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Abstract: A simulated space manipulator is designed to verify the reliability of the zero-gravity
simulation system, which can avoid the risks of experiments involving the space manipulator in
this zero-gravity ground system. To achieve similarity between the simulated and actual space
manipulators, the mass, barycenter, and inertia must be considered. In this study, a counterweight
component is designed and an optimization method is used to match the mass parameters of the
simulated joints to those of the space joints. In addition, an equivalence method is used to establish
the relationship between the torques of these two manipulators.
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1. Introduction

The space manipulator is a high level of integrated space of mechanical and electrical systems
in mechanical, electrical, thermal, and control fields. The space environment is harsh and it is a
zero-gravity condition. Thus, a space manipulator must be completely analyzed and pass all the
verification tests in a zero-gravity simulation system on the ground before it operates on-orbit.

The simulation systems should simulate the zero-gravity condition and allow motions of the space
manipulator. They can be divided into five types according to their working principles [1,2]: (1) Free fall:
It uses gravity acceleration to realize a zero-gravity environment. A drop tower designed by the
University of Stuttgart and Baylor University, which can provide 1.5 s in free fall duration a quality of
10−5 g [3]; (2) Parabolic flight: It uses gravity to perform a parabolic trajectory and achieve microgravity
condition. A specially-modified Airbus A310-300 aircraft is flied by The European Space Agency for a
total of 10 min of weightlessness per flight [4]; (3) Neutral buoyancy: The manipulators are placed in a
water environment, such as the neutral buoyancy facility at University of Maryland [5]; (4) Air-bearing
system. It is the most widely used method to achieve zero-gravity. The air bearing pads support the
manipulator and balance the gravity force. The main arm of the Japanese Experiment Module Remote
Manipulator System (JEMRMS) has been tested on an air bearing test bed [6]; and (5) suspension
system. The suspension force compensates the gravity force. Carnegie Mellon University designed a
gravity compensation system for their Self Mobile Space Manipulator (SM2) [7]. Each zero-gravity
system has advantages and disadvantages, and scholars should select the testing system carefully
according to the actual situation.

Because of the large motions and the multiple Degree of Freedom (DOF) of the manipulator,
an active compensation suspension system is used as the zero-gravity simulation system in this study.
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A constant-tension suspension for space manipulators was developed by Fujitsu Laboratories (Fujitsu
Ltd. Kawasaki, Japan) first [8]. The tension force was provided by a motor instead of the counterweight
mechanism. Liu et al. [9] used a single wire to achieve the gravitation of the moon for the Rocker-bogie
Rover. The Gravity compensation model is established as well. Shen et al. [10] designed a system
for physically simulating human walking in microgravity using such a method. The suspension
system can be divided into two distinct parts [11]: a constant tension force system and a follow-up
system. The tension force system affords vertical constant forces, which can be controlled to balance
the gravity force. The follow-up system guarantees the tension force is vertical whatever the attitude
of the manipulator. However, in an actual experiment, the tension forces cannot be always constant.
Thus, the gravity of the manipulator cannot be balanced completely, causing additional torques to
be exerted in the joints. To ensure the reliability of the experiments, it is necessary to analyze the
additional torques of the joints.

Several experiments must be conducted to verify the zero-gravity simulation system after the
primary design of the system. It is costly and unreliable to use the actual space manipulator directly.
Consequently, it is essential to design a simulated manipulator is designed to replace the space
manipulator for the initial experiments. When the system is tested completely, the space manipulator
can be experimented in it. Equivalent test models are widely used in the aerospace field. We can
predict the conditions of the actual ones by testing on the models. Kuroda et al. [12] produced two
experimental models of the planetary rover to test in a low-gravity flight. Yao et al. [13] presented a
method to solve the added mass of a robot tested in neutral buoyancy, which made the model and
the actual robot be similar. In our study, the structures and masses of the joints of the simulated
manipulator differ from the space ones. To assure the consistency in the kinematics and dynamics,
the mass, barycenter, and inertia of the simulated manipulator must be matched [14]. Hou et al. [14]
proposed a dynamic programming to match the barycenter of a microsatellite, which can guarantee
the dynamic balance of the satellite. You et al. [15] used the genetic algorithm (GA) to optimize the
mass-matching on a reentry vehicle. It can ensure the complex requirements of mass parameters
by using the least counterweight. However, most of the present researches consider the barycenter
only, and the mass of the counterweight can be changed. In this study, the total mass of the joint is
constant, which increases the difficulty of mass-matching. Moreover, the errors that are inevitably
introduced after matching should be evaluated. Ijar et al. [16] indicated that the spacecraft is sensitive
to any reaction force and torque for its zero-gravity operating condition. They established the dynamic
equations of a spacecraft by using Lagrange’s formulas. Alepuz et al. [17] derived the kinematic
and dynamic equations of a free-floating satellite-mounted robot (FFSMR), which contains a series
manipulator and a satellite. Masuya et al. [18] proposed a novel technique to estimate motion of
the barycenter for a biped robot based on its torque equilibrium. In a similar way, the torque can
becalculated based on the motion of the barycenter.

