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Abstract: A rectangular microchannel heat sink is modeled by employing thermal resistance and
pressure drop networks. The available correlations for both thermal resistance and pressure drop
are utilized in optimization. A multi-objective optimization technique, the prey–predator algorithm,
is employed with the objective to find the optimal values for the heat sink performance parameters,
i.e., thermal resistance and the pumping power of the heat sink. Additionally, a radial basis function
neural network is used to investigate a relationship between these parameters. Full training based on
the prey–predator algorithm with the sum of the squared error function is used to achieve the best
performance of the model. The analysis of variance method is also employed to test the performance
of this model. This study shows that the multi-objective function based on the prey–predator
algorithm and the neural networks is suitable for finding the optimal values for the microchannel
heat sink parameters. The minimum values of the multi-objective function are found to be “pumping
power = 2.79344” and “total thermal resistance = 0.134133”.

Keywords: radial basis function neural network; prey–predator algorithm; microchannel heat sink;
thermal resistance; pressure drop

1. Introduction

These days, the size of electronic devices is reducing, whereas the power density is growing
continuously. Consequently, the electronics industry is facing the thermal management problems.
Microchannels provide a cooling solution for these problems and have been used in several cooling
techniques, heat exchangers, bioengineering, and drug engineering [1–4]. Following Tuckerman
and Pease [5], Zhang et al. [6] extended the use of microchannels to solve thermal management
problems. Later, several researchers including [7–11] used microchannel heat sinks to reduce hydraulic
and thermal resistance to improve the overall performance of chips and other electronic devices.
Pin-fin structures and micro pin-fins were also used to enhance the performance of microchannel heat
sinks [12–16].

An optimization problem consists of a single or multi-objective function with corresponding
decision variables to optimize the functions [17,18]. Its importance in engineering is fundamental to
execute the task concerning finding the optimal solution. Metaheuristic algorithms are optimization
algorithms which try to improve the quality of initial (pseudo-) randomly-generated solutions through
iteration. The prey–predator algorithm (PPA) is a metaheuristic algorithm, introduced by Tilahun and
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Ong [17]. It is inspired by the interaction between a predator and prey of animals in an ecosystem.
The algorithm has been found to be effective when applied to different problems, including radial
basis function neural networks (RBFNNs), weight minimization of a speed reducer, a bi-level problem
model of an electricity market, parameter setting of a grinding process, and single-frequency bus
timetabling [19–22]. It has also been modified to suit combinatorial optimization problems, like the
travel salesman problem, both the standard and clustered traveling salesman problems, and exam
timetabling problem [23]. Furthermore, to boost its performance it has been extended to different
versions [24]. In order to increase controlling the degree of exploration and exploitation a new version
is introduced [25]. Adaptive step length incorporation is another idea to extend the algorithm to
obtain a good approximate result. Comparative study shows that its performance is good and it is a
also generalized swarm-based algorithm where firefly algorithms, the gravitational search algorithm,
and random search are the special cases of this algorithm [26,27].

An artificial neural network (ANN) is one of the artificial inelegance applications [28]. It has
recently been used widely to model human interesting activities in many scopes. The discipline of
neural networks is well developed with wide applications in almost all areas of science [22,29–31].
RBFNN is a feed-forward neural network and has been widely applied in many fields. It is different
from the other neural networks, which possess several distinctive features. Owing to its universal
approximation ability, it is more compact topology and faster learning speed.

In this study, RBFNN is used to construct a model for investigating a relationship between the total
thermal resistance and the pumping power. Additionally, we have used multi-objective optimization
(also known Pareto optimization), and a set of solutions of optimal values of total thermal resistance,
and the pumping power of the heat sink, which depends upon the overall pressure drop in the heat
sink, is obtained. The weighting method is used for obtaining multiple solutions from the Pareto
front, which include better accuracy when compared to classical methods like ideal point method.
Consequently, the present study is about the optimization of multi-objective functions using PPA to
determine the optimal values of total thermal resistance and the pumping power. In the next section,
a literature review related to entropy generation and optimization is described.

