
machines

Article

Study on Surface Roughness of Gcr15 Machined by
Micro-Texture PCBN Tools

Chen Pan, Qinghua Li *, Kaixing Hu, Yuxin Jiao and Yumei Song

College of Machinery and Vehicle Engineering, Changchun University, Changchun 130022, China;
m17743125369@163.com (C.P.); 13756947307@163.com (K.H.); jiaoyx1025@163.com (Y.J.);
13596163680@139.com (Y.S.)
* Correspondence: liqh@ccu.edu.cn; Tel.: +86-131-960-01761

Received: 5 September 2018; Accepted: 13 September 2018; Published: 17 September 2018
����������
�������

Abstract: This paper applies micro textures to the rake face of PCBN (Polycrystalline Cubic Boron
Nitride) tools, including three types of micro textures that are microgroove textures vertical to the
cutting edge, microgroove textures parallel to the cutting edge, and microhole textures. In this paper,
the effects of different cutting speeds on the surface quality of hardened bearing steel GCr15 by dry
turning with non-texture PCBN tools and micro-texture PCBN tools are studied, and the surface
roughness values obtained by different micro textures were compared and analyzed. The results
showed that, compared to that of non-texture tools, the influence degree of the micro-texture tools
on the machined surface roughness was different. The microhole texture and vertical microgroove
texture were able to effectively reduce the surface roughness of the workpiece, and microhole texture
had the best effective influence on surface roughness, but the parallel microgroove texture increased
surface roughness. The influence of cutting speeds on surface roughness was different due to different
types of micro textures. The influence of micro textures on surface roughness has huge potential for
tool applications.
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1. Introduction

Surface quality, as one of the most important indexes for measuring cutting performance,
has always been the focus of cutting research. Scholars have continuously studied and analyzed
the factors affecting surface quality, such as the plastic deformation of the workpiece, the geometric
shape of the tool, the cutting parameters, and the cooling modes, and combined with the roughness
prediction models, the best processing scheme is successfully summed up to get good surface quality.

In the study of aluminum alloy surface roughness tests, Wan et al. concluded that spindle speed
was the most important factor affecting surface roughness when milling aluminum alloy 6061 at a high
speed, and the milling parameters for obtaining the best surface quality were obtained [1]. Joshua et al.
found that the feed had the greatest influence on surface roughness, followed by the spindle speed,
and the cutting depth had the smallest effect on surface roughness during end milling of aluminum
6061 under minimum quantity lubrication. At the same time, the combination of feed and spindle
speed was more favorable to obtaining good surface quality [2]. The influence of milling speed on
surface roughness was studied by Bonţiu et al. when milling aluminum alloy 7136 [3]. Luo et al.
found that passivated PCD (polycrystalline diamond) tools in turning aluminum alloy 1060 could
reduce surface roughness [4]. Additionally, in the study of the surface roughness of titanium alloy,
Wang et al. showed that applying ultrasonic torsional vibration could obviously reduce the surface
roughness of titanium alloy TC11, and concluded that large amplitude and low milling speed were
beneficial to reducing surface roughness [5]. In the test of milling titanium alloy Ti6Al4V, Li et al. found

Machines 2018, 6, 42; doi:10.3390/machines6030042 www.mdpi.com/journal/machines

http://www.mdpi.com/journal/machines
http://www.mdpi.com
http://www.mdpi.com/2075-1702/6/3/42?type=check_update&version=1
http://dx.doi.org/10.3390/machines6030042
http://www.mdpi.com/journal/machines


Machines 2018, 6, 42 2 of 11

that the roughness of a milled surface increased with the increase of milling speed, feed per tooth,
milling width, and milling depth [6]. Oliaei et al. investigated the influence of built-up edge formation
on surface roughness through microscale orthogonal cutting tests on titanium alloy Ti6Al4V, and found
that the influence of built-up edge on surface roughness varied, depending on the cutting speed and
uncut chip thickness [7]. Du et al. studied the influence of the rake angle, the clearance angle, and the
helix angle of the carbide milling cutter on the surface integrity of titanium alloy TB17, and concluded
that surface roughness increased when increasing the rake angle, the surface roughness reduced when
increasing the clearance angle, and surface roughness showed the trend of first decreasing and then
increasing with the increase of the helix angle [8].

