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Abstract: During field weakening operation time (FWOT), the total iron loss rises and affects the
accuracy of loss prediction and efficiency, especially if a large range of FWOT exists due to a large
voltage drop that was rooted from the resistance of the used material. Iron loss prediction is
widely employed in investigations for a fast electrical machine analysis using 2D finite element
analysis (FEA). This paper proposes harmonic loss analytically by a steady-state equivalent circuit
with a novel procedure. Consideration of skin effects and iron saturation are utilized in order
to examine the accuracy through the relative error distribution in the frequency domain of each
model from 50 to 700 Hz. Additionally, this comparative study presents a torque-frequency-field
density calculation over each single term of the modified institute of electrical machines formula
(IEM-Formula). The proposed analytical calculation is performed using 2D FEA for a classic and
modified IEM-Formula along with experimental verifications on a surface-mounted permanent
magnet synchronous generator (PMSG) for a wind generation application.

Keywords: electrical machine; field weakening; IEM-Formula; wind energy; iron loss; synchronous
generator; equivalent circuit; harmonic loss

1. Introduction

Recently, a modern distinguished iron loss formulation known as institute of electrical machines
formula (IEM-Formula) by Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University
in Germany has been proposed in order to deal with an advanced iron loss estimation on nonlinear
materials such as soft magnetic materials for electrical machines [1–3]. The proposed IEM-Formula
needed to be evaluated under field weakening conditions because the field weakening capability plays
a significant role in the iron loss prediction of permanent magnet synchronous machines (PMSMs)
over a wide range of speed, particularly at high speeds.

There are a number of well-known articles for iron loss calculations with skin effect
considerations [4–8]; however, only a few have considered field weakening capability.

Haisen et al. studied a two-term piecewise variable parameter model for precise prediction of
iron losses in induction motors. They used also eddy-current terms of IEM-Formula, in which skin
effect has been accounted for. The iron loss model has been numerically and experimentally verified;
however, the model is not valid during the field weakening operation time (FWOT), while harmonic
loss is not considered [9].

In [10], Han et al. reported the influence of harmonic losses to increase and dominate the total
iron loss during field weakening operation. A useful comparative study on the produced harmonics
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and eddy-current loss (in the stator-teeth) is presented. However, lack of experimental verification
afflicted the quality of the research.

Li et al. investigated the rotor saliency of an interior permanent magnet (IPM) machine, and
large harmonic eddy-current loss in the stator iron loss could be caused under field-weakening
operation, conspicuously impairing the output performance of the IPM machine. They proposed a
new stator teeth eddy-current loss analysis approach, in which the teeth eddy-current loss is divided
into two parts: one part is caused by the synchronous air-gap field density rotating synchronously
with the rotor, while the other part is induced by the asynchronous air-gap field density [11].
There is a thought-provoking consideration on the fractional-slot concentrated winding based on
the eddy-current coefficients; however, an experimental test needs to being considered. In addition,
the following works have fully discussed the fractional-slot concentrated winding [12,13].

In [14], the iron loss resistance was calculated through a finite-element analysis as functions of the
d–q-axis currents. On the other hand, the effect of field-weakening current on the iron losses of the
PMSM is presented in [15]. Furthermore, FEA based iron loss calculation methods have been used to
minimize the iron losses of the PMSM under field weakening conditions in [16,17].

Kuttler et al. studied an original and mathematical model that has been developed and provides
fast and accurate estimation of iron losses, particularly in field weakening operation, even with the
machine supplied by sinusoidal currents as described in this work. A polynomial form of iron losses
as a function of fundamental electrical frequency takes into account the filed density waveforms in the
yoke and teeth by use of nonlinear iron coefficients linked to id–iq currents. The paper has presented
the complete method for calculating the iron coefficients from a nonlinear magnetic nodal network
of the machine. A detailed study of the local field density waveform and harmonic content in the
yoke and teeth was provided for two particular operating points: at maximal power without field
weakening and at maximal power at maximal speed [18]. This article investigated mapping of local
iron losses coefficients in yoke and teeth, and also the iron losses’ coefficients differences justified
per unit volume between yoke and teeth. However, there was no experimental validation present in
the article.

