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Abstract: In many current supply chains, transport processes are not yet being monitored concerning
how they influence product quality. Sensor technologies combined with telematics and digital services
allow for collecting environmental data to supervise these processes in near real-time. This article
outlines an approach for integrating sensor-based quality data into supply chain event management
(SCEM). The article describes relationships between environmental conditions and quality defects of
automotive products and their mutual relations to sensor data. A discrete-event simulation shows
that the use of sensor data in an event-driven control of material flows can keep inventory levels
more stable. In conclusion, sensor data can improve quality monitoring in transport processes within
automotive supply chains.
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1. Introduction

In globally distributed supply chains, complex material flows between geographically widely
separated suppliers and original equipment manufacturers (OEM) have to be coordinated [1].
In the automotive industry, in particular, global sourcing and reduced vertical integration due to
outsourcing result in the transport of large material volumes over long distances with potentially
extreme environmental conditions [2–4]. In combination with reduced safety stocks, these transports
increase the susceptibility of the supply chains to disturbances [5], and, consequently, increases
supply chain risks, like inappropriate quality of the supply and poor logistics performance, e.g.,
late delivery [6]. Such deviations potentially endanger the ability of the supply chain to meet customer
expectations, so that success depends on the ability to prevent or at least immediately identify
and resolve them [7]. However, quality management procedures during transport are often not
as sophisticated as during production [8]. As a result, deviations are sometimes detected only at a late
stage in the supply chain, resulting in costly compensation measures [9–11].

Increasing digitalization in the context of Industry 4.0 offers the potential to increase the level of
transparency in supply chains [12]. The concepts of Industry 4.0 and Cyber-Physical Systems (CPS) are
increasingly applied to logistics and supply chain management, as Logistics 4.0, and Cyber-Physical
Logistics Systems (CPLS). A CPLS consists of CPS that are part of, or connected to logistic objects
(like e.g., means of transport, or containers), or logistic processes and deal with the flow of information
and goods in the value chain [6].

Of particular interest in digital supply chain applications are sensor technologies. The ability to
directly record physical data using sensors, and to evaluate and save the recorded data to globally
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distributed services via digital communication facilities is considered as integral to CPS in Industry 4.0
applications [13].

Sensors can monitor a wide variety of ambient conditions, like temperature, humidity, mechanical
stress levels on attached objects, and current characteristics of an object, such as location, speed,
or direction. Combined to sensor networks, they can be used for continuous parameter sensing,
event detection and identification [14,15]. As a result, sensor networks are considered as a suitable
solution to provide the necessary information transparency in inter-organizational logistics and supply
processes (e.g., the actual geographical position of the transports and their estimated arrival times,
or the probability and level of the potential late deliveries) [6,8].

In previous work, we have proposed a sensor-based quality monitoring system for products
during transport processes in automotive supply chains. This system combines a hardware
infrastructure of mobile and stationary sensors and telematics units with a software infrastructure of
sensor databases, data repositories, and digital services with the following characteristics [16,17]:

• Mobile sensors are attached either directly to products, or to boxes, or pallets, used to harbor and
store these products during transport. An example from the automotive industry are the universal
load carrier (ULC) boxes, which fluctuate between suppliers and receivers of parts or components
in automotive supply chains. This way, the sensors accompany the parts and components during
transport and storage processes and measure relevant environmental parameters. The sensors
should be capable of transferring their measurement data over a short distance (several dozen
meters) wirelessly. It is important that the sensors are located close to the products that shall be
monitored, and accompany them over the transport chain from beginning to end. In addition,
they should be cost efficient enough to allow their application in larger numbers.

• Telematics units, so called gateways, collect the wirelessly messaged measurement data from local
sensors and transfer these data over large distances using standard telecommunication technology.
As one such gateway can transfer the data of a larger number of sensors (up to a few hundred
sensors), but are also more expensive in acquisition and operation, one gateway per transport
unit (e.g., truck) or per transport container should be sufficient. In addition, the telematics
units can house additional sensors, in particular, geolocation devices, like the Global Positioning
System (GPS).

• The sensor measurement data transferred by the gateways is stored in a central sensor database,
which forms the data component of a software cloud platform.

• In addition, digital services are hosted on such a cloud platform. These digital services perform
operations on the collected sensor data. This includes the analysis of the sensor data to determine
(potential) quality defects from the data and in such an event, to alert the relevant stakeholders in
the supply chain, and propose corrective measures.

• Occurrences of (potential) quality defects constitute critical events, which have to be
communicated to processing applications of the various supply chain parties. Alerting companies
to (critical) events, so that measures against those events can be taken proactively, is the task of
Supply Chain Event Management (SCEM). Critical events are any unplanned changes in supply
lines or generally critical exceptions in time [7]. Quality related events are events that take into
account (changes in) the quality state of the objects. Sensor measurements that are unusual
or fall outside certain predetermined boundaries may point to changes in the surrounding of
transport goods that affect the quality of the goods and thus constitute quality related (critical)
events. The supply chain parties then can react to these events according to their own procedures.
We have proposed to use the Electronic Product Code Information System (EPCIS) standard as an
instrument to communicate such events. EPCIS is a standard that was developed and marketed
by international non-profit organization GS1 for sharing event related data. Typically, it refers to
the identification of certain physical objects at a certain time and place and within a certain
context [18]. As the EPCIS standard in its current version does not include data structures to
express and communicate sensor data, we also have proposed proper extensions of the standard.
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Our basic approach and some of its technical details have already been described in [16,17].
This article focusses on two particular aspects of using such a monitoring system to integrate
sensor location and quality data into transport processes in automotive supply chains: First, we
compile the environmental influence parameters that should be monitored during transport processes
in automotive supply chains. In relation to metrological applications, it is important to exert
systematic considerations concerning the planning, execution, and evaluation of measurements [19].
The identification of the relevant measurement parameters constitutes an important aspect of the
planning process of the metrological application. In this, we proceed from general environmental
influences or conditions in transport processes and their cause-effect-relationships with critical failure
mechanisms relevant to automotive product groups to establishing critical failure mechanisms of
individual automotive products and components from product data sheets.

Second, the paper evaluates the potential effects of sensor-based quality data for supply chain
performance. We use a discrete-event simulation model to study an exemplary automotive supply
chain to investigate how the use of real-time quality status data for the supplied goods can influence
supply chain control decisions and what impact on logistic performance it yields.

