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Abstract: The goal of this investigation is to construct a computational procedure for identifying the
modal parameters of linear mechanical systems. The methodology employed in the paper is based
on the Eigensystem Realization Algorithm implemented in conjunction with the Observer/Kalman
Filter Identification method (ERA/OKID). This method represents an effective and efficient system
identification numerical procedure based on the time domain. The algorithm developed in this work
is tested by means of numerical experiments on a full-car vehicle model. To this end, the modal
parameters necessary for the design of active and semi-active suspension systems are obtained for
the vehicle system considered as an illustrative example. In order to analyze the performance of
the methodology developed in this investigation, the system identification numerical procedure
was tested considering two case studies, namely a full state measurement and an incomplete state
measurement. As expected, the numerical results found for the identified dynamical model showed
a good agreement with the modal parameters of the mechanical system model. Furthermore,
numerical results demonstrated that the proposed method has good performance considering
a scenario in which the signal-to-noise ratio of the input and output measurements is relatively
high. The method developed in this paper can be effectively used for solving important engineering
problems such as the design of control systems for road vehicles.

Keywords: applied mechanics; system identification; full-car vehicle model; active and semi-active
suspension systems

1. Introduction

In abstract terms, a mathematical model of a dynamical system is a specific pattern that establishes
relationships between the physical input and output quantities that can also be observed experimentally.
A mathematical model of a dynamical system, therefore, allows for predicting the system dynamic
behavior in response to a given set of external excitations [1]. The complexity of a dynamical model
reflects the model dimension, its general flexibility and the capacity of representing the phenomena of
interest in terms of mathematical laws [2–5]. The complexity of a given dynamical model is strongly
correlated with the mathematical structure of the model and to the information content present in the
observed dataset used in the model development. In this context, the estimation process is an iterative
process in which the mathematical structure of a dynamical model is devised and, once a suitable
mathematical model is constructed for capturing the physics of the system of interest, one can identify
the unknown parameters in the model by using an experimental dataset [6–9]. This process is guided
by the intuition of the analyst and is based on the useful information embedded in the dataset available
from the experimental campaign [10–16]. In the validation process, on the other hand, the analyst
verifies that the selected dynamical model and the identified model parameters are able to reproduce
the input-output datasets that are different from those used for constructing the system model by
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means of the system identification methods. The main advantage of having an analytical model of
a mechanical system is represented by the possibility of performing numerical experiments by using
dynamic simulations, which are inexpensive, safe and can be repeated for reproducing a large number
of different realistic scenarios [17–19]. However, the accuracy and reliability of the numerical results
computed through dynamic simulations completely depend on the quality of the mathematical model
of the physical system identified by using the observed dataset [20–22].

This investigation is grounded in the mathematical tools of the scientific discipline called system
identification. Originally developed in the field of control theory, system identification has become
an independent field of scientific research that is focused on the determination of a mathematical model
for a physical system by using experimental data [23–25]. In order to achieve this goal, the analyst
should combine the information arising from experimental data with the background knowledge on
the functioning of a particular dynamical system. The mathematical techniques used in the field of the
system identification serve a threefold objective, namely: they can be employed for identifying a set of
unknown parameters of a nonlinear mathematical model by using an experimental dataset; they can
be used for the determination of the model order corresponding to a given system; and they allow for
obtaining finite-dimensional linear models of a general mechanical system starting from an interrelated
sequence of input-output data [26,27]. The methods of system identification can be applied to
deterministic systems, as well as to stochastic processes [28,29]. Furthermore, several effective
system identification methods have been developed in the literature such as, for example, adaptive
algorithms, least square methods, gradient-based procedures and multi-innovation identification
methodologies [30–35]. In engineering applications, the methods of system identification are principally
used for performing the experimental modal analysis, which represents the principal topic of interest
of this investigation. To this end, two general approaches can be employed, namely the time-domain
analysis and the frequency-domain analysis [36]. In the time-domain analysis, the input-output
dataset obtained in an experimental campaign is directly provided to the system identification
numerical procedures based on the time domain. On the other hand, in the frequency domain analysis,
the experimental data are filtered and used by means of a Fourier transform, and subsequently, they are
used in a system identification numerical procedure based on the frequency domain. In both cases,
the analyst is interested in the calculation of the number of normal modes and natural frequencies
necessary for constructing a reliable dynamic model of a given mechanical system without directly
deriving the system equations of motion [37–40].