In [19], a special design for a spoke-type IPM motor is presented to enhance motor field-weakening
capability in operation over a wide speed range. Experimental results have been compared with
analytical predictions showing satisfactory accordance. It can be concluded that calculation analysis
with simulation and measurement results for motor operation through imposed voltage and torque
profiles over the basic objectives is well presented.

In [20], the researchers dealt with the concept of winding switching for field weakening of PMSM.
The study focused the impact of harmonic contents on the field weakening capability of the machine.
Afterwards, a suitable drive topology for the winding switching technique under harmonic conditions
is discussed. The technique as a field weakening solution was only investigated on the field and
back-electromagnetic field (back-EMF). At last, the results are experimentally verified. However, the
iron loss consideration or influence of the proposed technique was not discussed, but the solution can
be considerable for iron loss improvement during FWOT for further investigations. Moreover, Ref. [21]
proposed an improvement in the field weakening operation over a large speed range, in which power
and torque have been raised.

In another research paper [22], the authors presented a special emphasis on accurately
representing core losses at variable frequency. The analytical model has been experimentally verified.
However, the lack of iron loss prediction, namely during FWOT, can be seen, which can be considered
to improve the accuracy during FWOT.

Basic et al. studied iron losses by means of an equivalent iron loss resistance that is connected
in parallel with the stator inductance. Moreover, the iron loss resistance is modeled as variable
with respect to both synchronous frequency and magnetizing field, whereas the magnetizing field
influence is expressed by means of the corresponding iron loss current. Finally, a good achievement
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over the proposed model is carried out [23]. The research lacks field weakening capability and also
experimental verifications.

In this paper, the main focus is on harmonic loss consideration on the classic IEM-Formula,
which significantly affects the iron loss prediction during FWOT. The objective can be reached through
analytical improvement of harmonic loss modelling based on equivalent circuit for the IEM-Formula
under flux weakening condition for the first time. In other words, a further analytical procedure and
improvement over harmonic loss modelling for this formula is proposed as a major contribution of this
study. In order to improve the prediction of the iron losses in a surface mounted permanent magnet
synchronous machine over a wide range of speed during FWOT, the harmonic loss (rooted from steel
sheets’ resistance behavior), skin effect and field weakening capability are analytically and numerically
defined into the formula, in which a number of coefficients are introduced, and thus calculated using
conventional nonlinear curve fitting. Moreover, the influence of advanced iron loss prediction on the
efficiency is taken into account. To avoid a time-consuming analysis, a 2D FEA is employed along
with experimental result verifications to identify the modified IEM-Formula and verify its accuracy on
a surface mounted permanent magnet synchronous generator. In the modified IEM-Formula model,
the slot opening and fringing effects are neglected. The harmonic loss produced by the permanent
magnets (PMs) and fundamental phase current are considered while both phase current harmonic and
inverter-carrier harmonic are ignored.

2. Classic IEM-Formula Evaluation

The classic IEM-Formula is introduced by Eggers [1,2] in 2012 in the following form:

PIEM(B, f ) = Ph + Pe + Pexc = a1Bα f+

a2B2 f 2(1 + a3Ba4) + a5B1.5 f 1.5
, (1)

where a1, a2, a3, a4, and a5 are the coefficients that will be estimated via nonlinear curve fitting. α is
the fitted material parameter, which is found using dc-measurements (quasi-static loss measurements
using a field-meter) in a standard Epstein frame, finding the best parameter set describing the hysteresis
losses as:

EDC = a1·
_
B

α

. (2)

The classic formula is examined for M400-50A steel sheet between 50 to 700 Hz, and is compared
to a standard Epstein frame test, which is exhibited in Figure 1, where solid lines show the analytical
data and measured data denoted by markers. The employed Epstein frame comprises a primary and
a secondary winding. The sample is evaluated in a set of a number of strips cut from M400-50A steel
sheet, in which each layer of the sample is double-lapped in corners and weighted down with a force
of 1 N under the well-known International standard for the measurement configuration and conditions
(IEC 60404-2:2008) magnetic materials. The iron loss prediction was predicted as acceptable on the
steel sheet parts of the machine (approximately linear) for a various range of frequencies (50–700 Hz),
and up to 2 T.