The structure of this paper is as follows: Section 2 reviews related work, for example from
cold chain logistics in the food or pharma industries. Section 3 describes the relations between
environmental influences and quality defects of automotive products. Section 4 outlines the simulation
study and its results. Section 5 provides a discussion of the results of Sections 3 and 4. Conclusions and
ongoing work are outlined in Section 6. An appendix provides additional tables detailing aspects of
Section 3.

2. Related Work

We cluster the related work into two groups. As a first group, a large body of work on product
monitoring in supply chains using sensor systems exists for cold chains in the food industry, where
factors, like temperature and humidity, are of foremost importance to product quality and expiration
dates of perishable products. The second group relates to research publications covering the use of
sensors for quality monitoring within transport processes of manufacturing industry supply chains.
Here, we have found less publication.

In the first group of publications, Woo et al. [20] have proposed a data model expressing temporal
relationships between logistic objects passing at certain locations and sensors installed at these locations.
A location may have more than one sensor for reading not only the radio frequency identification (RFID)
data but also measuring environmental data. A temporal data entity stores the sensor data obtained
when a logistics object passes through the sensor and is connected to the logistic objects to which the
sensor reading applies. Hartley has examined the temperature control of wild animal meat in a global
supply chain between New Zealand and Germany, using RFID and EPCIS [21]. Kang and Lee propose
a sensor integration architecture for cold chain management, where sensor data, such as temperature
and humidity, are traced along with RFID based information [22]. Kassahun et al. describe a reference
architecture that enables chain-wide transparency in meat supply chains, making use of the EPCIS
standard and cloud-based services [23]. Thakur and Forås have evaluated the functionality of an online
system for temperature monitoring in a cold meat chain. They use EPCIS for the communication of
temperature data [24]. The concept of virtual food supply chains has been analyzed from an Internet of
Things perspective for the food industry by Verdouw et al. [25]. In addition, the authors describe
an implementation architecture, which is based on the cloud-based platform FIspace. Tamplin has
published an approach for integrating predictive models and sensors to manage food stability in
supply chains. His publication describes developments in predictive models designed for supply
chain management of food products (like oysters and beef), as well as advances in environmental
sensors [26].

Applying sensor data to supply chain management has been investigated in the DynahMat project
by Jevinger et al. One result was that it is crucial to measure temperature close to the freight using
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multiple distributed sensor nodes, instead of just thermometer per container. The DynahMat project
also discusses dynamic pricing based on sensor data [27–29].

Hertog et al. have published a study on how to derive the product quality of perishable food
products, like e.g., strawberries, from sensor data [30]. To set up a statistical control model, they
define product specific critical tolerance levels of carbon dioxide, oxygen, temperature, ethylene,
and relative humidity, which should not be exceeded. The authors state that above and below these
tolerance levels, product damage will occur. Accidental occurrences of values outside these warning
levels do not lead to significant decay in product quality, however, if these conditions occur more
often or for longer time, the quality will be affected. Therefore they define a maximum cumulative
number of measurements outside the warning levels range, weighted by the absolute difference
between measurement values and warning levels. In addition, the authors propose equations to
calculate the degradation rate of a perishable cold chain product as a function of shelf life conditions.

The research on monitoring of cold chain products emphasizes a number of aspects that can be
used in a similar form for our approach of a sensor-based quality information system for transport
processes in the automotive industry. These include the attachment of mobile sensors to products
during transport processes, the collection and analysis of the sensor measurement data in a central
cloud platform, and the adaptation of the EPCIS standard to communicate sensor data between
different supply chain partners.

Concerning product quality related models that allow for deriving product quality from sensor
data, in particular, the use of boundaries for measurements of environmental influence parameters
like temperature and relative humidity seems promising for our approach. However, due to a
number of differences between products in cold chain supply chains and products in automotive
supply chains, we cannot simply take over the solutions from the food industry: food and other cold
chains products are often perishable products with a short life span that under normal environmental
conditions sometimes is measured only in days or weeks. That life span of a cold chain product is
influenced in particular by the heat affecting it, so that close temperature monitoring is crucial for the
determination of product quality and remaining life span. For instance, freezing fruits may expand
their life span from only day or weeks to months or even years. Other environmental influences
affecting the quality, or life span, of food products are the concentrations of gasses, like carbon dioxide,
oxygen, and ethylene. Automotive components on the other hands have a considerably longer life
span of normally several years. They are much less affected by (though by no means immune to)
heat. On the other hand, mechanical influences, like shock or vibration, might exert a larger effect on
automotive products.

In the second group of publications, publications not related to the food industry or cold chain
applications, Dunkel et al. present a reference architecture for sensor-based decision support systems,
which enables the analysis and processing of complex event streams in real-time. The proposed
architecture provides a conceptual basis for development of flexible software frameworks that can
be adapted to meet various applications needs. The authors’ architectural approach is based on
semantically rich event models providing the different stages of the decision process. They illustrate
their approach in the domain of road traffic management, not within a manufacturing oriented supply
chain [31].

Reinhart et al. present an approach for an event-based safeguarding of production processes in
the automotive industry using RFID technology. This solution has been prototypically realized in the
automotive industry for the quality control of car seats [32]. The approach so far does not make use of
sensors to monitor environmental influences however, but it relies on passive RFID transponders for
automatic identification of components within cars. Genc, Duffie and Reinhart study an event-based
Supply Chain Early Warning System that facilitates real-time identification of critical events within the
supply network by using event data generated from RFID based automatic identification. As a result,
adaptive situational control of intra-company production processes is enabled. The benefits of this
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approach regarding logistic objectives are evaluated in a discrete-event simulation study based on a
prototypical implementation of a cross-company production scenario [33].

Maurer examines early warning of critical events in supply networks in his dissertation [34].
In his work, he also covers qualitative instruments that support and quantitative methods to support
forecasting of critical, quantitative parameters. He does not describe, however, detailed applications of
sensor system to monitor products during transport processes in supply chains.

From these publications, some aspects relating to supply SCEM procedures, as well as the use of
discrete event simulation, can be applied to our research. However, this second group of publications
does not refer to use of sensor systems for quality monitoring or consider quality related events in
supply chains.