In the study of the roughness of the turning surface, Wang et al. used the regression analysis
method and established the LS-SVM forecast model in the precision turning mirror surface roughness
test; the results showed that the effects of tool nose radius and feed were more significant than those
of depth of cut on surface roughness [9]. The surface roughness of the precision turning optical
lens was studied using response surface methodology. Li et al. concluded that the tool nose radius
had the greatest influence on surface roughness, followed by the feed and the cutting depth [10].
Luo concluded that the most significant effect on surface roughness came from the feed speed; the
cutting speed was second, but the cutting depth had no direct effect on the surface roughness while
turning high strength steel 58SiMn [11]. Khatri et al. attempted to improve the surface finish of
diamond turned silicon with magneto-rheological finishing, and concluded that a smaller gap, high
wheel speed, and high current result in minimum surface roughness [12]. In the study of the roughness
of hardened steel, Suresh et al. made experiments based on the central composite design (CCD)
concept of response surface methodology (RSM). During turning of hardened steel with coated
ceramic tool, the experimental results showed that the feed had the greatest influence on surface
roughness, followed by the cutting speed, and the cutting depth had the least influence [13]. Liu et al.
pointed out that surface roughness would rise along with the speed of grinding wheel, and workpiece
increased within a certain range when grinding hardened steel GCr15 [14]. Krolczyk et al. researched
the surface morphology of duplex stainless steel using the method Power Spectral Density for dry
and MQL/MQCL (Minimum Quantity Lubrication) turning process [15], Krolczyk concluded in the
following study that the application of the MQCL method can lead to the reduction of 3D surface
roughness parameters compared to values reached after dry machining, and surfaces machined
with the use of the MQCL technique can be characterized by a high wear resistance [16]. Liu et al.
proposed a ground surface roughness measurement method to address current problems in the use
of machine vision technology to measure roughness, and the results demonstrated that the surface
roughness measurement method had relatively high accuracy and a relatively wide measurement
range [17]. Chen et al. demonstrated a Nested-ANN (Artificial Neural Network) model predicting
surface roughness, and pointed out that the nested-ANN uses less input variables to obtain superior
prediction accuracy than other models [18].

In view of the current research status and research methods of surface roughness in literature,
this paper uses the micro-texture method, that is, the micro dimension textures processing on the rake
face of tools, and studies the influence of micro textures on the surface roughness of the workpiece.

2. Type of Micro Textures and Test Scheme

2.1. Type of Micro Textures

In order to study the actual situation of cutting parts of micro texture cutting tools, three micro
textures were processed on the rake face of PCBN tools with the Fiber Laser Marking machine
(FLY-M10F) fully enclosed rotary optical fiber laser marking machine. The types of micro textures
included 30 µm microgrooves perpendicular to the cutting edge, 40 µm microgrooves parallel to the
cutting edge, and micro holes of 120 µm in diameter. Table 1 is the micro-texture size. As shown in
Figure 1, the blade is the CNGA120408 PCBN tool. The WYKO N7910 optical profiler was used to
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detect the three-dimensional texture of the micro textures, as shown in Figure 2: Surface morphology
of micro-texture tools.

Table 1. The micro textures’ size.

Type of Microtexture Width/Diameter (µm) Depth (µm) Distance from the Cutting Edge (µm) Number

Vertical microgrooves 30 5 200 10
Parallel microgrooves 40 5 200 8

Microholes 120 5 350 9
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2.2. Test Parameters and Solutions

In this cutting test, the CA6140 lathe was used for turning hardened steel GCr15 with hardness of
58 HRC. Figure 3 is the GCr15 workpiece. The rake angle of the tool was −6◦, the clearance angle was
6◦, the feed was 0.1 mm/r, and the cutting depth was 0.2 mm. The specific plan was as follows:

(1). Dry cutting of hardened steel GCr15 test was carried out using normal PCBN tools (normal
PCBN tools: Non-micro texture PCBN tools) at different cutting speeds of v1 = 60 m/min,
v2 = 72 m/min, v3 = 85 m/min;

(2). The cutting tests of micro-texture PCBN tools (vertical microgroove PCBN tools, parallel
microgroove PCBN tools, and microhole PCBN tools) were carried out respectively, and the
surface roughness of the workpiece was measured with a WYKO N7910 optical profiler, all of
which were compared to the test of normal PCBN tools.
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3. Analysis of Test Results

According to the test scheme, the cutting tests were carried out. The surface roughness data of
GCr15 were measured and analyzed. The effect of micro textures on surface roughness was obtained.