Single-valued magnetization curves are employed to consider saturation effects (3) originating
from the nonlinear material behavior. The magnetic material is utilized up to 2.1 T in the considered
machine. Second-order effects, originating from hysteresis behavior, are neglected:

Psat(
_
B , f ) = a2·a3

_
B

a4+2
· f 2. (3)
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Figure 1. Comparison of five coefficients institute of electrical machines formula (IEM-Formula) with
measurements under 50 up to 700 (Hz) frequencies from the Epstein test, where solid lines denote
analytical data and markers indicate measured data.

2.1. Skin Effect Consideration

The eddy-current term of the classic formula is as:

Pe = a2B2 f 2(1 + a3Ba4), (4)

where the coefficient (a2), which considers the skin effect by accounting for the thickness of the steel
used, is:

a2 =
π2d2

6ρρe
, (5)

with the sheet thickness (d), specific density (ρ) and specific electrical resistivity (ρe) of the soft
magnetic material.

2.2. Steady-State Equivalent Circuit with Iron Loss Resistance Consideration

During FWOT, the importance of stator and rotor cores’ resistance as well as its influence on
the total iron loss is orderly defined into the d–q-axis equivalent circuit to examine the iron loss
evaluation in advance. The steady-state equivalent circuit of the PMSM is shown in Figure 2 [22].
Moreover, the voltage drops RsId and RsIq of the stator winding resistance are taken into account
for the iron loss model based on the equivalent circuit, in which Ref. [23] assumed the winding
resistance negligible. However, its ohmic value can be large, especially under the field weakening
condition. Therefore, a more accurate iron loss modelling is rooted from both core and winding
resistance consideration. The following expressions can be extracted from the equivalent circuit:

Ud = Rs Id −ωLq Iaq , Uq = Rs Iq + ωLd Iad + ωλm

Id = Iad + Icd , Iq = Iaq + Icq

Icd = −ωLq Iaq
Rc

, Icq = ωLd Iad+ωλm
Rc

Pf e =

√
(Ud−IdRs)

2+(Uq−IqRs)
2

Rc

where Us =
√

U2
d + U2

q

. (6)
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Figure 2. Steady-state equivalent d–q circuits of permanent magnet synchronous machine (PMSM)
with iron loss resistance, listed as: (a) d-axis equivalent circuit; (b) q-axis equivalent circuit.

Referring to the above equations, the relation of the iron loss resistance to the magnetic field
density waveforms (in the iron parts) can be derived from the analytical calculation of iron loss
as follows:

PIEM = [a1B2
t f + a2B2

t f 2(1 + a3Ba4
t ) + a5B1.5

t f 1.5]Vt

+[a1B2
y f + a2B2

y f 2(1 + a3Ba4
y ) + a5B1.5

y f 1.5]Vy
, (7)

where Vt and Vy are the volume of the tooth and yoke in stator.
In a no-load condition, the iron loss PIEM1 is produced via the no-load fundamental air-gap field

density component Bm1 can be rewritten as follows:

PIEM1 = [a1B2
m1 f kt f (1)

2 + a2B2
m1 f 2kt f (1)

2(1 + a3Ba4
m1)]Vt

+[a1B2
m1 f ky f (1)

2 + a2B2
m1 f 2ky f (1)

2(1 + a3Ba4
m1)]Vy

. (8)

Regarding the analytical procedure, the magnetic induction is calculated once only for the stator
yoke, and another time for stator teeth, hence ktf as the teeth filter constant is defined as:

kt f (h) =
sin(h αs

2 )

kt·h·( αs
2 )

, (9)

where αs is one tooth pitch angle, and kt (the teeth-width coefficient) base on one tooth pitch (τs),
and one tooth-pitch (bt) can be calculated by:

kt =
bt

τs
. (10)

Moreover, the magnetic induction calculation at the stator yoke requires another parameter,
which is yoke filter constant as:

ky f (h) =
sin( αs

2 )

ky·( αs
2 )

, (11)

where ky as the yoke-height coefficient is:

ky =
by

τp
. (12)

τp is the pole-pitch in the air-gap, and by is one yoke-pitch.
In a no-load condition, assuming n current drawn from the machine supply, which means