3. Environmental Influences and Quality Defects of Automotive Products

In this section, we compile the environmental influence parameters that should be monitored
during transport processes in automotive supply chains. Proceeding from the general to the
particular, we first compile environmental influences and conditions that are generally prevalent in
transport processes. Subsequently, we establish cause-effect-relationships between these environmental
influences and quality-critical failure mechanisms relevant to the particular materials and product
groups encountered in automotive supply chains, and establish additional modifying factors. Finally,
we look at product data sheets as a source of detailed information on critical failure mechanisms of
individual components in automotive supply chains.

3.1. General Environmental Conditions during Transport Processes

The standard DIN EN 60721-1:1997-02 [35] defines environmental influences as physical, chemical
or biological influences, like e.g., heat, or vibrations. Either on their own, or in combination with other
influences, they constitute an environmental condition. An example of an environmental condition is
the combined occurrence of the two environmental influences heat and vibrations.

Environmental influences can be determined via environmental influence parameters.
Environmental influence parameters refer to the physical, chemical, or biological measurement
parameters, like temperature or acceleration. These measurement parameters allow for determining
critical thresholds. If a critical threshold is exceeded (or undercut), then negative effects of the
environmental influence on the referential system have to be anticipated. A complete characterization of
an environmental influence often involves a combination of measurement parameters. For example,
a complete description of a vibration (or oscillation) includes their type (mode), their acceleration,
and their frequency.

The same standard also provides a clustering of environmental influences and their respective
environmental influence parameters into seven groups of environmental conditions. In addition to this,
the standard DIN EN 60721-3-2:2016-06 [36] provides a more application domain specific, transport
related classification of environmental conditions:

• Climatic environmental conditions: These include climatic elements, like heat/cold,
air humidity, air pressure, rain/thaw/snow/ice, and sun radiation.

• Biological environmental conditions: These include influences from flora and fauna, e.g., mold.
• Chemical agents: These include chemically active substances, e.g., industrial exhaust gases,

or aerosols.
• Mechanically active substances: These include mainly sand or dust.
• Mechanical environmental conditions: These include all influences due to effects of mechanical

forces, e.g., vibration and shock.
• Table A1 in Appendix A lists those environmental conditions, environmental influences,

and environmental influence parameters that are relevant to transport processes, as described in
both standards.
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3.2. Failure Mechanisms and their Relations to Automotive Components

The effects that environmental influences, as described in [35,36], yield on transport cargo
depend on a variety of factors, in particular, the properties of the cargo. The testing acuity degrees
defined by the mentioned standards allow for distinguishing between different susceptibilities of
various materials to environmental influences.

Negative impacts of environmental conditions on the quality of a product are referred to as
failure mechanisms. These failure mechanisms refer to processes, where products suffer a functional
or physical deterioration and potential damage as a result of environmental conditions or influences.
These failures may stem from sudden overloading and overstressing, or from attrition suffered from
strains over a longer duration that do not cause immediate overloading.

The occurrence and impact of the failure mechanisms generally depends on the acuity of
the environmental conditions (environmental influences) that cause it. To account for this, the
standard DIN EN 60721-3-2:2016-06 also defines different classes based on the acuity degrees of the
environmental influence parameters. These specify minimal thresholds that a cargo has to withstand
in order to prevent damages. These classes depend on the conditions of the surrounding medium,
the conditions of related constructions, and exterior influences and processes. They are also location
dependent. For instance, they take into account the climatic zone (e.g., tropic zone, distance to the sea,
and height above sea).

On the other hand, the impact of failure mechanisms depends on the susceptibility of the
automotive components to these failure mechanisms. This susceptibility in turn is strongly material
dependent. For instance, corrosion affects metallic materials but not natural or synthetic polymeric
materials. For this reason, we associate failure mechanisms to automotive components based on their
material properties.

The product structure of automobiles is modular. The main modular groups of a car are [3]:

• Body structure: This module includes all load-bearing structures.
• Body (exterior): This module refers to the exterior shell including also lighting and windowpanes).
• Interior equipment: This includes e.g., the cockpit module and the seats.
• Motor and related aggregates: These include e.g., the exhaust apparatus and the fuel tank.
• Power drive: This includes clutch and transmission gear.
• Chassis (undercarriage): This includes e.g., axle drives, brake force transmission, and brake

force distribution.
• Electrical and electronic components: Examples are lambda probes and sensors.

These modular groups consists of a hierarchy of modules, components, and parts. These are to
a high degree both functionally as well as physically independent of each other, which allows for
their separate production by different suppliers. As a result, a large part of automotive transport
cargo consists of modules and components. With respect to transport processes, we distinguish
between 36 different automotive modules. These are made of materials belonging to either of five
material categories: Metals, synthetic polymers, natural polymers, ceramics, glasses, or to various
combinations of the material categories. Tables A2 and A3 in Appendix A show the relation between
the automotive modules and these material categories. To account for the preponderance or likely
combination of these material categories, we have defined nine material families, and allocated the
automotive modules to these material families [3,37]:

• MF1: automotive components made exclusively or predominantly of metallic materials.
• MF2: automotive components made exclusively or predominantly of synthetic polymers.
• MF3: automotive components made of metals and synthetic polymers.
• MF4: automotive components made of synthetic polymers and natural polymers.
• MF5: automotive components made of synthetic polymers and glasses.
• MF6: automotive components made of metals, synthetic polymers and natural polymers.



Machines 2018, 6, 53 7 of 22

• MF7: automotive components made of metals, synthetic polymers and ceramics.
• MF8: automotive components made of metals, synthetic polymers and glasses.
• MF9: automotive components made of metals, synthetic polymers, natural polymers and glasses.

Automotive modules that belong to the same material family are susceptible to the same failure
mechanisms. Table A4 in Appendix A lists the failure mechanisms and their relations to environmental
influences and to material families.

The correlation between failure mechanisms and material categories has been established by a
separate literature and norms study on each combination of failure mechanism and material. To provide
an easy example, corrosion affects automotive components that include primarily metals [38]. Thus,
it has been related to material categories 1, 3 and 6–9. These are all categories that are made exclusively
metallic materials, or combine metallic materials with other materials. The correlation excludes
material categories 2, 4, and 5. These latter are all exclusively non-metallic material categories.