3.1. Surface Roughness of Gcr15 Cut by Normal PCBN Tools

Figure 4 is the 3D topography of GCr15 cut by normal PCBN tools at different cutting speeds.
The observation shows that the surface of GCr15 was the most rough when cutting speed was
v2 = 72 m/min, while the best surface morphology was obtained when v1 = 60 m/min. Randomly
selecting six points was for roughness measurement, which obtained the surface roughness curves.
Figure 5 is the surface roughness curve of GCr15 cut by normal PCBN tools. According to the curve
trend in Figure 5, the surface quality was optimal when cutting speed was v1 = 60 m/min. However,
cutting speed increased to v2 = 72 m/min, because the effect of cutting force increasing on pressure
and friction on the surface of GCr15 was more serious. The heat and cutting temperature of cutting
process both increased. The reason is that, at this cutting speed, the heat discharged during the
cutting process is not as much as the heat generated, resulting in a higher surface temperature of the
workpiece, which leads to the rough of the surface. As the cutting speed increases to v3 = 85 m/min,
the heat is increasingly discharged, the hardened degree of the workpiece surface is less than the
cutting speed v2 = 72 m/min, the surface stress and cutting force of the machined surface are reduced,
and the pressure and friction between the tool and the workpiece can also be reduced; consequently,
the surface quality is improved. In addition, the burrs on the surface of machined Gcr15 have a higher
height than other cutting speeds; Zhou pointed out that the height of burrs first increased and then
reduced with the increase of cutting speeds [19]. The surface burrs of the cutting workpiece were in
accordance with Zhou’s theory in this test.
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3.2. Surface Roughness of Gcr15 Cut by Vertical MicroGroove PCBN Tools

Figure 6 is the 3D topography of GCr15 cut by vertical microgroove PCBN tools at different cutting
speeds, and Figure 7 is the surface roughness curve of GCr15 cut by vertical microgroove PCBN tools.
The analysis of Figure 6 shows that there were different degrees of serrated burrs on machined surfaces
at different cutting speeds, of which the height of the surface burrs at v2 = 72 m/min was higher and
the roughness was more serious, and the serrated burrs were less at v1 = 60 m/min and v3 = 85 m/min.
Observing Figure 7, we can find that the surface roughness at v1 = 60 m/min was smaller than that at
v3 = 85 m/min; however, when cutting speed was v2 = 72 m/min, the surface quality was the worst
and the surface roughness was highest. In the range of cutting speed set by tests, the height of serrated
burrs reached a maximum at cutting speed v2 = 72 m/min, and then decreased with cutting speeds
increasing. The existence of serrated burrs seriously affected surface quality, and also showed that the
vertical microgrooves have no inhibition on serrated burrs of machined workpiece surface.
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3.3. Surface Roughness of Gcr15 Cut by Parallel Microgroove PCBN Tools

Figure 8 is the 3D topography of GCr15 cut by parallel microgroove PCBN tools at different
cutting speeds. Figure 8 shows that the workpiece surface was rougher at v1 = 60 m/min, and the
surface quality at v3 = 85 m/min was better. Figure 9 is the surface roughness curve of GCr15 cut by
parallel microgroove PCBN tools. It can be concluded that the surface roughness decreased with the
increase of cutting speed, which was different from the test results of normal and vertical microgroove
PCBN tools. The analysis shows that the heat dissipation of cutting heat was slower, and the heat
of the workpiece surface was higher in lower speed. The surface temperature was higher and the
plastic deformation of the surface metal was larger, which led to the poor surface quality. In higher
speed cutting, most of the cutting heat on the surface was transmitted with the chip and the knife body,
and the workpiece surface also became hardened during the process of machining, which would also
affect surface quality. Compared to the three diagrams of Figure 8, it was found that the machined
surface at v1 = 60 m/min had slightly serrated burrs, which showed that the lower cutting speed was
not conducive to better surface quality when 40 µm parallel microgroove PCBN tools cut GCr15.
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3.4. Surface Roughness of Gcr15 Cut by Microhole PCBN Tools

Figure 10 is the 3D topography of GCr15 cut by microhole PCBN tools at different cutting speeds.
When cutting speed was v3 = 85 m/min, surface quality was relatively rougher, while the surface
topography at v2 = 72 m/min was smoother. Figure 11 is the surface roughness curve of GCr15 cut
by microhole PCBN tools. Observing the surface roughness curve of GCr15 cut by diameter 120 µm
microhole tools in Figure 11, it can be concluded that the surface roughness of GCr15 was the largest at
v3 = 85 m/min, and the roughness value at v1 = 60 m/min was greater than that of v2 = 72 m/min.
At the same time, it can be seen from Figure 10 that there was not a large number of serrated burrs on
the machined surface turned by microhole PCBN tools, which was different from normal PCBN tools,
vertical microgroove PCBN tools, and parallel microgroove PCBN tools. Consequently, microhole
textures had the effect of inhibiting the serrated burrs.
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4. Analysis of Surface Roughness at Different Speeds