Id = Iq = 0, the term ωλm forces an additional current Iaq = −Icq , which is different from zero.
Hence, due to the term −ωLaqIaq in the d-axis circuit, a current as Iad = −Icd will be increased.
Furthermore, the back-EMF term of ωLadIad occurrs in the q-axis. As a result, the total voltage across Rc

(total stator core resistance) is not only equal to ωλm, but also back-EMF terms of −ωLaqIaq and ωLadIad
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should be considered. Despite this, these voltage drops are ignored by the work done in Ref. [23],
which causes a considerable error. The modified IEM-Formula, which can be rewritten based on the
steady-state equivalent circuit and Equations (4) and (8), is given as:

PIEM1 =


√
(ωλm)

2 − (ωLad Iad)
2 +

(
ωLaq Iaq

)2

Rc

, (13)

where the total stator core resistance (Rc) is comprised of eddy-current loss resistance (Rce) and
hysteresis loss resistance (Rch), where Rce is eddy-current loss resistance that depends on the type of
used material, its dimensions and other machines’ design factors.

3. Analytical Concept of the Iron Loss Model with Harmonic Loss Considerations

During FWOT, the iron loss cannot be determined accurately using only the magnetic field
density because the terminal voltage is steady, being limited with direct current (DC) link voltage.
Regarding this issue, a harmonic loss and voltage are induced at the tooth and yoke of the stator core,
which are analytically modelled (in Equation (6)) based on the iron loss resistance. Therefore, a large
eddy-current loss will be generated, which critically decreases the efficiency, especially if a wide region
of FWOT exists. Thus, the IEM-Formula model is adopted with a resistance model that considers
harmonic loss. Harmonic loss is investigated through the air-gap magnetic field density harmonics
from the elemental component and the machine’s equivalent circuit parameters (shown in Figure 2),
based on the air-gap field density analysis in [10,23,24]. Therefore, the iron loss decreases in a similar
manner during FWOT. However, this predicted loss is far from the results from experiments and FEA
computation. This is due to the fact that an important eddy-current loss will be generated at FWOT
that significantly decreases the efficiency of the machine; this is also validated in [23,25]. The iron loss
resistance model based on the IEM-Formula should be modified to consider harmonic loss during
FWOT for the PMSM with closed-slot, double-layer fractional-slot concentrated winding [23,26].

It is required to wind search coils onto armature tooth tips of the tested generator to detect air-gap
field. The d-axis pickup should also be installed at the generator to detect the number of revolutions
and to synchronize the execution of a program with the revolutions. The d-axis pickup generates
a pulse per electric cycle. In addition, the location of search coils at armature tooth tips and at various
parts of the rotor and the location of the d-axis and the d-axis pickup in the tested generator. The used
methodology is validated in [27].

By a sinusoidal three-phase current excitation, the total air-gap field density [28,29] is written as:

Bg(γ, ωt) = Bmg0(γ, ωt) + Bgr(γ, ωt), (14)

where Bmg0 and Bgr are the sum of the no-load magnetic field density and the armature reaction air-gap
magnetic field density. For non-sinusoidal waveforms, the eddy-current term in Label (1) can be
modified (based on [24,25]) to give the following expression:

Pe = a2′

[
dB
dt

]α

+ (1 + a3Ba4). (15)

α is a coefficient that depends on the type and thickness of the laminated magnetic material. In addition,
a2´ = a2/(2π2) is the new eddy-current coefficient, and [dB/dt] is the root mean square (rms-value) of
the rate of change of field density over one cycle of the fundamental frequency [29].

Consequently, the predicted iron loss produced in the flux weakening condition with the influence
of the harmonic component on the hysteresis loss is found to be small (about 9% of total iron loss) under
open-circuit condition; therefore, its effect on the hysteresis term is neglected. Hence, the modified
eddy-current loss density in W/m2 is proportional to the energy of the differential of the field density,
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which mainly originated via the eddy-currents behavior that is modelled by Equation (16), and specific
field density distribution over tooth (Bt) and yoke (By) shown in Equation (17), given as:

pe = a2B2 f 2(1 + a3Ba4), (16)

B = Bt + By =
1

ktαs

αs/2∫
−αs/2

Bg(γ)dγ+
1

2kyπ

π/2∫
−π/2

Bg(γ)dγ. (17)