In this study, a method is designed to match the mass and barycenter of the joint of the simulated
manipulator. The counterweight components are used to adjust the masses and barycenters of the
simulated joints for agreement with the space ones. In addition, the equivalence relationship between
the mass and inertia of the simulated and actual space manipulators is analyzed. The results can
contribute to future experiments involving the space manipulator.

The paper is organized as follows. In Section 2, the kinematics and dynamics of the manipulator
is established. The optimized design of the joints is presented in Section 3. The mass and inertia
parameters of the joints affected by mass-matching is derived as well. The simulation results are in
Section 4. Section 5 is the measurement results of the mass parameters of the joints. Conclusions are
drawn in Section 6.
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2. Modeling of Simulated Manipulator

2.1. Introduction of Simulated Manipulator

The simulated manipulator, shown in Figure 1, is designed according to an actual space
manipulator. The manipulator contains seven sets of interchangeable revolute joints, two end effectors,
two arms, and one central controller. They are distributed symmetrically. The manipulator has seven
rotary DOF. When it operates, one end effector is fixed on the astrovehicle, and the other one can
capture the target.

(a) (b)

Figure 1. Structure of the simulated manipulator: (a) computer model; (b) mock-up.

In order to reduce the manufacturing cost, the simulated manipulator is completely redesigned.
The materials and the structure of it are quite different from the space one. To guarantee the equivalence
between the simulated manipulator and the actual space manipulator, the simulated manipulator need
to satisfy the indices shown in Table 1, while the joints are the most important components of the
manipulator. Therefore, the parameters of them are a focus in this study.

Table 1. Indices of the simulated manipulator.

Simulated Manipulator Explanation of Index

Mechanical structure Structures and sizes match those of the actual space manipulator;
Drive mode DOF and drive mode match those of the actual space manipulator.

All joints are interchangeable;

Motion Rotation range <30◦, Rotation speed <3◦/s;
Mass Barycenter deviation <5 mm, Gravity deviation <1%;

Torque Torque deviation <50 N·m; Allowable torque of the actual space
manipulator is <500 N·m;

Torque deviation of the simulated manipulator should not exceed 10%.

2.2. Kinematics of Manipulator

This serial manipulator, shown in Figure 2, consists of a base link (link 0) and seven links connected
in series by seven rotation joints without forming a closed loop. Each joint is controlled by an actuator.
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Figure 2. Manipulator and coordinate systems.

To describe the geometry of the manipulator, starting from the basic link, we number the links
sequentially from 0 to 7 and the joints from 1 to 7. Following the Denavit–Hartenberg (D–H) convention,
a Cartesian coordinate system is established and the D–H rotation matrices can be obtained

i
i−1R = Rz(θzi)Ry(θyi)Rx(θxi), (1)

where the rotation matrices i
i−1R means from the i− 1th joint to the ith joint.

Each joint is attached to a sling in this suspension system. The extension line of each sling
passes the barycenter of the corresponding joint. Ideally, the suspension force can balance the
gravity. Then, the resulting force exerted on the joint is zero, and the manipulator is in a zero-gravity
simulation environment.

2.3. Dynamics of Manipulator

There are two types of dynamical problems: direct dynamics and inverse dynamics. The direct-
dynamics problem is to find the response of a robot arm corresponding to applied torques and forces.
That is, given a vector of joint torques or forces, we wish to compute the resulting motion of the
manipulator as a function of time. The inverse-dynamics problem is to find the actuator torques and
forces required to generate a desired trajectory of the manipulator.

The dynamical equations of motion can be formulated via several methods, such as the
Newton–Euler laws, Lagrange method, Kane method, and Appell equations. The Newton–Euler
laws is used to solve the dynamics problems in this study.