In mechanical engineering applications, various studies focused on the active and passive
control problem of machines and structures based on the mathematical techniques developed in
the field of system identification and optimal control can be found [41–44]. The optimal control
problem is particularly challenging in the case of rigid and flexible multibody systems, which
represent mechanical systems formed by continuum bodies, kinematic joints, force fields and control
actuators [45–50]. Another important application of the system identification scientific discipline is
the refinement of a finite element model through dynamic testing for the design of vibration control
systems based on open-loop and closed-loop control schemes [51–54]. The methodologies of time
domain analysis employed in the general area of applied system identification are of interest for this
investigation because the state-space models obtained through these numerical procedures can be
readily used for developing effective control actions employing well-established and robust algorithms,
such as, for example, the pole placement method, the linear-quadratic regulator technique and the
H-infinity method, as well as more advanced nonlinear control approaches [55–61]. In the case of
the parametric identification problem, one needs to construct analytical expressions in terms of the
desired parameters and correlate them with experimental data in order to identify the parameters of
interest [62,63]. For this purpose, simple least-square methods, as well as more advanced
gradient-based optimization techniques relying on the adjoint method can be used for minimizing the
error between the time responses observed in experimental measurements and the time evolutions
predicted by the mathematical model based on the unknown parameters [64–69]. On the other hand,
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in the case of the model identification problem in the time domain, one needs to find a linear dynamical
model directly that embodies the best fit for an input and output dataset measured for a given
mechanical system. The model identification problem is based on analytical techniques and numerical
linear algebra methods that are of interest for this work and, therefore, are discussed in this paper.

This manuscript is subdivided as follows. In Section 2, the mathematical background related to
the system identification numerical procedure developed in this investigation is provided. In Section 3,
a full-car mechanical model of a standard road vehicle is analyzed and used as a demonstrative
example for the system identification numerical procedure considered in this work. In Section 4,
the summary of the paper, the conclusions of these investigations and a discussion about the future
directions of research are reported.

2. System Identification Algorithm

This section describes the background material necessary for the analytical development and
the computer implementation of the system identification numerical procedure employed in this
investigation for obtaining the modal parameters of a mechanical system characterized by a linear
mathematical structure.

2.1. Representation of the Dynamical Model in the Space of States

In this subsection, the key aspects of the mathematical description of a mechanical system
considering a representation in the space of states are illustrated. For this purpose, the dynamic
equations of a mechanical system having a linear mathematical structure are considered. The equations
of motion form a coupled set of n2 second-order linear ordinary differential equations, where n2 is
the number of the generalized coordinates used in the mathematical model that form an independent
set of time-varying parameters. In particular, assume that M, R and K represent the mass, damping
and stiffness matrices, respectively, of a mechanical system described by a linear dynamical model.
The dynamic equations can be written in matrix form given by:

M ẍ(t) + R ẋ(t) + K x(t) = F(t) (1)

where the variable t is the continuous time, while x(t) is the generalized displacement vector, ẋ(t) is the
generalized velocity vector, ẍ(t) is the generalized acceleration vector and F(t) is an external force that
is known as an explicit function of time. One can record the time response of the mechanical system of
interest considering an output vector denoted with y(t), which is formed by m measurements. Thus,
the output vector is a function of time that is described by a set of output equations given by:

y(t) = Ca ẍ(t)+Cv ẋ(t)+Cd x(t) (2)

where Ca, Cv and Cd are output influence matrices associated with the generalized accelerations,
velocities and displacements, respectively. The influence matrices associated with the output vector
define the relation between the configuration vectors and the output measurements available in
practical applications that are contained in the measurement vector. One can denote with z(t) the state
vector of the mechanical system defined as follows:

z(t) =

[
x(t)
ẋ(t)

]
(3)

The external generalized forces acting on the mechanical system are defined by the r input
quantities, which are grouped in the input vector that is denoted with u(t). One can, therefore, use the
state vector z(t), as well as the generalized force vector u(t) for rewriting the differential set of dynamic
equations and the algebraic measurement equations as follows:
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ż(t) = Ac z(t) + Bc u(t), y(t) = Cz(t) + Du(t) (4)

where Ac denotes the state matrix represented in the continuous time domain, Bc denotes the state
influence matrix represented in the continuous time domain, C is referred to as the measurement
influence matrix and D is called the direct transmission matrix. One can explicitly compute these
state-space matrices starting from the system mechanical model represented in the configuration space
in the following way:

Ac =

[
O I

−M−1 K −M−1 R

]

Bc =

[
O

M−1 B2

] ,


C =

[
Cd − Ca M−1 K Cv − Ca M−1 R

]
D = Ca M−1 B2

(5)

where B2 is a constant Boolean matrix that characterizes the structure of the external generalized forces
as linear functions of the inputs. The Boolean matrix B2 associated with the input vector u(t) defines
the following matrix equation:

F(t) = B2 u(t) (6)

The set of Equation (4) constitutes a state-space model of a mechanical system characterized by a
linear dynamics derived considering a continuous-time representation. Moreover, one can construct the
discrete-time counterpart of the continuous-time state space model of a dynamical system associated
with Equation (4), leading to the following set of equations:

z(k + 1) = Az(k) + Bu(k), y(k) = Cz(k) + Du(k) (7)

where the variable k denotes the discrete time, A is the state matrix expressed in the discrete time
domain and B is the state influence matrix represented in the discrete time domain. The transformation
in the space of states from the continuous-time model of the mechanical system to the discrete-time
model is necessary because, in practical applications, the input and output data are acquired in
a discrete fashion. Consequently, the discrete-time model of the mechanical system of interest given by
Equation (7) represents the basic set of equations necessary for the development of a class of system
identification numerical procedures based on the time domain that are suitable for handling general
mechanical models of linear dynamical systems. In particular, starting from the continuous-time
matrices Ac and Bc, one can construct the corresponding discrete-time matrices A and B by performing
a time sampling of the state-space model. By doing so, one can write:

A = eAc ∆t, B =
∫ ∆t

0
eAc τdτ Bc (8)

where ∆t denotes the constant time step used in the discretization process for creating an equally-spaced
time grid. The matrices C and D that appear in the measurement equations, on the other hand, are not
affected by the time discretization because the measurement equations are algebraic equations.