2. Literature Review

Several theoretical, numerical, and experimental studies related to the optimization of
microchannel heat sinks have been reported in the literature. Khan et al. [32] employed an entropy
generation minimization method to optimize the overall performance of microchannel heat sinks. They
used existing analytical/empirical correlations for heat transfer and friction coefficients and performed
parametric studies to show the effects of different design variables on the overall performance of
microchannel heat sinks. Abbassi [33] analyzed entropy generation in a uniformly-heated microchannel
heat sink. He considered second law of thermodynamics and derived expressions for local and average
entropy generation rates in dimensionless form. He investigated the effect of influential parameters on
local and total entropy generation. Adham et al. [34] considered the entropy generation minimization
(EGM) as a single-objective function and minimized entropy using a genetic algorithm (GA) for
a rectangular microchannel heat sink. They conducted a parametric study to examine the overall
performance under laminar and turbulent flow conditions. Chen [35] employed the second law
of thermodynamics to investigate the entropy generation in a microchannel for different thermal
boundary conditions. It was demonstrated that the convection effect on entropy and fluid temperature
is negligible for small Peclet numbers. Li and Kleinstreuer [36] performed entropy generation analysis
in a trapezoidal microchannel heat sink. They considered two particle volume fractions (1% and 4%)
in the laminar flow region and discovered that there exists an optimum Reynolds number range for
the maximum performance of microchannel heat sinks (MCHs).

Adham et al. [37] presented a comprehensive review of available studies related to enhancing
overall thermal and hydrodynamic performance of rectangular microchannel heat sinks. They analyzed
and optimized the overall performance of microchannel systems with reference to different parameters.
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They found that the current studies show a dependency on numerical simulations and evolutionary
algorithms. Wang et al. [38] employed an inverse problem method to optimize the geometric design
for microchannel heat sinks using a novel multi-parameter optimization approach. They minimized
the overall thermal resistance with number of channels, channel aspect ratio, and the ratio of channel
width to pitch. They found that an increase in the pumping power reduces overall thermal resistance
of the optimal design. Karathanassis et al. [39] employed GA to optimize a micro heat sink. They
considered two different microchannel configurations and optimized the thermal resistance of the
heat sink and the cooling medium pressure drop through the heat sink. They demonstrated that heat
sinks achieve very low values of thermal resistance. Ndao et al. [40] utilized a multi-objective GA
to determine the optimal thermal design based on the total thermal resistance and pumping power
consumption under a constant pressure drop. They noticed a trade-off between the overall thermal
resistance and pumping power consumption. Normah et al. [41] employed a multi-objective GA and
obtained the optimal values of the hydraulic diameter and wall width to channel width ratio of both
square and circular microchannel heat sinks. They found that with the same hydraulic diameter and
pumping power, circular microchannels have lower thermal resistance. Khan et al. [42] employed
GA to minimize the entropy generation rate in microchannel heat sinks. They demonstrated that the
genetic algorithm gives better overall performance of the microchannel heat sinks.

Shao et al. [43] optimized the shape and size of rectangular microchannels cooling heat sink using
the sequential quadratic programming (SQP) method. They found that the heat transfer performance of
microchannel cooling heat sink is affected intensively by both shape and size of he microchannel. Later,
Shao et al. [44] optimized a multi-layer microchannel heat sink by considering the thermal resistance
and the pressure drop as goal functions. They proposed a double-objective optimization model based
on the thermal resistance network model and used computational fluid dynamics (CFD) software for
numerical simulations. Knight et al. [45] presented a scheme for solving dimensionless equations for
both laminar and turbulent flows in a microchannel heat sink. They found that, for a small pressure
drop through the channels, laminar solutions give lower thermal resistance than turbulent solutions.
Using this fact, they produced a significant improvement in thermal resistance. Hu and Xu [46]
proposed a nonlinear, single-objective, and multi-constrained optimization model for the cooling
of electronic chips using the SQP method. They found that the heat transfer performance of the
microchannel heat sink depends upon its dimensions. Dede [47] employed a multi-physics topology
optimization method to optimize and design a multi-pass branching microchannel heat sink for high
heat flux electronic cooling applications. He found that the derived cold plate exhibits favorable heat
transfer with a low-pressure drop due to multiple passes through the branching microchannel. Hussain
and Kim [48] carried out a numerical investigation of three-dimensional (3-D) fluid flow and heat
transfer in a rectangular microchannel. They optimized the shape of the microchannel using sequential
quadratic programming, response surface approximation, kriging, and radial basis neural network
methods. Kou et al. [49] developed a 3-D numerical model of the microchannel heat sink to optimize
the effects of heat transfer characteristics due to various channel heights and widths. They obtained
the minimum thermal resistance and optimal channel dimensions by using the simulated annealing
method. Kleiner et al. [50] investigated theoretically, and experimentally, a high-performance forced
air cooling scheme for microchannel parallel plate-fin heat sinks. They optimized the dimensions of a
microchannel heat sink and obtained optimal values of thermal resistance, pressure drop, and pumping
power. Yang et al. [30] compared and discussed the flow and thermal modeling of different heat sinks.
They developed a general process for optimization and performed numerical calculations.