Table 1 provides (as lines) a listing of environmentally caused failure mechanisms that are
relevant in automotive transport processes and (as columns) the environmental conditions that cause
them. An x in the crossing field of the line and column marks the causation of the respective failure
mechanism by the respective environmental condition. For instance, air humidity (ah) may cause
corrosion or weathering. The numbers of those material categories that are susceptible to a certain
failure mechanism are listed in the last field of the line. The table can be used to classify specific
automotive components according to their material properties and then identify potentially dangerous
failure mechanisms. It brings together the relationships that we have established. Thus, the table is
useful to determine which failure mechanisms are potentially damaging for automotive components
with specific material properties, and which environmental conditions are related to the occurrence of
the individual failure mechanisms.

Table 1. Environmentally caused failure mechanisms in automotive transport processes
(Legend: fm = failure mechanism, thaw = thawing, ca = chemical agents, fau = fauna, flo = flora,
c/h = cold/heat, ac = air condition, ah = air humidity, mas = mechanically active substances,
pre = precipitation, shoc = shock, rad = radiation; vib = vibration, mat. cat = material category);
material categories: see MF1-MF9 above.

Failure
Mechanism Thaw Ca Fau Flo C/H Ac Ah Mas Pre Shock Rad Vib Mat.

Cat.

Bond cleavage x x 2–9
Bio-deterioration x x x x x x 2–9

Corrosion x x x x x x 1,3, 6–9
Mechanical

Fatigue x x 1–9

Mechanical
overload x x 1–9

Imbibition x x x x 2–9
Temperature

overload x 5, 7–9

Attrition/wear x x x 1–9
Weathering x x x x 2–9

3.3. Additional Influences on Failure Mechanisms in Automotive Transport Processes

While Table 1 provides an overview of the general relations between environmental conditions,
failure mechanisms and material classes, the actual influence of environmental conditions and failure
mechanisms on a particular automotive part or component in a transport process depends on a
multitude of additional factors. These include the following factors [36]:
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• Its actual, individual material(s) (e.g., consideration of different metals and alloys: steel, aluminum,
magnesium· · · ).

• The form of the transported part or product.
• The transport means: e.g., truck, railway, inland vessel, oceanic vessel, and aircraft.
• Load carrier composition: e.g., supporting, paling or isolating.
• Load carrier commonality: universal load carrier (ULC)/singular load carrier (SLC).
• Load securing: e.g., bandaging/shrinking/stretching.
• Whether product refinement is present or not.
• Isolation of products: open or closed.

Packing provides a protective function for the packed goods. For example, the acuity degrees
distinguished within the standard DIN EN 60721-3-2:2016-06 differ on for the same material, if different
packing and isolation are used.

3.4. Relations between Environmental Influences and Quality of Individual Automotive Components

Often, the exact association rules (cause-effect relationships) between environmental influences
(and their associated environmental influence factors) are highly case specific as well as unclear and
difficult to quantify. As an example, corrosion of metallic materials is caused, or aided by, thawing,
chemical agents, cold and heat, air condition, air humidity and precipitation. The exact variation
between these, or the exact calculation of their cumulative effects, is very material specific.

As another example, the exact impact of mechanical fatigue on a part or component heavily
depends on the number, frequency, or frequencies and strength of the vibrations in relation to exact
strength of the material and the natural frequency, which in turn depends on the form of the part
or component.

Product data sheets are common by product suppliers in the automotive industry (as well as in
many other industries) in order to specify the correct treatment of their products and prevent faulty
treatment or damaging conditions during subsequent use [39]. In particular, these product data sheets
often provide information on temperature boundaries, or thresholds of air humidity and shock that
should not be exceeded, in order to prevent product damage. These values can be used to specify the
sensor values that indicate critical events.

From the product data sheets, thresholds can be formed that allow for classifying a transport
good as “in order” (“OK”) as long as the sensor data does not exceed the thresholds, and “not in order”
(“NOK”), following sensor data that exceeds the thresholds or falls outside the bracket. In certain
cases, a third intermediate state “undetermined” may be defined that is situated between “in order”
and “not in order”. A subsequent quality check should determine whether the respective products
should be re-classified as “in order” or “not in order”.

Table 2 shows the exemplary sensor values for a particular automotive supply component,
based on a real product data sheet.

Table 2. Threshold table derived from product datasheets. Legend: ◦C: Degree Celsius as unit of
measurement (UOM) for temperature; g: multiples of the earth gravitation (g = 9.81 N/kg) as UOM for
shock; r.H.: relative Humidity of the air, in percent.

Quality State “OK” “NOK” “Undetermined”

Temperature 0–40 ◦C < −10 ◦C
> 50 ◦C

−10–0 ◦C
40–50 ◦C

Humidity 0–50% r.H. > 60% r.H. 50–60% r.H.

Shock < 10 g > 50 g 10–50 g

Temperature combined
with high humidity

< 30 ◦C
60–90 r.H. %

> 40 ◦C
60–90% r.H.

30–40 ◦C
60–90% r.H.
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Proceeding from general to individual influences, we have collected the relevant environmental
influences and their influence parameters. We have also collected information on the defects they
cause on different important material categories in automotive supply chains via failure mechanisms.
Correlation of this information allows us to establish, which sensor data have to be collected.
Nevertheless, this does not allow us to determine the precise boundaries for sensor values. However,
product data sheets constitute an excellent source for the derivation of thresholds for sensor values,
because they contain explicit threshold values for environmental influence parameters that should not
be exceeded in order to avoid damage to the components and deterioration of their physical state.
A further discussion is provided in Section 5.

4. Simulation Study

To evaluate the potential impact of sensor-based real-time quality data, we use a discrete-event
simulation model of an automotive supply chain process, which has been implemented in the software
Tecnomatix Plant Simulation 14.1. In this section, we first describe the simulation model, followed by
the different scenarios and experiments. Then, we provide the results of the simulation experiments.

4.1. Description of the Simulation Model

The simulation model compares key logistical performance and cost parameters of an automotive
supply chain for different scenarios, some of them include a sensor-based real-time quality monitoring
system while other scenarios do not.

The model maps the supply chain process between a first tier supplier of automotive components
located in Europe and an OEM, which receives these components in order to build them into its cars
in a production plant located in Northern America. As shown in Figure 1, they are connected by
forwarders (shipping companies) using different transport modalities to transport the modules from
the supplier to a logistics hub run by a logistics service provider (LSP), where the parts are consolidated
into containers, and then further transported on ships across the Atlantic Ocean to the OEM.
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Figure 1. Generic supply chain in the simulation model.