2.2. Definition of the Markov Parameter Set

In this subsection, the Markov parameter set associated with a mechanical system is introduced.
To this end, the set of Equation (7) that forms the state-space representation of a linear dynamical
system based on a discrete-time description is considered. For simplicity, assume that the set of initial
conditions is homogeneous, namely z(0) = 0. Thus, by recursively solving the state-space Equation (7)
and considering the entire time history of the input vector u(k), one obtains:
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z(k) =
k

∑
j=1

Aj−1 Bu(k− j), y(k) = C
k

∑
j=1

Aj−1 Bu(k− j) + Du(k) (9)

In order to compute the response of the mechanical system to an impulse excitation corresponding
to a given entry of the input vector of the input variables, one can consider separately the influence
on the time response of an impulsive excitation applied to each entry of the input vector and exploit
the principle of superposition of effects that characterize each linear dynamical system. By doing so,
one can assemble the analytical results into a set of impulse-response matrices Yk having dimensions
m by r known as system Markov parameters and given by:

Y0 = D , Y1 = C B , Y2 = C A B , . . . , Yk = C Ak−1 B (10)

Since the structural matrices that define the discrete-time dynamical model in the state-space
as reported in Equation (7) are incorporated in the set of Markov parameters, these parameters can
be used for identifying a mathematical model of a linear dynamical system obtained from a set
of input-output experimental data. Employing the set of Markov parameters, one can rewrite the
measurement equations as follows:

y(k) =
k

∑
j=0

Yj u(k− j) (11)

The set of Equation (11) represents an input-output mathematical relationship associated with
the state-space model of the mechanical system based on the discrete time domain in which the
contribution to the output vector y(k) at time step k is obtained from the time history of the input
vector u(k) weighted by the sequence of the system Markov parameters Yk given by Equation (10).

2.3. Representation of the Observer Model in the Space of States

In this subsection, the development of a state-space model associated with a state estimator used
for predicting the dynamic behavior of a mechanical system is discussed. The state-space description
of the dynamical system is based on the definition of the state vector z(k), which allows for obtaining
the relation between the input and output vectors u(k) and y(k) associated with the mechanical system.
In practical applications, the state vector is not directly accessible from experimental measurements,
and therefore, the introduction of a state observer denoted with the rectangular matrix G becomes
necessary. By introducing the state observer in the state-space model of a mechanical system based on
the discrete time domain, one obtains:

ẑ(k + 1) = Āẑ(k) + B̄v(k), ŷ(k) = Cẑ(k) + Du(k), v(k) =

[
u(k)
y(k)

]
(12)

where ẑ(k) is an estimated or observed discrete-time state vector and ŷ(k) is an estimated or observed
discrete-time measurement vector. The resulting state matrix and influence matrix Ā and B̄ are
modified by the introduction of the state estimator represented by the observer matrix G as follows:

Ā = A + GC, B̄ =
[

B + GD −G
]

(13)

The set of Equation (12) defined in the discrete time domain forms an observer-based state-space
model of the linear mechanical system of interest. In Equation (12), the observer matrix G should be
designed in order to change the eigenvalues of the state matrix A and lead to an asymptotically stable
dynamical system characterized by the observer state matrix Ā. For a sufficiently large time step k, if the
estimated output vector ŷ(k) tends to the actual measurement vector y(k) obtained from experimental
measurements, then the estimated state ẑ(k) should approach the real state z(k), which is not directly
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measurable. Furthermore, the discrete-time observer state-space model given by Equation (12) is also
useful to cope with the uncertainties in the mathematical model that describes the mechanical system,
for handling the noise disturbances which affect the input and output measurements and in the case of
unknown initial conditions.

2.4. Definition of the Markov Parameter Set Associated with the Sate Observer

In this subsection, the Markov parameter set associated with an observer-based state-space model
of a mechanical system is introduced. The set of the observer Markov parameters can be calculated in
the discrete time domain by recursively solving the observer state-space model given by Equation (12)
leading to the following set of equations:

Ȳ0 = D, Ȳ1 = CB̄, Ȳ2 = CĀB̄, . . . , Ȳk = CĀk−1 B̄ (14)

where the constant matrices Ȳk that appear in this sequential set are referred to as the Markov
parameters of the observed system. In general, the set of the observer Markov parameters Ȳk can be
rewritten as:

Ȳk =
[

Ȳ(1)
k −Ȳ(2)

k

]
, Ȳ(1)

k = C(A + GC)k−1(B + GD), Ȳ(2)
k = C(A + GC)k−1 G (15)