3. Microchannel Heat Sinks

The geometry of a microchannel heat sink is shown in Figure 1. The length and width of the heat
sink are assumed to be L and W, respectively. The thickness of the base surface is tb. It is assumed
that the top surface is insulated and uniform heat flux qw is applied at the bottom surface. Air passes
through n rectangular microchannels along the x-axis and takes heat away. It is assumed that each
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channel has a height Hc and width wc. The thickness of each fin is ww. The temperature of the base
surface is supposed to be Tb with an ambient temperature of Ta. The assumed values of parameters
and operating conditions are reported in Table 1.
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Table 1. Assumed operating conditions.

Operating Conditions Assumed Values Operating Conditions Assumed Values

Length of MCH, L (mm) 51 Specific heat of air (kJ/kg·K) 1.007
Width of MCH, W (mm) 51 Kinematic viscosity (m2/s) 1.58 × 10−5

Channel height, Hc (mm) 1.7 Prandtl number of air 0.71
Thermal conductivity of MCH (W/m·K) 148 Heat flux (W/cm2) 15

Thermal conductivity of air (W/m·K) 0.0261 Volume flow rate (m3/s) 0.007
Density of air (kg/m3) 1.1614 Ambient temperature (K) 300

Following assumptions were employed in modeling:

1. Fin tips are adiabatic.
2. Heat and fluid flow are fully developed.
3. The flow is steady, laminar and 2-D.
4. The fluid is incompressible, and the thermophysical properties are constant.
5. Axial conduction is negligible in both the fin and fluid.
6. The contact between fin and base plate is perfect.

3.1. Thermal Resistance Model

The total thermal resistance of the microchannel heat sink is defined as:

Rtot =
Tb − Ta

qw
(1)

where Tb is the base temperature of microchannel heat sink and Ta is the ambient temperature. The total
thermal resistance can also be written as shown in Figure 2 or as in Equation (2).

Rtot = Rcond + Rconv + Rfluid + Rcons (2)
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where Rcond, Rconv, Rfluid and Rcons are the conductive, convective, fluid, and constrictive thermal
resistances and are given by [32,50,51].

Rcond = tb
WLKw

Rconv = 1
WLHav A

Rfluid = 1
mCp

Rcons =
(wW+wc)
πKwWL ln

[
1

sin πww
2(ww+wc)

] (3)

where kw is the thermal conductivity of the heat sink, hav is the average heat transfer coefficient,
.

m is
the mass flow rate and A is the convective heat transfer area of the heat sink given by:

.
m = ρ f G

A = nL(wc + 2ηHc)

With n = W−ww
wc+ww

, number of microchannels, η = tan h(mHc)
mHc

, fin efficiency, and

m =

√
2hav

Kwww
(4)
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Based on hydraulic diameter, Reynolds and Nusselt number can be defined as:

ReDh = UcDh
v f

= 2G
v f n

1
wc+Hc

NuDh = havDh
K f

(5)

With
Dh =

2Hcwc

Hc + wc

where Uc is the velocity of fluid in the microchannel and can be determined from the volume flow rate
given by:

G = nHcwcUc (6)

Following Kim and Kim [52], the Nusselt number for laminar fully-developed flow in a rectangular
microchannel heat sink can be written as:

NuDh = 2.253 + 8.164
(

α

1 + α

)1.5
(7)

which gives the average heat transfer coefficient:

hav =
NuDh K f

2Hc
(1 + α) (8)
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3.2. Pressure Drop Model

The total pressure drop in the heat sink is associated with the power required to move the fluid
across microchannel. This pressure drop dictates the hydraulic resistance of the system. Like thermal
resistance, it also affects the overall performance of the heat sink. It is given by:

∆Ptot = ∆Pce + ∆Pfric (9)

where ∆Pce is the pressure drop due to the abrupt contraction/expansion, and ∆Pfric is the pressure
loss due to core friction (Figure 3). Following Kleiner et al. [50], these pressure drops can be written as:

∆Pce =

[
1.79− 2.32

(
1

1+β

)
+ 0.53

(
1

1+β

)2
]

ρUc
2

2

∆Pfric = n f L
Dh

ρUc
2

2

(10)

where n is the number of channels, Uc is the fluid velocity in the channels, and f is the friction factor.
Following Phillips [53], the friction factor for the fully developed laminar flow can be written as:

f =
24

ReDh

(
1− 1.3553

α
+

1.9467
α2 − 1.7012

α3 +
0.9564

α4 − 0.2537
α5

)
(11)

With α = HC
WC

.
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Once total pressure drop is known, the required pumping power can be determined as follows:

PP = ∆PtotG (12)

where G is the volumetric flow rate, given by Equation (6).
Using Equations (3)–(12), the total thermal heat sink resistance and pumping power can be

determined as a function of air and heat sink material properties as well as heat sink geometry.
For specified dimensions of the heat sink, and properties of air, and heat sink material (Table 1),
the optimum design of a microchannel heat sink can be achieved by minimizing overall resistance as a
function of wc, ww, and G.

4. Solution Approach

4.1. Prey–Predator Algorithm (PPA)

PPA is a metaheuristic algorithm developed for handling complex optimization problems. It is
inspired by the interaction between a carnivorous predator and its prey. The algorithm mimics how
a predator runs after and hunts its prey, where each prey tries to stay within the pack, search for a
hiding place, and run away from the predator.

In the algorithm, a set of initial feasible solutions will be generated and, for each solution, xi,
is assigned a numerical value to show its performance in the objective function called survival value
(SV(xi)). Better performance in the objective function implies a higher survival value. This means for
solutions xi and xj, if xi performs better than xj in the objective function, SV(xi) > SV(xj). A solution with
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the smallest survival value will be assigned as a predator, xpredator, and the rest as prey. Among these
prey, a prey, say xb, where SV(xb) ≥ SV(xi), for all i, is called the best prey. This means the best prey is
a prey with the highest survival value among the solutions.

Once the prey and the predator are assigned, each prey needs to escape from the predator and try
to follow other prey with better survival values or find a hiding place. The predator hunts the weak
prey and scares the others which contribute to the exploration of the solution space. Exploitation is
carried out by the preys, primarily the best prey, by using a local search. The best prey is considered
as the one who has found a secure place and is safe from the predator. Thus, it will only focus on
conducting a local search to improve its survival value. However, the other prey will follow the prey
population with better-surviving values and run away from the predator. In the updating process of
these solutions, there are two issues to deal with, the direction and the step length.

In the algorithm, the movement of an ordinary prey (not the best prey) depends on an algorithm
parameter called the probability of follow up (or follow up prospect). If the follow up expectation is
achieved, which is if a randomly generated number between zero and one from a uniform distribution
is less than, or equal to, the probability of follow up, then the prey will follow other prey with better
survival values and performs a local search; otherwise it will randomly run away from the predator.

Suppose the follow-up probability is met and there is prey with better survival values compared
to xi, say x1, x2, . . . , xs. Mostly, a group of prey tends to stay in the pack and it tries to be with the
nearest pack of prey animals. Therefore, the movement of xi is highly dependent on the distance
between itself and better prey. Hence, the direction of movement of xi can be calculated as follows:

yi = ∑
j

eSV(xj)
v−rij(xj − xi) (13)

where rij = ||xi − xj|| is a distance between xi and xj, and v is an algorithm parameter which plays
the role of magnifying or diminish the effect of the survival value over the distance.