The link parameters are illustrated in Figure 3. Two adjacent links are i and i + 1, and the link
reference coordinates are {i} and {i + 1}. The angle, angular velocity, and angular acceleration of
link i are θi, θ̇i, and θ̈i at the coordinate {i}. To establish the expressions of dynamics, the following
parameters, presented in Table 2, are employed. The subscript i means that the parameter expresses in
the coordinate system of link i.

The initial conditions for the basic link (link 0) are as follows:

v0 = v̇0 = ω0 = ω̇0 = 0. (2)

ωi+1 and vi+1 can be written as
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ωi+1 = i+1
iRωi + θ̇iei+1,

vi+1 = i+1
iR(vi + ωi × pi,i+1).

(3)

ω̇i and v̇i are obtained by differentiating ωi and vi with respect to time

ω̇i+1 = i+1
iRω̇i +

i+1
iRωi × θ̇i+1ei+1 + θ̈i+1ei+1,

v̇i+1 = i+1
iR(v̇i + ω̇i × pi,i+1 + ω× (ω× pi,i+1)).

(4)

Figure 3. Definitions of the link parameters.

Table 2. Parameters used in dynamics.

Symbol Parameter

vi Linear velocity of point Oi
ωi Angular velocity of link i
v̇i Linear acceleration of point Oi
ω̇i Angular acceleration of link i
˜̇vi Linear acceleration of barycenter of link i
ei Unit vector pointing along zi axis

pi,i+1 Position velocity of point Oi+1 with respect to point Oi
ri Position velocity of barycenter of link i with respect to point Oi
fi Resulting force exerted on link i by link i− 1 at point Oi
τi Resulting torque exerted on link i by link i− 1 at point Oi
Fi Inertia force exerted at barycenter of link i
Mi Inertia torque exerted at barycenter of link i

The recursion formula for the linear acceleration of the barycenter is computed as

˜̇vi+1 = v̇i+1 + ω̇i+1 × ri+1 + ωi+1 × (ωi+1 × ri+1). (5)

The recursion formula of the inertia force and inertia torque are obtained

Fi+1 = mi+1 ˜̇vi+1,
Mi+1 = Ĩci+1 ω̇i+1 + ωi+1 × Ĩci+1 ωi+1,

(6)

where mi+1 is the mass of link i + 1 and Ĩci+1 is the inertial matrix in the barycentric coordinate system.
The backward expressions are

fi = Fi +
i

i+1R fi+1,
τi = Mi +

i
i+1Rτi+1 + ri+1 × Fi + pi,i+1 × i

i+1R fi+1,
(7)
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when the manipulator operates in the active compensation suspension system, it is exerted by
suspension forces and gravity. Ideally, the suspension forces can balance the gravity. However,
there are some deviations in the magnitude, direction, and point of application of the suspension force,
which cause the Inertia force and Inertia torque at barycenter of each joint.

Assume the mass of link i is mi and the suspension force is Fsi . The suspension force and the
gravity of link i are transformed into the link i coordinate system as follows:

Fsi

′
= i

0RFsi ,
Gi
′
= mi

i
0Rg = i

0Rmig.
(8)

By substituting Equation (8) to Equation (7), the backward force and torque expressions can
be established

fi = Fi +
i

i+1R fi+1 +
i
0R(Fsi −mig),

τi = Mi +
i

i+1Rτi+1 + ri+1 × (Fi + ( i
0R(Fsi −mig)) + pi,i+1 × i

i+1R fi+1.
(9)

Equation (9) can be used to calculate the force and torque of each joint of the manipulator.

3. Optimized Design of Mass-Matching of Joints

3.1. Modeling of Joints

The joint of the simulated manipulator is shown in Figure 4. It consists of a box, a servo motor and
its components, and counterweight components. The thickness of the box is 10 mm, and its maximum
diameter is 345 mm. The servo motor and its components consist of a motor, a reducer, a torque
sensor, and connectors, which can achieve the motion control and torque measurement of the joint.
The counterweight components are used to adjust the barycenter of the joint.

Figure 4. Joint design of the simulated manipulator.