The recursive solution of the discrete-time observer state-space model given by Equation (12)
based on a zero set of initial conditions leads to the following equations:

x̂(k) =
k

∑
j=1

Āj−1 B̄v(k− j), ŷ(k) = C
k

∑
j=1

Āj−1 B̄v(k− j) + Du(k) (16)

Furthermore, by using the definition of the observer Markov parameter given by Equation (14),
one can rewrite the input-output sequence description associated with a linear dynamical system
as follows:

ŷ(k) =
p

∑
j=1

Ȳj v(k− j) + D u(k) (17)

In this equation, the output vector ŷ(k) estimated by using the observed model tends to the actual
measured output y(k) for a large time step k provided that the estimation error closely approaches
zero. Therefore, one can assume that, for a sufficiently large number denoted with p, the observer
Markov parameters Ȳk can be truncated for a sufficiently large time step k such that k > p. Therefore,
the sequence of observer Markov parameters Ȳk represents a finite and compact set of rectangular
matrices, which can be effectively used for computing the sequence of system Markov parameters Yk
starting from input-output measurements of the vectors u(k) and y(k).

2.5. Computational Algorithm for the Markov Parameter Set

In this subsection, a computational algorithm for the calculation of the set of Markov parameters
Yk associated with the mechanical system of interest is presented. For this purpose, consider the
input-output sequence description given by Equation (11). Assuming a sequential set of l different
discrete time steps k from k = 0 to k = l − 1, one can rewrite the input-output sequence description
given by Equation (11) using a matrix notation as follows:

ỹ = YU (18)

where:
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Y =


YT

0
YT

1
YT

2
...

YT
l−1



T

, ỹ =


yT(0)
yT(1)
yT(2)

yT(l − 1)


T

, U =


u(0) u(1) . . . u(l − 1)

0 u(0) . . . u(l − 2)
...

...
. . .

...
0 0 . . . u(0)

 (19)

In Equation (18), the matrix denoted with ỹ is an m× l matrix formed by the measured output
vectors, the matrix denoted with Y is a matrix of dimensions m× rl, which contains the sequence
of unknown Markov parameters, and the matrix denoted with U is a rl × l matrix composed of
known input measurements. Therefore, Equation (18) represents the correlation between the input
and output sequences of time histories described by Equation (11). Since for a sufficiently large p, it is
possible to replace the input-output description given by Equation (11) with the observer input-output
relationship given by Equation (17) with a good approximation, one can approximate the input-output
description given by Equation (18) employing the following matrix equation:

ỹ = ŶÛ (20)

where:

Ŷ =


ȲT

0
ȲT

1
ȲT

2
...

ȲT
p



T

, ỹ =


yT(0)
yT(1)
yT(2)

yT(p)


T

, Û =


u(0) u(1) . . . u(p) . . . u(l − 1)

0 u(0) . . . u(p− 1) . . . u(l − 2)
...

...
. . .

... . . .
...

0 0 . . . u(0) . . . u(l − p− 1)

 (21)

Therefore, a good approximation for the numerical solution of the set of Markov parameters
associated with the observed mechanical system that appear in Equation (20) can be found in the
following way:

Ŷ = ỹÛ+ (22)

where the matrix Û+ indicates the Moore–Penrose pseudoinverse matrix of the matrix Û. Subsequently,
the Markov parameters Yk can be calculated by using the following recursive equations:

D = Y0 = Ȳ0,


Yk = Ȳ(1)

k −
k
∑

i=1
Ȳ(2)

i Yk−i , k = 1, 2, . . . , p

Yk = −
p
∑

i=1
Ȳ(2)

i Yk−i , k = p, p + 1, . . .
(23)

This set of recursive equations can be effectively used for calculating the set of Markov parameters
Yk from the set of Markov parameters related to the observed system Ȳk identified employing input
and output experimental measurements.

2.6. Definition of the Markov Parameter Set Associated with the Observer Gain

In this subsection, the definition of an additional set of Markov parameters called observer gain
Markov parameters is provided. This additional set of Markov parameters Y0

k is defined in a recursive
fashion employing the following equations:

Y0
1 = C G , Y0

2 = C A G , . . . , Y0
k = C Ak−1 G (24)

The set of observer gain Markov parameters denoted with Y0
k can be obtained from the identified

set of Markov parameters associated with the observed state-space model Ȳk by means of the
following equations:
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Y0
1 = CG = Ȳ(2)

1 ,


Y0

k = Ȳ(2)
k −

k−1
∑

i=1
Ȳ(2)

i Y0
k−i , k = 2, . . . , p

Y0
k = −

p
∑

i=1
Ȳ(2)

i Y0
k−i , k = p + 1, . . .

(25)

One can consider a combination of the system Markov parameters with the observer gain Markov
parameters given by the following matrix:

Γk =
[

Yk Y0
k

]
(26)

The combined set of Markov parameters encapsulated in the matrix Γk can be effectively
employed for identifying the discrete-time state-space model characterized by the structural matrices
A, B, C and D associated with a given mechanical system. This approach offers several advantages.
For instance, an optimal rectangular matrix associated with the state estimator G is obtained directly by
using the system identification numerical procedure. Furthermore, the use of the state estimator allows
for reducing the number of Markov parameters necessary for the subsequent computer implementation
of this system identification numerical procedure.