By assigning different values of v, it is possible to adjust the dependency of the updating direction
on the survival value and the distance. If v is too large, then the direction favors the performance than
the distance of the better prey from the solution, this means the prey tries to catch up with the best
pack with little consideration how far that pack is. If v is too small, it implies that the prey prefers to
follow the nearest better pack. Assigning a large or a small value for v will affect the jump size of xi.
Hence, a unit direction will be used to represent the direction as:

ui =
yi
‖yi‖

(14)

Moreover, a local search is done by generating q random directions and taking the best direction,
say yi, among these q directions. To choose yi the survival value will be checked if the solution moves
in the q directions and the direction which results the highest survival value will be taken.

If the follow-up probability is not met, the prey will randomly run way from the predator. This is
done by generating a random direction yrand and comparing the distance between the predator and the
prey if it moves in yrand or −yrand, and the direction which will take the prey away from the predator
will be considered.

Unlike the other ordinary prey, the movement of the best prey will perform only a local search.
It will just move towards the direction which can improve its survival value, from a randomly generated
q direction, or it stays in its current position if no such path exists among the q unit directions.

In the algorithm, the primary task of the predator is to motivate the prey for exploring the solution
space, and it also does the exploration of the solution spaces. Thus, it will chase after the prey with the
lowest survival value and moves randomly in the solution space. Hence, the movement direction will
have two components: random direction, as well as towards the weak prey, x’.

Step length is the other issue related to the updating of solutions. In the carnivorous predation,
a prey which is near to the predator runs faster than other preys. A similar concept is mimicked in such
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a way that a prey with small survival value runs more quickly than a more critical survival valued
prey. Therefore, a prey has a step length λ that is inversely proportional to its survival value. This can
be expressed as the following formulation:

λ =
λmaxrand

|SV(xi)− SV(xpredator)|w
(15)

where rand is a random number from a uniform distribution, 0 ≤ rand ≤ 1 and λmax represents the
size of the maximum jump of a prey. Parameter w influences the dependency of the step length on
the relative survival value. However, for practical purposes, it is also possible to omit the effect of
the survival value in assigning the maximum jump, which eliminates the further study of changes in
survival values to choose the parameter w. Hence, we can just have:

λ = λmaxrand (16)

Furthermore, another step length is a step length for the local search or exploitation purposes and
it is denoted by λmin. The step length for exploitation purposes should be smaller than the exploration
step length, i.e., λmax > λmin.

Summarizing all the points discussed, the movement of the common prey, the best prey, and the
predator can be summarized as follows, and can be summarized as given in Algorithm 1.

Algorithm 1. Prey–predator algorithm.

Algorithm parameter setup
Generate a set of random solution, {x1, x2, . . . , xN}
For Iteration = 1:MaximumIteration

Calculate the intensity for each solution, {I1, I2, . . . , IN} and without losing
generality sort them in brightness from x1 dimmer to xN brightest

Update the predator x1 using Equation (13)
For I = 2:N − 1

If probability_followup ≤ rand
For j = i + 1:N

Move solution i towards solution j using Equation (18)
End

Else
Move solution j using Equation (19)

End
End
Move the best solution, xN, in a promising direction using Equation (20)

end
Return the best result

Movement of an ordinary prey:

(i) If follow up probability is met:

xi ← xi +

(
yi
||yi||

)
λmaxrand +

(
yl
||yl ||

)
λminrand (17)

(ii) If the follow-up probability is not met:

xi ← xi +

(
yr

||yr||

)
λmaxrand (18)
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Movement of the best prey:

xb ← xb +

(
yl
||yl ||

)
λminrand (19)

Movement of predator:

xpredator ← xpredator +

(
yr

||yr||

)
λmaxrand×

 x′ i − xpredator∣∣∣|x′ i − xpredator|
∣∣∣
λminrand (20)

Optimization Using the Prey–Predator Algorithm

The aim of microchannel heat sink optimization is to minimize the multi-objective function
regarding choosing the optimum values for the variables from the feasible region. It is a bi-objective
optimization with objectives of optimizing thermal resistance and the pumping power. By having
a different combination of weights, the weighting method has an advantage of obtaining multiple
solutions from the Pareto front, when compared to classical methods like the ideal point method.
Hence, a weighted approach for the objectives Rtot and Pp can be used as follows:

F = w1Rtot + w2PP (21)

With
w1 + w2 = 1

where w1 and w2 are the weights associated with both performance parameters.
Even though assigning weights is subjective, and sometimes a challenging task for the

decision-maker, a random or pseudo-random weight can be used to generate an approximate Pareto
optimal solution that may well represent deferent corners of the Pareto front. If partial information
can be accessed about the relationship on the weights, then by using that incomplete information
pseudo-random weights can be generated and used. Otherwise, different weights can be generated
randomly and utilized. After updating the weights, PPA is initialized with a population of random
solutions and then upgraded through generations, as shown in Figure 4. The variables for both
performance parameters are α and β.

4.2. Radial Basis Function Neural Networks

RBFNNs typically have three layers: an input layer, a hidden layer with a non-linear activation
function, and a linear output layer, as shown in Figure 5. The input layer is made up of source
neurons that connect the network to its environment. The hidden layer receives the input information,
followed by specific decomposition, extraction, and transformation steps to generate the output
data. Additionally, the hidden layer’s neurons are associated with parameters (centers and widths),
that determine the behavioral structure of the network. The neurons are linked together by parameters
called the weights. The weights are divided into two types: the input weights and the output weights.
The input weights are linked between the input layer and the hidden layer, and equal one for all.
On the other hand, the output weights are linked between the hidden layer and the output layer,
and all of them are variables. The output weights are calculated with the hidden layer parameters by
using the optimization algorithms. In this paper, we have used PPA to determine the optimal values
of the neural networks parameters. The output layer provides the response of the network to the
activation pattern of the input layer that serves as a summation unit [54].
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In this study, we used the RBFNNs to construct a model to represent the relationship between Rtot

and Pp. In the proposed model, the input value is a Pp value, and the output is the corresponding Rtot

value. The following equation is the Gaussian function (the activation function of the hidden neurons)
that we use in RBFNNs [54]:

ϕi(x) = e
−( |xi−µi |

2

2σi
2 )

(22)

where ϕi is the radial basis function in hidden neuron i, (xi =
N
∑

j=1
w′ji ∗ xj) is the input value in hidden

neuron i, µ, and σ2
i are the center and the width of the hidden neuron i, respectively, N is the number

of input neurons that are linked to hidden neuron i, w′ji is the constant input weight from the input



Machines 2018, 6, 26 11 of 18

neuron j to the hidden neuron i which we fixed to be equal 1, and xj is the input value in input neuron
j.

Additionally, the actual values of the output layer can be determined using Equation (23):

FK(xi) =
M

∑
j=1

wi
k ϕj(xi) (23)

where Fk(xi) is the actual output value of the output neuron k which corresponding to the input value xi,
wj

k is the output weight between the hidden neuron j and the output neuron k, and ϕj is the activation
function in a hidden neuron j.

5. Results and Discussion

The simulation is performed using MATLAB R2015. The initial values for both w1 and w2 were
taken randomly 300 times while the number of the iteration in PPA is set to 50, with the number of initial
population of 50, the number of predators set to 5, the local search directions set to 8, and the number
of best prey set to 12. Note that, increasing parameter values of PPA will increase the opportunity to
obtain the best solution, but this will lead to a decrease of the algorithm speed. Therefore, choosing
reasonable parameter values will satisfy the requirement.

As a result of our simulation, one of the final solutions is found to be Pp = 2.79344, Rtot = 0.134133
which correspond to the minimum value of the multi-objective function F = 0.138016, as shown
in Figure 6, demonstrates the two objectives against the weighted sum of the goals. Ultimately,
the solutions converge to the Pareto front as shown in Figure 7. The values, which correspond to the
optimal solution, are shown in Table 2.Machines 2018, 6, x FOR PEER REVIEW  12 of 18 
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Table 2. Parameter values of the optimization result.