The fixed axis and the output axis of the joint are perpendicular. A joint coordinate {O-XYZ} is
attached to the joint, whose y-axis overlaps the fixed axis, while the z-axis overlaps the output axis.
Because of the mass index, shown in Table 1, the mass and barycenter of the simulated manipulator
joint should be adjusted to match those of the actual space manipulator. Thus, the masses and
barycenters of the counterweights need to satisfy
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n

∑
i=1

−−→
OCci ·mci =

−−−→
OCspa ·mspa −

m

∑
j=1

−−→
OCaj ·maj, (10)

where
−−→
OCci,

−−−→
OCspa, and

−−→
OCaj are the barycenter vector of the ith counterweight, the space manipulator

joint, and the jth component (except counterweight components) in the joint coordinate system. In
addition, mci, mspa, and maj are the masses of them.

3.2. Optimization of Mass-Matching

3.2.1. Design of Counterweight Components

The counterweight components consist of threaded rods and several cylindrical counterweights,
shown in Figure 5. The eight threaded rods are uniformly distributed in a circle, numbered sequentially
from 1 to 8 in clockwise order. The masses of the cylindrical counterweights are certain, at values
including 1, 0.5, and 0.3 kg. The counterweights will be installed in the corresponding rods, to adjust
the mass and barycenter parameters satisfying the index.

Figure 5. Counterweight components of the simulated joints.

3.2.2. Optimization Method

In comparison to the barycenter, the mass is easy to match to a certain value. Therefore, the mass
can be considered as a constant. According to the mass index, barycenter deviation <5 mm and gravity
deviation <1%, the mass-matching problem can be simply described as: calculate the distribution
of the counterweights to make the barycenter deviation be minimum. Because the adjustment of
counterweight pointing along the z-axis is continuous, we consider the barycenter projected in the xy
plane first. The mathematical expression is as follows:

min f (mc1, · · · , mc8) =((
m

∑
j=1

xajmaj + (mc1, · · · , mc8)R


sin(π/8)

sin(3π/8)
...

sin(15π/8)

)/mspa − xspa)
2

+((
m

∑
j=1

yajmaj + (mc1, · · · , mc8)R


cos(π/8)

cos(3π/8)
...

cos(15π/8)

)/mspa − yspa)
2

, (11)
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s.t. g(a1, · · · , a8) =
8

∑
i=1

mci +
m

∑
j=1

maj −mspa = 0,

0 ≤ mci ≤ 3, i = 1, 2, · · · , 8,

(12)

where R is the radius of circular distribution of the rods. mc1, · · · , mc8 are the the masses of the
counterweights, installed in the corresponding rods. xaj and xspa are the scalar projections of

−−→
OCaj and

−−−→
OCsoa onto the x-axis, while yaj and yspa are the scalar projections onto the y-axis.

3.2.3. Mass-Matching Results

The quadprog function in MATLAB (R2015b, MathWorks, Natick, MA, USA), which can solve
quadratic programming problems, is used to optimize the mass-matching problem. We need to
transform Function (11) to the specified form

f (x) =
1
2

xT Hx + f Tx, (13)

where
H = 2R2(Asin Asin

T + Acos Acos
T),

f = 2R(MXAsin + MYAcos),
Asin = (sin(π/8), · · · , sin(15π/8))T ,
Acos = (cos(π/8), · · · , cos(15π/8))T ,

MX = mspaxspa −∑m
j=1 xajmaj,

MY = mspayspa −∑m
j=1 yajmaj.

(14)

By substituting Fuction (14) to the quadprog function, we can obtain the optimization result:

(mc1, · · · , mc8) = (0.237, 0.356, 1.979, 2.579, 2.591, 2.332, 0.479, 0.247). (15)

Considering the convenience of the counterweights machining, the masses of the counterweights
are changed to

(mc1, · · · , mc8) = (0.3, 0.3, 2, 2.5, 2.6, 2.3, 0.5, 0.3). (16)

According to the optimization result, we obtain the distribution of the counterweights, shown in
Table 3, and the computer model, shown in Figure 6.

Table 3. Installation parameters of the counterweights.

Mass (1 kg)

Number Label

1 2 3 4 5 6 7 8

1 2 2 2 2
0.5 1 1
0.3 1 1 2 1 1

The mass and barycenter of the simulated joint after mass-matching are shown in Table 4. It is
similar to that of the space one. The optimization method is effective.

Table 4. Mass parameters of the actual space and simulated manipulator joints.

Actual Space Manipulator Joint Simulated Manipulator Joint after Mass-Matching

Mass (kg) 67.5 67.5

Barycenter (mm)
xspa = 0.70
yspa = 6.30
zspa = 28.40

xsimu = 0.40
ysimu = 5.20
zsimu = 28.20
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Figure 6. Computer model of the counterweights distribution.