2.7. State-Space System Identification Numerical Procedure

In this subsection, the system identification numerical procedure developed in the paper is
discussed. The proposed numerical procedure is based on the use of the Eigensystem Realization
Algorithm (ERA) in conjunction with the Observer/Kalman Filter Identification (OKID) method [70].
The ERA/OKID procedure is a system identification method based on the time domain that is capable
of computing the discrete-time set of the system and the observer gain matrices employing the
identified set of Markov parameters included in the matrix Γk. This algorithm can be effectively
employed for performing the experimental modal analysis of linear mechanical systems such as the
full-car vehicle model of interest for this investigation. For this purpose, the first step of the proposed
system identification numerical procedure is the determination of the combination of the system and
observer gain Markov parameters discussed in the previous subsection of the paper. Subsequently,
the next step of the identification procedure is focused on the construction of the generalized Hankel
matrix H̄(k− 1) defined as:

H̄(k− 1) =


Γk Γk+1 . . . Γk+β−1

Γk+1 Γk+2 . . . Γk+β
...

...
. . .

...
Γk+α−1 Γk+α . . . Γk+α+β−2

 (27)

For instance, in the case of the first time step, one has k = 1. Thus, it is possible to write:

H̄(0) =


Γ1 Γ2 . . . Γβ

Γ2 Γ3 . . . Γβ+1
...

...
. . .

...
Γα Γα+1 . . . Γα+β−1

 (28)

where α and β are integer numbers. By decomposing the generalized Hankel matrix denoted with H̄(0)
employing the Singular Value Decomposition (SVD), one obtains the following matrix factorization:

H̄(0) = R̄ Σ̄ S̄T (29)
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where the matrices R̄ and S̄ are formed by orthonormal column vectors, while Σ̄ is a non-zero
rectangular matrix that is given by:

Σ̄ =

[
Σ̄n̂ O
O O

]
(30)

where:
Σ̄n̂ = diag

[
σ1 σ2 . . . σn̂

]
(31)

where σi , 1 = 1, 2, . . . , n̂ represent the identified singular values of the generalized matrix indicated
with H̄(0). Furthermore, denoting with R̄n̂ and S̄n̂ the rectangular matrices composed of the first
n̂ columns of the matrices R̄ and S̄, one can write the matrix H̄(0) and the pseudoinverse matrix
H̄+(0) as:

H̄(0) = R̄n Σ̄n S̄T
n , H̄+(0) = S̄n Σ̄−1

n R̄T
n (32)

By examining the magnitudes of the singular value σi , one can estimate the order n̂ of the model
of the mechanical system under examination. To this end, one can keep in the identified dynamical
model the normal modes associated with relatively high magnitudes and discard the singular values
corresponding to relatively low magnitudes. On the other hand, assuming a given model order n̂ of
the linear mechanical system under examination, one needs to assemble another generalized Hankel
matrix denoted with H̄(1) necessary for the calculation of the discrete-time structural matrices that
identifies the dynamical model of the mechanical system. Therefore, one can define the generalized
matrix H̄(1) given by:

H̄(1) =


Γ2 Γ3 . . . Γβ+1
Γ3 Γ4 . . . Γβ+2
...

...
. . .

...
Γα+1 Γα+2 . . . Γα+β

 (33)

At this final stage, one can mathematically formulate in the discrete time domain a mechanical
model represented in the state-space obtained by using the proposed system identification numerical
procedure that is mathematically expressed by the following equations:

Â = Σ̄−1/2
n R̄T

n H̄(1) S̄n Σ̄−1/2
n ,

[
B̂ Ĝ

]
= Σ̄−1/2

n S̄T
n Er+m, Ĉ = ET

m R̄n Σ̄−1/2
n (34)

where Â, B̂, and Ĉ respectively represent the identified structural matrices represented in the space
of states that are associated with the identified model in the discrete time domain, D̂ denotes the
identified direct transmission matrix that is directly obtained in the previous step of the system
identification numerical procedure where the computation of the Markov parameter set is carried out
and Ĝ represents the identified observer gain matrix. The matrices Em and Er+m indicate constant
Boolean matrices that are defined as follows:

ET
m =

[
Im Om . . . Om

]T
(35)

ET
r+m =

[
Ir+m Or+m . . . Or+m

]T
(36)

Finally, the modal factorization of the identified state matrix Â can be readily computed as follows:

Â Ψ̂ = Ψ̂ Λ̂ (37)

where Λ̂ indicates the identified eigenvalue matrix and Ψ̂ denotes the identified eigenvector matrix
both represented in the discrete time domain. By converting the identified discrete-time state-space
model to the identified continuous-time state-space model, the modal decomposition of the identified
system state matrix Âc leads to the identification of the diagonal matrix Λ̂c of dimension n̂ by n̂
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containing the system eigenvalues, which can be used for obtaining the system natural frequencies,
as well as the damping ratios of the mechanical system.