The overall control of the supply chain is in the hands of the OEM. The supplier, LSP,
and transporters all act on order of the OEM. Production of components at the supplier is triggered by
a call order (make and take order) by the OEM for the production lot. These orders arrive in regular
sequence, in order to maintain a steady supply for uninterrupted production. In addition, irregular
call orders may be placed by the OEM in order to substitute for defective, or otherwise unusable,
components. The readymade components are sent to a logistic hub by truck. At the logistic hub,
an external logistic services provider (LSP) collects incoming components supplied to the same OEM
by different suppliers and consolidates them into containers. However, the simulation model considers
only one type of component. The LSP is also responsible for the timely, truck-based transport of the
filled containers to a nearby container port terminal to reach a container vessel previously booked by
the OEM.

At the container port terminal, the containers are loaded onto the container vessel. The vessel
brings the containers to the destination port, where they are unloaded from the vessel and forwarded
by train to the OEM’s production plant. At the plant, the parts are unloaded from the containers, and,
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after intermediate storage, built into the cars that are produced there. These processes are performed
in the same way for regular orders by the OEM as well as for re-orders of components that cannot be
used due to quality defects. The smallest lot size both for production and for transport is the universal
load carrier (ULC), a standard box filled with 24 components.

Table 3 provides the details of the transport relations, including transport times, frequencies and
volumes. The cargo volumes per transport of the different transport relations are synchronized with
each other in order to achieve a steady situation.

Table 3. Transport relations in the simulation model.

Transport
Relation Route Transport

Time Frequency Cargo Volume per Transport

Truck #1 Supplier -> LSP 7.5 h Every 8 h 24 universal load carriers (ULC),
each filled with 24 components

Truck #2 LSP -> port Europe 1 h Once a day 1 container with 48 ULC,
each filled with 24 components

Ship Port Europe -> USA 14 days Twice a week 3 to 10 containers
Train Port USA -> OEM 8 h Every two weeks 3 to 10 containers

The simulation model considers a carrier as smallest unit as the sensor decisions about the quality
only happen per carrier. Each of the carriers contains 24 batteries, which are not modelled individually
in the simulation model. A container contains 48 ULC, each filled with 24 components, and thus a
container contains 1152 components. Every 75 s a battery is installed in a car, so every 30 min a ULC
with 24 batteries is needed from the storage.

4.2. Scenarios

The simulation model contains four different scenarios in order to compare the effects of a
sensor-based real-time quality information system on the control and operation of the modelled supply
chain. These four scenarios differ in whether quality defects occur, and what quality management
procedures are implemented.

Scenario 1 serves as a reference scenario in order to model the ideal state of the supply chain
and evaluate different mechanisms without the occurrence of any quality defects. The reference
scenario allows to determine component stock levels at the OEM that guarantee production not
interrupted by stock-outs. Scenarios 2, 3, and 4 include quality defects occurring stochastically during
the different transports. To detect quality defects, the simulation study considers two different quality
management procedures: manual quality inspections (of random samples of the components) at the
OEM’s warehouse entry (scenario 2) and sensor-based monitoring of environmental influences during
the transport processes (scenario 3 and scenario 4).

The characteristics of the automotive components in the scenarios are derived from automotive
batteries. Automotive batteries are sensitive products requiring careful treatment in logistic
processes [40]. For that reason, managing the quality of the batteries during transport is important.
The simulation model accounts for such quality issues via stochastically distributed defect probabilities
for each ULC filled with components and each transport relation. It is assumed that both the supplier
and the LSP always inspect the quality of the outgoing, ready-made components at their warehouse
exits, so that only defect-free components of good quality can leave. Subsequently, the model considers
that with a certain probability, during each transport between the LSP and the OEM, components may
become defective by suffering damage from environmental influences like heat, shock or humidity.
For each transport relation between LSP and OEM, a defect probability is built into the model, which
combines the probabilities of product damage from these environmental influences. This probability is
the probability that a component will suffer damage during a transport using this transport relation.
If no defects occur, the parts are of good quality. The defect and no defects probabilities for the
transport relations are provided in Table 4.
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Table 4. Defect probabilities of the transport relations in the simulation model.

Probabilities Truck #2 Ship Train

Probability of no defects 97.94% 99.38% 98.76%
Defect probability 2.06% 0.62% 1.24%

To cope with this risk of product defects, the simulation model includes the mapping of both
conventional quality management procedures (without a sensor-based information system) and digital
quality management procedures that are based on sensor measurements, as well as combinations of
the two. In either case, safety stocks of the components at the OEM’s warehouse are the means to
prevent the interruption of production at the OEM due to stock-outs that result from non-usable,
defect components.

In this context, scenario 2 serves as a worst case scenario. It includes manual quality inspections
at the OEM’s warehouse entry where quality defects of components are detected. However, this results
in a late re-order of these components from the supplier.

Scenario 3 and scenario 4 both include sensor-based monitoring of environmental influences
during transport. In contrast to these manual quality inspections at discrete points within the supply
chain, the use of a sensor-based information system can generate quality-related data in real-time and
thus support continuous product quality monitoring during the transport of the components.

In both scenarios 3 and 4, sensors are attached to the universal load carriers (ULC) accompany
the components during transport, measure environmental influence parameters, like temperature,
air humidity, and shock and send the measured data to a central, cloud-based quality information
system. The sensor measurements are categorized according to a simple evaluation model that is
based on information from the respective product data sheet. Based on this evaluation model the
sensor measurements may be rated as “in order” (“OK”), “not in order” (“NOK”), or “undetermined”.
The sensor measurements “undetermined” hints to environmental influences on a transport that
may occasionally (more or less frequently), but not always, result in quality defects of the
transported components.

Table 5 summarizes the probabilities for these sensor measurements in scenario 3 and scenario 4.
In every transport relation, there is a certain number of transmission points. When a transport
means (truck, ship, train) passes such a point, a sensor measurement is transferred. The number of
transmission points in each transport relation is provided in the last line of Table 5.

Table 5. Sensor measurement probabilities of the transport relations in scenarios 3 and 4.