3.3. Barycenter Affected by Mass Error

The simulated manipulator includes seven identical joints, all of which must be optimized and
corrected in their mass and barycenter. Because the boxes of the joints are cast. There are differences in
the mass and barycenter, as shown in Table 5. The other components are machined or standard parts,
so we can consider that they have the same masses.

Table 5. Mass of the boxes of the joints.

Label 1 2 3 4 6 7 8

mass (kg) 15.5 15.7 15.9 15.4 15.8 15.7 16.0

The correction strategy is as follows. We use the joint with the lightest box as a standard for
designing the counterweight, and the others have the same design. Then, according to the standard,
we mill the counterweights of the others to the target mass in order to guarantee an identical mass.
Using this strategy, the total masses of seven joints are same, while the barycenters have deviations.

The mass of the standard box is mb1, and the barycenter is
−−→
OCb1; the total mass after the

mass-matching is mt, and the barycenter is
−−→
OCt1; the mass of the counterweight of the standard box is

mc1, and the barycenter is
−−→
OCc1. The mass of the joint k that needs to be corrected is mbk. The boxes are

homogeneous. The barycenter of the joint
−−→
OCtk after correction can be obtained:

−−→
OCtk =

1
mt

(mt ·
−−→
OCt1 + (mbk −mb1) · (

−−→
OCb1 −

−−→
OCc1)). (17)

3.4. Inertia Matrix of Joint Affected by Counterweight

The counterweights will change the inertia of the joints, which will cause the additional torque.
The inertia matrix of one cylindrical counterweight in the joint coordinate is derived in this section.
We assume that the parameters of the counterweight are as follows: the radius rc, thickness hc,
density ρ, and barycenter position in joint coordinate system Cc(xcc, ycc, zcc). The inertia matrix of the
counterweight in its own coordinate system is

Icc =

Iccxx 0 0
0 Iccyy 0
0 0 Icczz

 , (18)

where

Iccxx =
πhcrc

2ρ

12
(hc

2 + 3rc
2), Iccyy =

πhcrc
2ρ

12
(hc

2 + 3rc
2), Icczz =

π

2
hcrc

4ρ. (19)
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According to the parallel-axis theorem, the inertia matrix of the counterweight in joint coordinate
is obtained:

i Icc =

 i Iccxx − i Iccxy − i Iccxz

− i Iccxy
i Iccyy − i Iccyz

− i Iccxz − i Iccyz
i Icczz

 , (20)

where
i Iccxx = πhcrc

2ρ
12 (hc

2 + 3rc
2) + 2πrc

2hcρ(ycc
2 + zcc

2),
i Iccyy = πhcrc

2ρ
12 (hc

2 + 3rc
2) + 2πrc

2hcρ(xcc
2 + zcc

2),
i Icczz =

π
2 hcrc

4ρ + 2πrc
2hcρ(ycc

2 + xcc
2),

i Iccxy = 2πrc
2hcρxccycc,

i Iccyz = 2πrc
2hcρycczcc,

i Icczx = 2πrc
2hcρzccxcc.

(21)

4. Simulation Study

4.1. Torque of Joint Affected by Counterweight

Assuming the original parameters rc = 0.05 m, hc = 0.02 m, ρ = 7800 kg/m3, and Cc(Rcos(θ),
Rxin(θ), 0.2), R = 0.125, θ = π/4, we use the control variate method to determine the effects of the
counterweight parameters on the joint torque. Assume that the angular acceleration of the joint is
0.1 rad/s2, the seven joints are identical, and the compensation suspension system can completely
balance gravity.

When the counterweight have a constant mass, the additional inertia torque of the joint, affected
by the changes of the size parameters rc and hc, is shown in Figure 7. The larger hc/rc is, the smaller
the torque is. However, the bending moment of the joint will be huge as the growth of hc/rc. The joint
torque and bending moment, and the installation possibilities of the sizes need to be considered when
we choose the parameters of the counterweight.

Figure 7. Joint torque and bending moment affected by rc and hc.

The additional inertia torque of the joint, affected by changes of the position parameters xcc

and ycc, is shown in Figure 8. When the counterweight near the barycenter of the joint, the joint torque
is small, but it is easy to cause interferences. The joint torque and the interference situation need to be
considered when we choose the installation position of the counterweight.