Figure 12 is the comparison of the surface roughness of GCr15 cut by different PCBN tools at
v1 = 60 m/min. According to the curve distribution in Figure 12, the surface roughness of GCr15 cut by
parallel microgroove PCBN tools was the largest, the surface roughness cut by microhole PCBN tools
was minimum, and the surface roughness cut by vertical microgroove PCBN tools was lower than that
of normal PCBN tools. It can be judged that parallel micro grooves were not good for good surface
quality compared to normal tools at v1 = 60 m/min, while microholes and vertical microgrooves had
the effect of reducing surface roughness.
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Figure 12. The comparison of the surface roughness of GCr15 cut by different PCBN tools at
v1 = 60 m/min.

Figure 13 is the comparison of the surface roughness of GCr15 cut by different PCBN tools at
v2 = 72 m/min. Through the analysis of Figure 13, it was found that the surface roughness of the
workpiece machined by vertical-groove tools was higher than that of other tools, and the surface
quality was the worst after cutting. The surface roughness of microhole tools was still the smallest after
cutting. The surface roughness of non-textured tools was also lower than that of parallel-groove tools.
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Figure 14 is the comparison of the surface roughness of GCr15 cut by different PCBN tools
at v3 = 85 m/min. Analyzing Figure 14, it was found that on the contrast of micro-texture tools,
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the maximum surface roughness of GCr15 was produced by parallel microgroove PCBN tools, followed
by vertical microgroove PCBN tools, and the surface roughness was minimized by microhole PCBN
tools. By calculating the average of the surface roughness, we found that the average roughness
of GCr15 cut by normal PCBN tools was 1.79 µm, the average roughness of GCr15 cut by vertical
microgroove PCBN tools was 1.74 µm, while the mean value of GCr15 cut by microhole tools was
only 1.71 µm. It can be seen that micro holes and vertical micro grooves are favorable for reducing the
surface roughness of GCr15 at v3 = 85 m/min.
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5. Conclusions

Through comparison and analysis, it was found that, under experimental cutting speeds,
compared to normal PCBN tools, the surface roughness of GCr15 obtained by parallel microgroove
PCBN tools is larger, and parallel microgroove PCBN tools can’t machine good surface quality. In all
tools, the surface roughness obtained by microhole PCBN tools was the smallest. The surface roughness
obtained by vertical microgroove tools was only larger than that of normal tools at v2 = 72 m/min,
but was less at other cutting speeds. From analyzing the type of micro textures, the microhole texture
was more conducive to the discharge of the cutting heat, and the heat of the cutting area was not
enough to make the workpiece surface seriously deformed; therefore, the surface quality of GCr15
was better. The cutting temperature of the vertical microgroove texture was lower than that of parallel
microgroove texture; moreover, the vertical microgroove texture was parallel to outflow direction of
chips, which can greatly reduce the friction between rake face and chip, so vertical microgroove texture
is favorable for discharging cutting heat. However, a certain angle was formed between the parallel
microgroove texture and the chip outflow direction, and the chip outflows will have friction with the
parallel microgroove texture, which causes a relatively high cutting temperature and a relatively large
deformation degree of workpiece surface; therefore, a parallel microgroove texture is not good for
obtaining good surface quality. The results of this test are as follow:

(1). Compared to normal tools, the microhole texture was the most beneficial to reducing the surface
roughness of workpiece, and the vertical microgroove texture was second, while the parallel
microgroove texture increased the roughness.

(2). When 30 µm vertical microgroove tools turned GCr15 at v2 = 72 m/min, the surface quality was
poor due to serrated burrs on workpiece surface, and the surface roughness of the workpiece
was small at v1 = 60 m/min and v3 = 85 m/min, because lower speed and higher speed were able
to inhibit the serrated burrs and to produce better surface quality.

(3). The surface roughness obtained by 40 µm parallel microgroove tools decreased with the increase
of cutting speed, but was still larger than that of normal PCBN tools.

(4). The surface quality obtained by microhole tools was best in all cutting tests, and microhole texture
had a certain inhibitory effect on serrated burrs.

In this paper, the experimental results achieved certain good results, which expands the
application of micro textures, because previous research applied only more micro-texture methods
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in cemented carbide tools, but this method is used in PCBN tools in this paper. At the same time,
this paper has played a role in promoting the application of micro-texture tools in engineering.
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