The magnetic field density distribution over (Bt) and (By) is presented in Figure 3, in which peak
values are 1.98 T and 0.56 T, respectively. To simplify the above equation:

B = Bt + By =
∞

∑
h=1,3,5,7,...

kt f (h)Bg(h) cos(Ψh)+
∞

∑
h=1,3,5,7,...

ky f (h)Bg(h) cos(Ψh), (18)

where Bg is the airgap magnetic induction between one tooth pitch. The teeth and yoke filter constants
(ktf and kyf), which are dependent on harmonic order, can be calculated using Equations (9) and (11).
bt = 15 mm, and by = 81 mm in this study.
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As a result of Equations (16)–(18), the following summed equation can be written to calculate the
model-based parametric eddy-current loss equation, given as:

pe =
a2

2π2T

T∫
0

(
∞

∑
h∈1,3,5,7

∂B(ωt)
∂t

)α

dt + (1 + a3Ba4). (19)

As the generated synchronous air-gap magnetic field density is caused from the fundamental
air-gap field density and harmonic component (Bsyh), it can be expressed as:

Bsyh(γ, ωt) =
4Bsym

π

∞

∑
h=3,5,...

ksw(h)
h

cos(h(γ−ωt)), (20)

with fundamental form as [23]:

Bsym = Bm −
µ0

g
kUkpe(1) cos(Ψ1)Fs1, (21)
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where Fs1 is the fundamental magnetic motive force (MMF) in the stator, ksw constant is a unit square
function and through Fourier series can be developed to:

ksw(h) = sin
(

αpπh
2

)
, (22)

where αp is the pole-arc coefficient.
The ratio of the harmonic field density to the fundamental term can be given as [24]:

Ph ∝
4B2

sym

π

∞

∑
h=3,5,...

(
k2

sw(1)k
2
t f (1)

)
Vt +

(
k2

sw(1)k
2
y f (1)

)
Vy. (23)

Considering (h = 1) as fundamental, Ph can thus be rewritten in the following form:

Ph =

(
Bsym

Bm

)2
kphPh1, (24)

kph =
∞

∑
h=3,5,7

(
kt f (h)

2ksw(h)
)

Vt +
(

ky f (h)
2ksw(h)

)2
Vy(

kt f (1)
2ksw(1)

)
Vt +

(
ky f (1)

2ksw(1)
2
)

Vy

. (25)

kph as a harmonic constant is employed to include the harmonic magnetic induction range, which can be
known from the machine design parameters [23]. In addition, a harmonic voltage Uph originated from
Labels (6), (21) and (22) are defined to model harmonic loss based on equivalent circuit parameters,
which is:

Uph = ω

[√
(λm − Lad Iad)

2 + (Laq Iaq)
2
]

Bsym

Bm
. (26)

Regarding the armature reaction air-gap magnetic induction, the equivalent factors are affiliated
with the machines’ parameters like Equations (27) and (28), which are coupled with the d–q axis
equivalent circuit as:  Bad1 = µ0

g

(
1− 4

π kUkpe(1)
)

Fs1 cos(Ψ1) ∝ Lad Id

Bm1 = 4
π ksw(1)Bm ∝ λm

. (27)

To simplify the harmonic voltage Equation (23), the combination of Equations (23) and (24) results
in the new fundamental (h = 1) expression as given:

Uph = ω

(
λm −

4
π

ksw(1)
)

kU ·kpe(1)

1− 4
π kU ·kpe(1)

Lad(Id −ωIad). (28)

By adopting the harmonic voltage Uph, the harmonic loss Ph Equation (24) can be simplified into
the formula of Uph and kph as:

Ph =
3
2

(
kphU2

ph

Rce

)
. (29)

The modified IEM-Formula based on the harmonic loss can be derived from the parametric
machine modelling based on the machine’s equivalent circuit parameters as:

Pf e = PIEM1 + Ph =
3
2


√
(ωλm)

2 − (ωLad Iad)
2 +

(
ωLaq Iaq

)2

Rc

+ kph
U2

ph

Rce

, (30)



Machines 2017, 5, 30 9 of 15

where PIEM1 and Ph are the classic IEM-Formula and modified IEM-Formula (which considers iron
loss resistance) and harmonic iron loss.