Probabilities Truck #2 Ship Train

Probability of “OK” measurements 96.57% 98.96% 97.93%
Probability of “NOK” measurement 0.69% 0.21% 0.41%

Probability of “undetermined” measurement 2.74% 0.83% 1.66%
Number of sensor data transmissions during transport 3 10 5

The model assumes that the sensors do not provide erroneous “OK” and “NOK” measurements.
This means that “OK” sensor measurements only occur when the components are without defects and
that “NOK” measurements only occur when components do indeed have defects. All the components
without defects result in either “OK” or “undetermined” measurements. All defect components result
in either “NOK” or “undetermined” measurements.

Of the undetermined measurements, the model assumes that 50% of them are prove defective at
the OEM’s warehouse entry quality check, while the other half prove to be of acceptable quality for
building into the cars, and that this is known to the sensor system provider.
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Figure 2 shows the basic principle of the sensor-based quality control monitoring and corrective
methods for scenario 3 and scenario 4. In both, scenario 3 and scenario 4, OK and to NOK
measurements trigger the same reaction: If the sensor values are within their OK boundaries, no
corrective measures are necessary. If measurements of a sensor that is attached to an ULC are rated
as being not OK (NOK), because they exceed certain thresholds, the components in the ULC that the
sensor accompanies are rated as “NOK”, and, as a corrective action, the same number of components
is immediately re-ordered from the supplier to substitute for the NOK components.

The reaction to the third sensor measurement option “undetermined” is based on a combination of
sensor-based quality monitoring and manual quality inspection at the OEM’s warehouse entry point.
The reaction to this option differs between scenario 3 and scenario 4, as shown in Figure 2:
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Figure 2. Sensor-based quality monitoring and corrective actions in (a) scenario 3 and (b) scenario 4.

In scenario 3, as shown in Figure 2, part (a), the components accompanied by that sensor are be
subject to a quality check at the arrival at the next supply chain node. This quality check results in the
re-classification of the checked parts as “without defects” or “defect”. In the latter case, a re-ordering of
the components to substitute for the NOK components is triggered.

In scenario 4, as shown in Figure 2, part (b), sensor measurements of the category “undetermined”
also result in the components accompanied by that sensor may be subject to a quality check at the
arrival at the next supply chain node. However, parts are to be immediately re-ordered after the sensor
measurement. As it is known that, on average, in 50% of the undetermined sensor measurement
ratings the components accompanied by the measuring sensor are defect, this immediate re-order
is carried out for every second ULC. For that reason, no parts have to be re-ordered at the manual
quality inspection.

Table 6 summarizes the configuration of the four scenarios concerning the occurrence of quality
defects of the components, the execution of a manual quality inspection at the OEM’s warehouse
entry, the use of sensors monitoring environmental conditions in the transport chain, and the re-order
policies for defect parts.

Table 6. Configuration summary of scenarios 1–4. (Legend: o = no, x = yes).

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Occurrence of defects o x x x
Manual quality inspection at OEM o x x x
Use of sensors in transport chain LSP-OEM o o x x
Full re-order of defect parts at OEM o x x (Partial)
Partial re-order at defect occurrence o o o x
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4.3. Simulation Experiments and Results

For each scenario, ten simulation experiments have been performed, each with a simulated
time of 500 days. The simulation experiments compare the effects of the different quality management
procedures that were implemented in the different scenarios. The parameter used for comparison
is the difference (variation) between inventory levels at the OEM’s warehouse. Figure 3 shows a
screenshot of the simulation model in Tecnomatix PlantSimulation 14.1.
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Figure 3. Simulation model in Tecnomatix Plant Simulation 14.1.

The inventory level at the OEM’s warehouse (invULC, OEM) for a given simulated time t is
calculated as the sum of the basic inventory, with which the simulation model is initialized at
the beginning, and the cumulated components that have been re-supplied both on regular orders
(rULC, reg, OEM), as well as on re-orders of quality defect components (rULC, qd, OEM) and that have
already reached the OEM’s warehouse, less the cumulated ULC with defect components (dULC) that
have been discharged so far (Equation (1)):

invULC, OEM (t) = invULC, OEM (t = 0) + rULC, reg, OEM (t) + rULC, qd, OEM − dULC (t). (1)

The days inventory held show for how many days a production with the currently stored
amount of components (without any new components arriving) is possible. To calculate the days
inventory held, the current inventory is divided by the necessary parts per day. In case of this
simulation experiment, 48 carriers (each filled with 24 components) are needed per day (Equation (2)):

invdih, OEM (t) = invULC, OEM (t)/pULC, reg. (2)

Table 7 lists the formula symbols used in Equations (1) and (2) and the units:

Table 7. Formula symbols and units.

Symbol Unit Description

t Second Simulated time from the start of the simulation
experiment

invULC, OEM ULC filled with 24 components Inventory at OEM’s warehouse

invdih, OEM
Days inventory held (regular
production per day: 1152 cars) Inventory at OEM’s warehouse

rULC, reg, OEM ULC filled with 24 components Cumulated number of regular re-orders for
components built into cars

rULC, qd, OEM ULC filled with 24 components Cumulated number of re-orders for components with
quality defects

dULC(t) ULC filled with 24 components Cumulated number of ULC with defect components
pULC, reg ULC filled with 24 components Regular production per day
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In each simulation experiment, the initial inventory level at the OEM’s warehouse is arbitrarily
set at 2000 ULC (which equals 48,000 components). It takes roughly 20 days for the first ordered and
produced components to arrive at the OEM. During that period, stored components are taken from
the warehouse in order to build them into the cars at the OEM. After that initial period, components
that are produced by the supplier start to arrive on a regular basis. Gradually, a stationary situation is
reached, where average demand and production of components are on similar levels. The initialization
phase of 50 days is not considered. For each of the three scenarios, the results of the ten simulation
experiments have been averaged to determine the parameters for that scenario.

Figure 4 compares the development over simulated time of the components’ inventory levels at
the OEM’s warehouse for scenarios 1, 2, 3, and 4:
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They key parameters of inventory levels in each scenario are listed in Table 8. The inventory
levels differ in each scenario. In scenario 1, the OEM’s warehouse inventory levels are generally the
highest, whereas, in scenario 2, they are generally the lowest. In scenario 3, they are higher than in
scenario 2, whereas in scenario 4, they are almost as high as in scenario 1.

Table 8. Key parameters of inventory levels in scenarios 1–4.