Weight w1 Weight w2 wc ww G N

0.99853 0.001462 0.68274 0.551488 0.00556 40.87455

As shown in Figures 6 and 7, different corners of the Pareto front have been well approximated.
A decision-maker can then look at the area based on the subjective judgment and make an informed
decision. Moreover, Figures 6 and 7 show that by increasing the value of Pp by decreasing the values
of Rtot, then the optimal values of F is found. Figures 8 and 9 show the response surfaces of F for the
parameters ww, and G with wc, against the weighted sum of the objective functions, demonstrating the
effectiveness of PPA in finding the optimal solutions. Decreasing the parameters has greater impact on
estimating the optimal values of Rtot and Pp.

In addition, by using the PPA to train the neural network, the results which we found (using
the parameters of the neural networks68 model) are shown in Table 3, with the sum of squared
error (SSE = 0.03709), as shown in Figure 10. This is performed with one input neuron, five hidden
neurons, and one output neuron. PPA is used to optimize all parameters—output weights, the centers,
and widths of the hidden neurons—to improve the performance of RBFNN.

Table 3. Neural network parameters.

Weights Centers Widths

ω1 1.08 µ1 3.83 σ1 1.48
ω2 3.99 µ2 1.28 σ2 3
ω3 3.99 µ3 1.36 σ3 1
ω4 1.11 µ4 2.76 σ4 1.01
ω5 3.78 µ5 4.5 σ5 2.65
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We also used the analysis of variance (ANOVA) method to test the actual values of Rtot with
its corresponding values with RBFNNs. ANOVA is a method for testing the hypothesis that the
population means are equal. In ANOVA, a small p-value leads to rejection of the null hypothesis
of equal means. A large p-value (such as greater than 0.001), fails to reject the null hypothesis of
equal means [55]. Note that the F-test formula (Equation (24)) is used to determine the p-values [55].
In Equation (24), the mean square (MS) represents the variation of variances between and within
samples. For the single factor presented in Table 4, the p-value (0.0013) is greater than the critical value
(0.001), and this indicates that the model adequately predicts the experimental results.

F =
Variance between sampels
Variance within sampels

=
MS (between sampels)
MS (within sampels)

(24)

Table 4. Analysis of variance (ANOVA).

Source of Variation SS df MS F p-Value Critical Values

Between Groups 0.680727 1 0.680727 10.44468 0.001299 0.001
Within Groups 38.32258 588 0.065174 - - -

Total 39.00331 589 - - - -

6. Conclusions

The prey–predator algorithm was used to evaluate the best performance of the heat sinks. Thermal
resistance and pressure drop networks were chosen as a multi-objective function. The performance
within the prey–predator algorithm was found to be in good agreement with the Pareto front. The radial
basis function neural network with the prey–predator algorithm was used successfully to predict the
best performance of the microchannel heat sink. ANOVA statistical testing has shown that the neural
networks are suitable for the prediction of the performance of the heat sinks.
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Nomenclature

A Total surface area (m2)
Ac Cross-sectional area of a single fin (m2)
Dh Hydraulic diameter (m)
f Friction factor
G Volume flow rate (m3·s−1)
Hc Channel height (m)
hav Average heat transfer coefficient (W·m−2·K−1)
k Thermal conductivity (W·m−1·K−1)
L Length of channel in flow direction (m)
m Fin parameter (m−1)
.

m Mass flow rate (kg·s−1)
n Total number of channels
NuDh Nusselt number based on hydraulic diameter
P Pressure (Pa)
Pr Prandtl number
R Resistance (K·W−1)
ReDh Reynolds number based on hydraulic diameter
Q Heat transfer rate (W)
q Uniform heat flux (W·m−2)
Sgen Total entropy generation rate
T Absolute temperature (K)
t Thickness (m)
Uc Average velocity in channels (ms−1)
W Width of heat sink (m)
w Width (m)
Greek letters
α Channel aspect ratio (≡ Hc/wc)
β Fin aspect ratio (≡ ww/wc)
η Fin efficiency
γ Ratio of specific heats
∆P Pressure drop across microchannel (Pa)
ρ Density (kg·m3)
ν Kinematic viscosity (m2·s−1)
Subscripts
a Ambient
av Average
b Base plate
c Channel
ce Contraction/Expansion
cond Conduction
cons Constrictive
conv Convection
Dh Hydraulic diameter
f Fluid
fric Friction
p Power
tot Total
w Wall or Fin
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