Figure 4a reveals the no-load air-gap magnetic field density (Bm) and fundamental no load
magnetic field density (Bm1) in Figure 4b, utilized from Labels (21) and (27). The waveforms for
a range of 360 θe (electrical degree) rotor displacement are shown in Figure 4. The remaining harmonic
component waveform of Bm can be calculated through the difference between Bm1 and Bm [28].Machines 2017, 5, 30  9 of 15 
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4. Results and Discussion

After the analytical and numerical modelling by the modified IEM-Formula, a wide region of
FWOT is observed. Hence, a significant harmonic loss is produced, which causes a considerable
increase in iron loss. Since a large deviation in iron loss prediction using the classic IEM-Formula can
be seen in comparison with test results, an IEM-Formula-based modification on the equivalent circuit
of the PMSM is proposed to consider harmonic losses.

Figure 5 contains a flowchart illustrating the calculations on a fractional-slot concentrated winding,
radial field permanent magnet machine with 6 kW rated power in generator-mode. The figure also
shows the results of the analysis during FWOT. The total iron loss using classic IEM-Formula (red curve)
sharply diverges; however, the modified IEM-Formula (green curve) along with the experimental
results rapidly increases during FWOT.

Table 1 presents the sizeable dimensions and specifications of the prototype PMSM. Table 2
illustrates the value of the coefficients.

Table 1. Specifications of the proposed permanent magnet synchronous machine (PMSM).

Parameters Values Units

Stator outer/inner diameters 209/115 mm
Rotor outer/inner diameters 230/217 mm

Axial length 100 mm
Slots/poles = SP 36/40 = 0.9
Air-gap length 1.0 mm

Magnet thickness 8.0 mm
Magnet pole-arc 100 ºe

Rated power 6.0 kW
Rated speed 200 rpm

Dirrect current (DC) link voltage 320 V
Steel sheet’s type M400-50A

Lamination length 95 mm
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Table 2. Coefficients calculation using the modified institute of electrical machine formula
(IEM-Formula) by curve fitting.

Coefficients Values Units

ktf (1) 7.0439 × 10−1

kyf (1) 7.7938 × 10−1

kt 0.4567
ky 0.3031

kpe (1) 0.3991
kU 0.4586
a1 398.0363203 W/m3

a2 2.3821 × 10−2 W/m3

α 1.705944
a3 11.74239805 W/m3

a4 8.27 × 10−2

a5 1.3617 × 10−9 W/m3
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First, a large range of FWOT is observed and the previously mentioned magnetic field density
components are stored using 2D FEA for each 0.5 electrical degree. Second, the coefficients are
calculated using a curve fitting technique based on the multi-generalized reduced gradient nonlinear
(M-RGN) method [30].

Figure 6 illustrates the behavior of torque-frequency-loss of the machine, in which the terms of
the iron loss such as hysteresis, eddy-current, excess, saturation, and harmonics are calculated from
the modified IEM-Formula. The Hysteresis loss (Figure 6a), eddy-current loss (Figure 6b), excess loss
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(Figure 6c), and saturation loss (Figure 6d) are shown based on their constant torque and power range
with a considerable field weakening region.

Figure 7a proves the generated harmonics perspective of eddy-current and total iron losses by the
classic and modified-IEM-Formula. A considerable difference in the total iron loss and also efficiency
during FWOT can be seen between the two methods. Figure 7b shows how the following terms in
Figure 7a are representing the total iron loss prediction based on torque-frequency-loss evaluation.Machines 2017, 5, 30  11 of 15 
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5. Experimental Verification

A surface mounted permanent magnet synchronous generator with 36 slots for a vast operating
range of 6 kW (nominal power) is manufactured with the listed sizeable dimensions and specifications,
which are reported in Table 1. The stator and rotor cores both are made of M400-50A steel sheets.
The modified IEM-Formulas’ coefficients are extracted by numerically fitting the no-load experiment
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results combined with FEA results. The no-load iron loss is measured through the difference between
the total no-load loss and mechanical loss. First, the prototype PMSM is dragged under the no-load
condition and tested the total no-load loss curve versus the speed. This total no-load loss Pfe (total)
consists of the no-load iron loss Pfe and the mechanical loss Pmech. The PMSG under testing is fed by
a variable-speed frequency converter (ABB ACS600) and loaded by a DC machine (prime mover).
The shaft torque is measured by a torque transducer (TORQUEMASTER TM-214). The electrical power
(input and output) is measured by a power analyzer (Yokogawa PZ4000). Afterwards, all the data
(such as voltage, torque, power, and efficiency) were stored by a reading unit to the laboratories’
computer. The prototype machine is designed particularly for laboratory test use. As the output power
is stored by a dynamometer. Thus, the total loss (consists of copper, iron, and mechanical losses)
has been obtained by a simple subtraction between input and output powers. The copper loss has
been calculated via the measured phase current and resistance, as well as the mechanical loss being
provided in the coefficient extracting experiment.