When the counterweight is installed, the deviation of the position and mass of it is inevitable.
This simulation result shows that a tiny error of the counterweight makes a little effect (about −3 order
of magnitude of N·m) on the joint torque. It indicates that the slight errors can be ignored.
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Figure 8. Joint torque affected by xcc and ycc.

4.2. Joint Torques of Simulated Manipulator

According to Section 2, the joint torques of simulated manipulator are calculated, shown in
Figure 9. When the suspension force balance the gravity in magnitude and direction (Figure 9a),
the torque comes from the deviation of the point of application, namely, the extension line of the
suspension sling does not pass the barycenter. Joint 1 has the largest torque for it is the one closest
to the base. With the increase of the suspension force error in magnitude, the torque is affected by
both the deviation of the point of application and the unbalanced gravity, and it obviously increases.
When the error is large (Figure 9c), the torques of joints 3 and 4 are the largest because of the long arms.

(a) (b) (c)

Figure 9. Torque of the simulated manipulator joints: (a) the suspension forces balance the gravity in
magnitude and direction; (b) has a suspension force error of 2%; (c) has a suspension force error of 10%.

4.3. Equivalence Analysis of Torque

After mass-matching, there are still some differences between the simulated and space joints, such
as the small deviation in barycenter and the inertia. Figure 10 shows the torque deviation of them.
After mass-matching, the difference between simulated and space joints is very small. It means that the
experiments of simulated manipulator in the zero-gravity system is similar to the space one. We can
predict the results of the space one by observing the simulated manipulator in the ground simulation
experiments. However, the torque deviation without the counterweights, shown in Figure 10b, is about
25 times larger than that of the mass-matching one. It confirms that the mass-matching is effective
and significant.
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(a) (b)

Figure 10. Deviation of simulated and space joints: (a) deviation after mass-matching; (b) deviation
without counterweight.

5. Experiment for Optimization Results of Mass-Matching

The mock-up of the joints of the simulated manipulator, shown in Figure 11, were manufactured
and assembled. According to the optimization result of the mass equivalence in Section 3, the barycenter
measurement testbed SZX-10 was used in an experiment, along with a Coordinate Measurement
Machine (CMM). In the experiment, the CMM was fixed on the testbed, while the joint was fixed on the
CMM. The barycenter of the joint in three directions was measured using a horizontal and inclination
of 45◦ poses of the CMM. Table 6 shows the experiment results, which validate the equivalence analysis.
The barycenter deviation was <5 mm, and the gravity deviation was <1%.

Figure 11. Mock-up of joints after mass-matching.

Table 6. Mass and barycenter of the joints.

Label Mass (kg) Mass Diviation (kg) x (mm) ∆x (mm) y (mm) ∆y (mm) z (mm) ∆z (mm)

1 67.70 0.20 1.20 0.50 4.40 1.90 30.43 −2.03
2 67.80 0.30 0.10 −0.60 4.87 1.43 31.95 −3.55
3 67.59 0.09 0.97 0.27 2.95 3.35 32.65 −4.25
4 67.50 0.00 −0.06 −0.76 4.46 1.84 30.33 −1.93
5 67.66 0.16 −1.60 −2.30 4.31 1.99 31.52 −3.12
6 67.68 0.18 0.20 −0.50 3.04 3.26 31.03 −2.63
7 67.65 0.15 1.80 1.10 1.90 4.40 31.45 −3.05
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6. Conclusions

In this study, counterweight components for matching the mass and barycenter of the joint of a
simulated manipulator to those of an actual space manipulator is presented. Combined numerical
derivation with computer programming, an optimization result of mass-matching, is achieved.
The deviation of barycenter is <2 mm, which is greatly superior to the required indices. Then,
the torque of each joint of the simulated manipulator in different suspension force error is calculated.
With the increase of the force error, the torques increase fast, especially those of the 3rd and 4th joints.
Furthermore, the torque deviations of simulated and space joints are calculated as well. The results
show that the deviation is 25 times less after mass-matching. It confirms that the research is effective
and significant. The results contribute to future experiments involving the actual space manipulator.

However, in this study, we consider the manipulator as a rigid object and ignore the elastic
deformations and frictions. Actually, the slenderness ratio of two arms are large and the elastic
deformations are obvious; when the manipulator operates, the frictions are existing between joints.
To improve the accuracy of the model is part of our future work.
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