore,
the root-mean-square deviations between the actual state-space trajectory and the desired state-space
trajectory are used in this investigation as a quantitative metric. The root-mean-square deviations are
defined as follows: 

xRMS =

√
1
N

N
∑

n=1
(x(tn)− ξ(tn))2

yRMS =

√
1
N

N
∑

n=1
(y(tn)− η(tn))2

(55)

where xRMS and yRMS respectively denote the RMS deviation of the horizontal and vertical
displacements x and y. The numerical results found for the horizontal and vertical root-mean-square
deviations are reported in Table 4.

Table 4. State-space trajectory root-mean-square deviations for different sets of initial conditions.

Descriptions Symbols Data (Units)

Horizontal displacement RMS x1
RMS, x2

RMS, x3
RMS 1.684× 10−10 (m), 2.246× 10−10 (m), 2.807× 10−10 (m)

Vertical displacement RMS y1
RMS, y2

RMS, y3
RMS 1.558× 10−8 (m), 4.248× 10−8 (m), 7.094× 10−8 (m)

The numerical results found for the root-mean-square deviations are referred to the three sets of
initial conditions considered in this research work that are labeled with the numbers 1, 2, and 3. Table 4
shows that the numerical solution obtained in the dynamic simulation involves small deviations
from the designed state-space trajectory. These errors are caused by the numerical approximation
used for obtaining the numerical solution of the equations of motion which affect each numerical
integration scheme suitable for solving nonlinear sets of ordinary differential equations. Therefore,
the numerical results found in this section show a good agreement between the actual state-space
trajectory obtained using the proposed inverse dynamic method and the desired state-space trajectory
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arising from a preliminary motion planning phase, thereby demonstrating the effectiveness of the
methodology developed in this paper.

4.2. General Considerations

In this paper, the starting point is the analysis of the robot kinematic model, while the complete
nonlinear dynamic model of the unicycle robot is subsequently employed for testing the inverse
dynamic method proposed in this investigation to obtain an analytical solution for the tracking control
problem. Because of the no side-slip condition of the wheel, which is kinematically equivalent to a
no-slip condition, the unicycle robot cannot move in the direction of the wheel axis and, therefore,
the motion of the robot must take place only in the direction of its heading. This pure rolling condition
implies that the velocity vector of the unicycle robot must be parallel to the longitudinal direction of the
robot chassis. Therefore, the no side-slip condition must be mathematically modeled as a nonholonomic
algebraic equation. In general, mechanical systems subjected to nonholonomic constraints are difficult
to control and the main goal of this paper is to provide a general method for addressing this challenge.
In this research work, an effective inverse dynamic control method based on the combined application
of the Udwadia-Kalaba Equations with the Underactuation Equivalence Principle was developed and
tested in the case of a unicycle mobile robot. In principle, the approach developed in the paper can
be directly extended to the solution of the control problem of other wheeled mobile robots, such as
the bicycle mobile robot, as well as to legged mobile robot. However, these developments will be the
objects of future investigations.

The nonlinear control problem of wheeled mobile robots represents a challenging issue. Several
effective methods were proposed in the literature for solving this problem [56–63]. However, the main
difficulty associated with the nonlinear control approaches employed in the literature for wheeled
mobile robots is that they rely on non-standard techniques which cannot be readily extended to
other control problems [71–74]. Unlike the methods already available in the literature, an inverse
dynamic method based on the use of the Udwadia-Kalaba Equations was developed in this work.
The proposed method is effective, general, and can be easily applied to different control problems
related to mobile robots. Furthermore, in principle, the inverse dynamic method developed in this
study can be combined with the conventional optimal control method for obtaining the design of
a feedforward plus feedback control architecture. This promising combination will be investigated in
future research works.

Future research will be devoted to the application of the nonlinear control algorithm developed in
this paper to more complex mechanical systems having an underactuated structure and constrained by
holonomic as well as nonholonomic algebraic equations. For instance, the immediate extension of this
work, which is focused on the stabilization and tracking problem of a unicycle-like mobile robot, is the
development of an inverse dynamic computational procedure applied to a bicycle model of a wheeled
mobile robot subjected to a set of nonholonomic constraints that analytically define the pure rolling
condition of the robot wheels. Moreover, further directions of future research are related to dynamic
and control problems of multibody mechanical systems, namely mechanical systems formed by rigid
as well as flexible components interconnected by kinematic joints, which comprise many degrees
of freedom and represent dynamical systems particularly challenging to mathematically model and
computationally analyze. Another important direction for future research works to be explored is
the use of the methods of optimal control theory in conjunction with the inverse dynamic approach
based on the Udwadia-Kalaba Equations combined with the Underactuation Equivalence Principle
developed in this investigation.

5. Summary and Conclusions

The scientific research of the authors is focused on three main areas of interest that are
closely related to practical applications in the field of mechanical engineering. The general topics
addressed by the investigation of the authors are system identification, nonlinear control, and
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multibody dynamics [106–110]. System identification is aimed at obtaining a good estimation of
the parameters that define a dynamical model of a given mechanical system. Nonlinear control deals
with the development of nonlinear control strategies for mechanical systems described by nonlinear
mathematical models. Multibody dynamics is a branch of analytical mechanics devoted to the study
of the dynamic behavior of articulated systems composed of rigid or flexible bodies constrained by
mechanical joints.

This paper is concerned with forward and inverse dynamic problems of wheeled mobile robots
having an underactuated structure and is part of a wider research plan inspired by the vision of the
authors. In particular, this work is focused on the dynamic and control problem of wheeled mobile
robots having a unicycle-like structure. This type of mobile robots represents an important example
of a large class of underactuated nonholonomic nonlinear mechanical systems which is used in the
field of nonlinear control for testing the effectiveness of new computational algorithms. The method
developed in the paper is based on the use of the Udwadia-Kalaba Equations in conjunction with the
Underactuation Equivalence Principle. It is shown in this paper that the Udwadia-Kalaba Equations
can be employed for deriving the generalized force vector necessary for solving both forward and
inverse dynamic problems of nonholonomic mechanical systems. Also, this investigation demonstrates
that the Underactuation Equivalence Principle allows for extending the effectiveness of the use of
the Udwadia-Kalaba Equations from fully actuated mechanical systems to underactuated mechanical
systems. To demonstrate this fact, the nonlinear trajectory tracking problem of a unicycle-like
mobile robot is considered in this work as an illustrative example. Dynamical simulations and
numerical experiments corroborate the analytical developments obtained in this paper. In particular,
the numerical results found for the unicycle robot show a small error between the desired trajectory
and the actual trajectory followed by the mobile robot.

In future research works, the method developed in this paper will be used as an open-loop
(feedforward) control law and will be combined with the optimal control technique that is useful for
the design of compensator controllers based on a closed-loop (feedback) architecture. Furthermore,
the method developed in this work will be applied to the solution of inverse dynamic problems of
more complex mechanical systems like, for example, the bicycle model of a wheeled mobile robot.
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