3. Demonstrative Example

In this section, a full-car mechanical model of a road vehicle is considered as a demonstrative
example for the implementation of the system identification numerical procedure developed in this
investigation. The computational method elaborated in this work is applied to the system identification
problem of the vertical dynamics of a standard road vehicle. By doing so, the proposed method
represents also a useful mathematical tool for identifying the modal parameters necessary for the
optimal design of active and semi-active suspension systems. In order to demonstrate this fact, consider
the mechanical system showed in Figure 1.

A

B

C

D

R1mR1

O1

O2

O3

O4

R3

R4

R2

_
x

_ _

_
y

_
z

mR2

mR4

mR3

R1k O1

R2O2k

R3O3k

R4O4k

R1Ak

R2Bk

R3Ck

R4Dk

mG
Ixx

Iyy

R1Ar

R1O1r

R2Br

R2O2r

R4Dr

R4O4r

R3Cr

R3O3r

G

2L
2H _ _

Figure 1. Full-car model.

In the mechanical model of the full-car system represented in Figure 1, the following numerical
data illustrated in the same figure are assumed:

L = 1.2(m), H = 0.7(m)

mG = 1400 (kg), Ix̄x̄ = 691(kg ·m2), Iȳȳ = 1367(kg ·m2)

mR1 = 5 (kg), mR2 = 5 (kg), mR3 = 5 (kg), mR4 = 5 (kg)
kR1 A = 3800(N/m), kR1O1 = 380(N/m)

kR2B = 3800(N/m), kR2O2 = 380(N/m)

kR3C = 4000(N/m), kR3O3 = 400(N/m)

kR4D = 4000(N/m), kR4O4 = 400(N/m)

rR1 A = 40(N · s/m), rR1O1 = 0.1(N · s/m)

rR2B = 40(N · s/m), rR2O2 = 0.1(N · s/m)

rR3C = 50(N · s/m), rR3O3 = 0.2(N · s/m)

rR4D = 50(N · s/m), rR4O4 = 0.2(N · s/m)

(38)

The full-car vehicle model of the mechanical system considered as a case study has n2 = 7 degrees
of freedom. In particular, three degrees of freedom are related to the motion of the chassis, and four
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degrees of freedom describe the configuration of the wheels. In order to represent the vertical dynamics
of a standard road vehicle, one can assume the following vector of generalized coordinates:

x(t) =

[
xc(t)
xw(t)

]
, xc(t) =

 zG(t)
φ(t)
ϑ(t)

 , xw(t) =


zR1(t)
zR2(t)
zR3(t)
zR4(t)

 (39)

where xc(t) denotes the generalized coordinate vector associated with the three degrees of freedom of
the vehicle chassis, xw(t) denotes the generalized coordinate vector associated with the four degrees of
freedom of the vehicle wheels, zG(t) is the vertical displacement of the vehicle centroid, φ(t) represents
the vehicle roll angular displacement, ϑ(t) denotes the vehicle pitch angular displacement, while
zR1(t), zR2(t), zR3(t) and zR4(t) identify the vertical displacement of the four wheels of the vehicle.
Using the analytical methods of Lagrangian mechanics, the system equations of motion can be written
in a compact matrix form given by:

M ẍ(t) + R ẋ(t) + K x(t) = B2 u(t) (40)

where M, R and K are respectively the system generalized mass, damping and stiffness matrices.
For the full-car vehicle system, the system structural matrices are defined as follows:

M =

[
Mc,c Mc,w

MT
c,w Mw,w

]
, R =

[
Rc,c Rc,w

RT
c,w Rw,w

]
, K =

[
Kc,c Kc,w

KT
c,w Kw,w

]
(41)

where:

Mc,c = diag (m1,1, m2,2, m3,3) , Mc,w = O, Mw,w = diag (m4,4, m5,5, m6,6, m7,7) (42)

Rc,c =

 r1,1 r1,2 r1,3

r1,2 r2,2 r2,3

r1,3 r2,3 r3,3

 , Rc,w =

 r1,4 r1,5 r1,6 r1,7

r2,4 r2,5 r2,6 r2,7

r3,4 r3,5 r3,6 r3,7

 , Rw,w = diag (r4,4, r5,5, r6,6, r7,7) (43)

Kc,c =

 k1,1 k1,2 k1,3

k1,2 k2,2 k2,3

k1,3 k2,3 k3,3

 , Kc,w =

 k1,4 k1,5 k1,6 k1,7

k2,4 k2,5 k2,6 k2,7

k3,4 k3,5 k3,6 k3,7

 , Kw,w= diag (k4,4, k5,5, k6,6, k7,7) (44)

The entries of the mass, damping and stiffness matrices M, R and K of the full-car vehicle model
are respectively defined as follows:{

m1,1 = mG , m2,2 = Ix̄x̄ , m3,3 = Iȳȳ,
m4,4 = mR1 , m5,5 = mR2 , m6,6 = mR3 , m7,7 = mR4