Scenario Mean Inventory
Level

Minimum
Inventory Level

Maximum
Inventory Level

Difference Max.
to Min. Levels

Difference in Days
Inventory Held

Scenario 1 1060 988 1127 139 2.90

Scenario 2 1017 925 1088 163 3.41

Scenario 3 1022 947 1087 140 2.93

Scenario 4 1055 990 1119 129 2.69

Table 8 also compares the spread of OEM’s warehouse inventory levels in each scenario by the
difference between minimum and maximum inventory levels.

This difference between minimum and maximum inventory levels is the largest in scenario 2.
In both scenario 3 and scenario 4, this difference is considerably smaller than in scenario 2.
As the difference between minimum and maximum inventory levels determines the necessary safety
stocks in order to prevent stock-outs of components, it can be concluded that, in scenario 3 and
scenario 4, the safety stocks can be kept at a considerably lower level, as compared to scenarios 2.
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5. Discussion

Mobile sensors can accompany, or be attached to, transported goods during transport processes
and measure parameters like e.g., temperature or vibrations. These sensing devices generate an
enormous volume of raw sensor data. In particular, raw sensor data tends to be very low-level and
it must be further processed, analyzed, and transformed into higher-level information in order to
be meaningful to applications and users. In the context of SCEM systems, critical quality related
events have to be detected from the raw sensor data. These are events that indicate the occurrence,
or increased risk of occurrence, of a quality defect, so that the quality of an article or component no
longer conforms to the requirements or performs its function according to the specification.

Our conclusion from our examination of the relations between environmental influences and
quality defects of automotive products is that actually determining changes in product quality from
sensor data is not a trivial task. We have established that, during transport processes in supply chains,
environmental influences may cause quality defects via failure mechanisms. These environmental
conditions express themselves in, and can be derived from, physical or mechanical parameters,
which in turn can be measured by mobile sensors attached to products/materials. For that reason,
such mobile sensors, or networks of mobile sensors, attached to products allow for the monitoring of
these environmental conditions and environmental influences affecting goods during transport
processes by measuring environmental influence parameters, like e.g., temperature, air humidity,
or shock, during transport processes. For that reason, sensors can detect critical, quality related events.
Sensor measurements indicating certain physical parameters result in the information that certain
environmental conditions are likely to cause quality damage.

However, it is difficult to determine critical events that have an impact on product quality during
transport from sensor data, because it is difficult to determine which sensor measurements actually
indicate conditions that are causing damage to products or deteriorate their quality.

The relations between environmental conditions and changes in product quality have to be
captured in product related quality models, which are very specific to the individual characteristics of
a product. Two methods are possible in order to establish a quality model:

• Data Mining, Predictive Analytics, and Machine Learning methods: Data mining is the process of
discovering patterns in large data sets involving methods at the intersection of machine learning,
statistics, and database systems. It is used to extract information from a data set and transform
the information into a comprehensible structure for further use. Predictive analytics encompasses
a variety of statistical techniques from data mining, predictive modelling, and machine learning,
to analyze current and historical facts to make predictions about future or otherwise unknown
events. Machine learning is a subset of artificial intelligence in the field of computer science.
Its task is to create and subsequently improve models that are based on the processing of training
data. These models can predict new situations. Examples are artificial neural networks, support
vector machines, and Bayesian networks [41,42].

• Experimental determination of product specific susceptibility to failure mechanisms can use
either destructive or non-destructive testing methods [43]. In destructive testing, tests are
carried out to the test object’s failure, in order to understand the test object’s performance
or material behavior under different loads. Examples of destructive testing are stress tests,
crash tests, hardness tests, and metallographic tests. Non-destructive testing (NDT) includes a
large variety of analysis techniques to examine, inspect, and evaluate the properties of a material,
component, or system without causing damage. It uses physical effects like electromagnetic
radiation, sound and other signal conversions to examine metallic and non-metallic materials
for integrity, composition, or condition with no alteration of the article undergoing examination.
Methods include e.g., visual inspection, volumetric inspection with penetrating radiation, such as
X-rays, neutrons or gamma radiation, or ultrasonic testing with sound waves, or the application of
fine iron particles onto magnetized ferrous materials.
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Data mining, predictive analytics, and machine learning methods are a proven instrument that
can establish which sensor data indicate critical events with an impact on product quality. However,
they need a large amount of real-life sensor data as well as detailed and reliable additional data on
product quality and its changes, deteriorations and product damages in order to extract meaningful
correlations. Experimentally derived product quality models also need a large amount of data.
Non-destructive testing methods require an often-expensive infrastructure.

Destructive tests are generally easier to carry out, yield more information, and are easier to
interpret than non-destructive testing methods. However, destructive testing methods consume
several sacrificial products during the tests, thus increasing the costs. For this reason, destructive
testing methods are suitable, and economic, for mass-produced objects.

As we have shown, product data sheets constitute an excellent source for the derivation of
thresholds for sensor values in the absence of such quality models for individual products.

Our conclusion from the simulation study is that a sensor-based SCEM system that can consider
quality aspects in real time can reduce costs and/or improve the logistic performance in an automotive
supply chain.

A study of the 100 largest international automotive suppliers by McKinsey & Company,
Düsseldorf, Germany, in cooperation with the European automotive supplier association CLEPA
100 predicts that digitalization of production in the context of Industry 4.0 has the potential to
reduce quality related costs by 20%, e.g., by reducing product defects through data based real-time
monitoring of production and logistics systems [44].

Our simulation study hints to that a sensor-based transport monitoring system can also reduce
logistics related costs. In the simulation study, the scenario including a sensor-based monitoring
system resulted in the lower safety stock levels needed to prevent production stock-outs. The stock
levels can be even lower when parts are immediately re-ordered after suspicious sensor measurements,
even if these do not necessarily indicate real defects. The main reason for this is the earlier recognition of
quality problems and the longer reaction time (cf. Figure 5).
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Whereas, in a scenario with conventional quality management procedures, many quality defects
that are caused by environmental influences during transport will only be recognized for the first
time at the OEM’s warehouse entry, sensors accompanying the components during transport can send
a message shortly after the event. For the supply chain that was examined in the simulation study,
the time saving may amount to as much as two weeks in the case of a quality damaging event during
sea transport. This allows for much earlier re-ordering of components, and consequently the timelier
arrival of the re-ordered components at the customer.
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6. Conclusions

This paper has described an approach for monitoring transport processes in automotive supply
chains using sensor data. Mobile sensors accompanying transport goods combined with telematics
and digital services can continually provide data on environmental influences affecting these goods
via failure mechanisms. The influences of environmental conditions on automotive components and
products depend foremost on the materials used.

Our simulation has shown how use of sensor data in an event-driven control of material flows
can reduce the necessary safety stock levels of components in an automotive supply chain.

In conclusion, planning and control of networked production and logistics processes in the
automotive industry can be improved by the timely consideration of sensor-based quality data.
Individual product quality models are needed to describe the effects of environmental influences on
failure mechanisms for individual products in the necessary detail that is required to translate sensor
measurements into product quality relevant data.
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Appendix A

Tables with additional data on environmental conditions, environmental influences,
environmental influence parameters, failure mechanisms and material classes relevant to transport
processes in the automotive industry.

Table A1. Environmental conditions, environmental influences and environmental influence
parameters that are relevant to transport processes, according to standards DIN EN 60721-1:1997-02
and DIN EN 60721-3-2:2016-06 [35,36].

Environmental Condition Environmental Influences Environmental Influence Parameters

Climatic environmental conditions

Cold and heat Temperature
Temperature change rate

Air humidity Relative air humidity
Absolute air humidity

Atmospheric pressure Air pressure
Pressure change rate

Air circulation Air velocity
Precipitation (Rain/snow/hail) Amount of precipitation (rain, snow)

Rain drift
Kinetic energy of hail

Radiation (sun) Intensity of sun radiation
Radiation (heat) Intensity of heat radiation
Water (except rain) -
Wetness -
Thawing -
Ice and icing -

Biological environmental
conditions

Fauna
Flora

-
-
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Table A1. Cont.

Environmental Condition Environmental Influences Environmental Influence Parameters

Chemical agents

Salty fogs (oceanic salt and road
salt) -

Salty water -
Sulfur dioxide Mass concentration
Hydrogen Sulphide Mass concentration
Hydrogen Chlorid, Fluorid Mass concentration
Ammoniak Mass concentration
Ozon Mass concentration
Nitrogen Oxid Mass concentration

Mechanically active substances Sand
Dust

-
-

Mechanical environmental
conditions

Noisy vibration Spectral acceleration density
Shock Acceleration
Free fall Height of fall
Tilting -
Rolling, pitching Angle

Duration
Steady acceleration Acceleration
Static load Load pressure

Table A2. Materials in automotive modules [3,37,38].

Automotive
Component Metals Synthetic

Polymers
Natural

Polymers Ceramics Glasses

Car body structures x x

Roof module x x x x

Door modules x x x x

Tailgate module x x x x

Engine bonnet x

Front end module x x x

Bumper x

Wings x

Lighting x x x

Window panes x x

Cockpit module x x x

Power shaft console x x x x

Seats x x x x

Sheathing x x

Security belts x x

Motor module x x x

Exhaust apparatus x x x

Fuel tank module x x

Battery pack x x

Power electronics x x

Electrical engines x x

Clutch x x

Transmission gearbox x

Axle drive x
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Table A2. Cont.

Automotive
Component Metals Synthetic

Polymers
Natural

Polymers Ceramics Glasses

Cardan shaft x

Axle module x x x

Brake transmission x x

Brake force distribution x

Tail x x

Pedal module x x

Brake hoses x x

Wheel units x x

Wiring harnesses x x x

Electrical components x x x

Table A3. Classification of automotive modules according to the material they are made of [3,37].

No. Material Classes Automotive Modules

MF-1 Metals

Axle drive
Brake force distribution

Cardian shaft
Transmission gearbox

Engine bonnet

MF-2 Synthetic polymers Wings
Bumpers

MF-3 Metals
Synthetic polymers,

Battery pack
Brake transmission

Brake hoses
Electrical engines

Tails
Car body structures

Wheel units
Fuel tank module

Clutch
Power electronics

Pedal module
Security belts

MF-4 Synthetic polymers
Natural polymers, Sheathing

MF-5 Synthetic polymers
Glasses Window panes

MF-6
Metals

Synthetic polymers
Natural polymers

Seats

MF-7
Metals

Synthetic polymers
Ceramics,

Exhaust apparatus
Axle module

Electrical components
Wiring harnesses

Motor module

MF-8
Metals

Synthetic polymers
Glasses

Lighting
Front end module
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Table A3. Cont.

No. Material Classes Automotive Modules

MF-9

Metals
Synthetic polymers
Natural polymers

Glasses

Cockpit module
Roof module

Tailgate module
Power shaft console

Door modules

Table A4. Failure mechanisms and their relation to environmental influences and to material families [3,35–38].

Failure Mechanism Environmental
Influence

Environmental
Influence Parameter Material

Corrosion

Thawing -

Metals
Chemical agents Mass concentration

Cold/heat Temperature
Air circulation Velocity

Precipitation (rain) Amount of precipitation

Imbibition

Thawing
Chemical agents

Cold/heat
Precipitation (rain)

-
Mass concentration

Temperature
Amount of precipitation

Natural polymers
Synthetic polymers

Weathering

Chemical agents Mass concentration
Natural polymers

Synthetic polymers
Air humidity Relative air humidity

Absolute air humidity
Radiation Intensity

Bond cleavage Cold/heat
Radiation

Temperature
Intensity

Natural polymers
Synthetic polymers

Mechanical overload Shock
Vibration

Acceleration
Spectral acceleration

density

Solid substances
(depending on their

strength)

Mechanical fatigue Shock
Vibration

Acceleration
Spectral acceleration

density

Solid substances
(depending on their

strength)

Attrition/wear

Air circulation Velocity
Solid substances

(depending on their
surface hardness)

Mechanically active
substances

Mass density (mass per
volume)

Shock Acceleration

Vibration Spectral acceleration
density

Bio-deterioration

Chemical agents Mass concentration

Natural polymers
Synthetic polymers

Fauna (insects, rodents) -
Flora (mold, fungi) -

Cold/wheat Temperature
Air humidity Relative air humidity

Absolute air humidity
Mechanically active

substances (organic dust) Mass density

Temperature overload Cold/heat Temperature
Temperature change rate

Ceramics
Glasses (brittle materials)
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