(45)


r1,1 = rR1 A + rR2B + rR3C + rR4D, r1,2 = (−rR1 A + rR2B + rR3C − rR4D)L,
r1,3 = (−rR1 A − rR2B + rR3C + rR4D)H, r2,2 = (rR1 A + rR2B + rR3C + rR4D)L2,
r2,3 = (rR1 A − rR2B + rR3C − rR4D)L H, r3,3 = (rR1 A + rR2B + rR3C + rR4D)H2

(46)


r1,4 = −rR1 A, r1,5 = −rR2B, r1,6 = −rR3C, r1,7 = −rR4D,
r2,4 = rR1 AL, r2,5 = −rR2BL, r2,6 = −rR3CL, r2,7 = rR4DL,
r3,4 = rR1 A H, r3,5 = rR2BH, r3,6 = −rR3C H, r3,7 = −rR4D H

(47)

{
r4,4 = rR1 A + rR1O1 , r5,5 = rR2B + rR2O2 ,
r6,6 = rR3C + rR3O3 , r7,7 = rR4D + rR4O4

(48)
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k1,1 = kk1 A + kk2B + kk3C + kk4D, k1,2 = (−kk1 A + kk2B + kk3C − kk4D)L,
k1,3 = (−kk1 A − kk2B + kk3C + kk4D)H, k2,2 = (kk1 A + kk2B + kk3C + kk4D)L2,
k2,3 = (kk1 A − kk2B + kk3C − kk4D)L H, k3,3 = (kk1 A + kk2B + kk3C + kk4D)H2

(49)


k1,4 = −kk1 A, k1,5 = −kk2B, k1,6 = −kk3C, k1,7 = −kk4D,
k2,4 = kk1 AL, k2,5 = −kk2BL, k2,6 = −kk3CL, k2,7 = kk4DL,
k3,4 = kk1 A H, k3,5 = kk2BH, k3,6 = −kk3C H, k3,7 = −kk4D H

(50)

{
k4,4 = kk1 A + kk1O1 , k5,5 = kk2B + kk2O2 ,
k6,6 = kk3C + kk3O3 , k7,7 = kk4D + kk4O4

(51)

Moreover, the matrices Ac, Bc, C and D, which define the dynamical model of the mechanical
system represented in the space of the states can be obtained employing Equation (5). By using the
numerical data mentioned before, one can obtain the following set of eigenvalues of the matrix Ac of
the full-car vehicle model referred to the continuous-time state-space model:

λc =



−0.000679631534926− 1.000060958944305i
−0.000679631534926 + 1.000060958944305i
−0.001824162059052− 1.649653050985886i
−0.001824162059052 + 1.649653050985886i
−0.001903029499927− 1.690586134886786i
−0.001903029499927 + 1.690586134886786i
−4.106541506576899− 28.820008747004341i
−4.106541506576899 + 28.820008747004341i
−4.122471271764537− 28.923525529145532i
−4.122471271764537 + 28.923525529145532i
−5.109200251567970− 29.529493708725091i
−5.109200251567970 + 29.529493708725091i
−5.147612535719656− 29.566797251714874i
−5.147612535719656 + 29.566797251714874i



(52)

where i =
√
−1 and the eigenvalue vector λc has nc = 14 complex conjugate entries since the full-car

vehicle system is a damped mechanical system described by a vector of n2 = 7 generalized coordinates;
therefore, the dimension of the system state vector is n = 14.

3.1. Case Study A

In this subsection, the first case study, referred to as Case Study A, is discussed. In this case
study, it is assumed that the whole set of the system degrees of freedom is perturbed by an external
source of energy, and the corresponding time responses are recorded. In order to consider a realistic
scenario, it is assumed that only the measurements of the system generalized accelerations are available.
Thus, suppose that one is capable of measuring the m = 7 accelerations corresponding to all the system
degrees of freedom. Furthermore, assume that the r = 7 forces applied on the mechanical system can
be recorded, as well. In this case, the matrices Ca and B2 are respectively given by:

Ca =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(53)
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B2 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


(54)

In this numerical example, a time interval of interest equal to T = 30 (s) is considered, and it is
assumed that the input perturbations can be modeled by white noises. The force acting on the vertical
degree of freedom of the full-car system is shown in Figure 2 as an example.
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Figure 2. Vertical input force on the chassis: Case Study A.

By means of a dynamical simulation carried out in the time domain, one can obtain the generalized
displacements, velocities and accelerations of the full-car system corresponding to the external
excitations. The vertical acceleration of the chassis of the vehicle is shown in Figure 3 as an example.
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Figure 3. Vertical output acceleration of the chassis: Case Study A.

In this numerical example, noise-free data are considered. The use of the system identification
procedure applied to the output and input measurements allows for identifying the set of Markov
parameters associated with the state-space observed system given by Ȳk. Subsequently, one can
determine the Markov parameters associated with the actual state-space mechanical system indicated
with Yk and the Markov parameters associated with the observer gain denoted with Y0

k . Employing
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the set of identified Markov parameters, one can assemble the generalized Hankel matrices H̄(0) and
H̄(1) required for identifying the state-space model. The generalized matrix H̄(0) obtained in Case
Study A features a set of singular values shown in Figure 4.
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Figure 4. Singular value magnitudes: Case Study A.

In this case, a sharp fall in singular values take places in correspondence with the identified
model order of the system state-matrix, as shown in Figure 4. By using the identified singular values,
a system state-space model can be determined following the identification system procedure discussed
in the paper. The identified state-matrix Âc corresponding to the first case study has the following set
of eigenvalues:

λ̂c =



−0.000679628037077− 1.000060976611298i
−0.000679628037077 + 1.000060976611298i
−0.001824161036367− 1.649653053041897i
−0.001824161036367 + 1.649653053041897i
−0.001903029622820− 1.690586134787741i
−0.001903029622820 + 1.690586134787741i
−4.106541506574578− 28.820008747003474i
−4.106541506574578 + 28.820008747003474i
−4.122471271752660− 28.923525529151167i
−4.122471271752660 + 28.923525529151167i
−5.109200251554265− 29.529493708718793i
−5.109200251554265 + 29.529493708718793i
−5.147612535695444− 29.566797251700283i
−5.147612535695444 + 29.566797251700283i



(55)

By comparing Equations (52) and (55), one can observe that, for noise-free data, the time-domain
system identification algorithm developed in this work can exactly capture all the eigenvalues of the
system state-matrix.

3.2. Case Study B

In this subsection, the second case study, referred to as Case Study B, is discussed. In this
second case study, only four system degrees of freedom corresponding to the vertical motion of
the wheels are excited by a set of external perturbations, and the corresponding time responses are
recorded. Thus, suppose that one is only capable of measuring the m = 4 accelerations of the four
wheels. Furthermore, assume that only the r = 4 forces exerted on the vehicle wheels are available as
experimental input measurements. In this case, the matrices Ca and B2 are given by:
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Ca =


0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 (56)

B2 =



0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(57)

Consider a time span for the dynamic simulations equal to T = 30 (s), and the external input
forces are assumed to be white noises as in the preceding case. The external force applied on the first
wheel of the full-car system is shown in the Figure 5 as an example.
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Figure 5. Vertical input force on the first wheel: Case Study B.

The acceleration of the first wheel corresponding to the external excitations of the full-car system
is shown in Figure 6 as an example.
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Figure 6. Vertical output acceleration of the first wheel: Case Study B.
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In this case, a small amount of artificial noise is used for altering the measured inputs and
outputs so that the proposed system identification numerical procedure can be tested in the presence
of uncontrollable disturbances. The Hankel matrix singular values obtained in Case Study B are shown
in Figure 7.
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Figure 7. Singular value magnitudes: Case Study B.

In this case, the transition from the relatively large singular values associated with the normal
modes of the full-car vehicle system to the relatively small singular values representing spurious
modes induced by the artificial noise is smoother when compared to the previous case study, as shown
in Figure 7. The identified state-matrix Âc corresponding to the second case study has the following
set of eigenvalues:

λ̂c =



−0.000657842765022− 1.000094368364379i
−0.000657842765022 + 1.000094368364379i
−0.001827428644826− 1.649650342818349i
−0.001827428644826 + 1.649650342818349i
−0.001896759025481− 1.690591024090737i
−0.001896759025481 + 1.690591024090737i
−4.106541522193332− 28.820008747367083i
−4.106541522193332 + 28.820008747367083i
−4.122471281032004− 28.923525530989899i
−4.122471281032004 + 28.923525530989899i
−5.109200223623902− 29.529493727006066i
−5.109200223623902 + 29.529493727006066i
−5.147612538086301− 29.566797257442474i
−5.147612538086301 + 29.566797257442474i



(58)

By comparing Equations (52) and (58), it can be noticed that, for a dataset affected by artificial
noise, the system identification procedure leads to small errors in the first few eigenvalues of the
system state-matrix.

4. Summary, Conclusions and Future Directions of Research

The areas of interest for the research of the authors are the dynamics of rigid and flexible
multibody systems, the numerical methods of applied system identification and the theory of nonlinear
control [71–80]. Consequently, the research work of the authors is finalized to the development of
new methods for performing accurate analytic modeling, effective numerical parameter identification
procedures employing experimental data and nonlinear control optimization algorithms for dynamic
models of multibody mechanical systems [81–90]. In this work, on the other hand, a system
identification numerical procedure for identifying the parameters of linear mechanical systems was
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developed. The system identification numerical procedure is based on a computational approach
called the Eigensystem Realization Algorithm (ERA) combined with a numerical algorithm named
the Observer/Kalman Filter Identification (OKID) method. In order to illustrate the effectiveness of
the numerical procedure developed in this work, the proposed method was used for obtaining the
modal parameters of a full-car vehicle model, which represents a standard road vehicle model used
for the design of active and semi-active suspension systems. Therefore, the analysis proposed in this
investigation can be considered as the first step in the design of a control system for road vehicles.
The numerical results found by means of numerical experiments showed a good agreement with the
actual modal parameters of the full-car vehicle model even when the input-output measurements are
affected by an external source of disturbances. Future investigations will be devoted to performing
a systematic comparison of the system identification algorithm developed in this work with other
numerical procedures available in the literature.
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the work.
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