Figure 8a demonstrates the manufactured stator and rotor cores, and the two proportional
integral-Pulse Width Modulation (PI-PWM) units as a part of the control system in a wind power
application, in which a vertical-axis wind turbine is employed [31]. A test bench prototyping platform
composed of a 6 kW synchronous wind generator with a 1024 points absolute encoder, current sensors
and a power brake controlled load is also shown in Figure 8b.
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Figure 9 illustrates the influence of the modified IEM-Formula on the total iron loss and efficiency
with 3D FEA and experimental verifications for the studied PMSG. From the standpoint of the classic
IEM-Formula model, the iron loss resistance is the parallel connection of the hysteresis losses and
the eddy-current losses. This is examined through the air-gap field density with the motor speed
as the operation parameter. While the PMSM operates in the field weakening region, the terminal
voltage remains changeless because it is diminished by the DC link voltage. As predicted by the
classic IEM-Formula model, the iron loss resistance rises with the speed, shown in (18). Thus, the iron
loss decreases in a similar manner during field weakening operation. However, this predicted result
is far from the results from the experiments and FEA calculation. This is due to the fact that large
eddy-current loss is generated during the field weakening, rapidly decreasing the efficiency of the
machine. Figure 9a shows the comparison of iron loss obtained by the proposed PMSM for the
classic IEM-Formula, the proposed modified IEM-Formula, 3D FEA and experimental measurement.
The classic IEM-Formula shows significant deviation during FWOT from the modified formula,
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which shows worthy agreement with experimental and 3D FEA results. This result presents that
the harmonic loss must be considered if a wide FWOT exists. Figure 9b presents how the efficiency
calculation might create a considerable error during FWOT. The error between the proposed model and
experiment results is due to neglecting the slot opening effect and fringing effect. However, the iron
loss predicted by the classic IEM-Formula is obviously underestimated, particularly during the field
weakening region, due to ignoring the harmonic loss.
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prediction that uses the classic IEM-Formula for an accurate iron loss and efficiency prediction during
the field weakening operation. We modelled harmonic loss based on an equivalent circuit without
any circuit assumption in addition to the other terms, and the outcome interpreted how significantly
the behavior of the PMSM was influenced during this wide FWOT. Regarding the findings, a large
error can remain in the analysis process, if the classic IEM-Formula is used, due to phase current
harmonics. In other words, the core resistance rises dramatically and a considerable voltage drop
causes larger harmonic loss and consequently the total iron loss under FWOT conditions. The proposed
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with a double-layer fractional-slot concentrated winding for a small power wind energy harvesting
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slot opening and fringing with a minimal effect on the predicted losses. Moreover, commercial and
environmental issues of the project have been highly considered to reduce CO2 emissions as a part of
green power generation projects.

Acknowledgments: This research under grant number of 590100-042615257-4 from the Polytechnic University of
Catalonia-BarcelonaTech is disclosed in 2015.

Author Contributions: P.A. and R.B. conceived and developed the analytical equation of the IEM-Formula;
P.A. performed a number of finite element simulations; P.A. and R.B. analyzed the numerical and experimental
data; A.L. verified the analytical investigation; P.A. wrote the paper. P.A., R.B., and A.L. reviewed the entire article.

Conflicts of Interest: The authors declare no conflict of interest.



Machines 2017, 5, 30 14 of 15

References

1. Steentjes, S.; von Pfingsten, G.; Hombitzer, M.; Hameyer, K. Iron-Loss Model with Consideration of Minor
Loops Applied to FE-Simulations of Electrical Machines. IEEE Trans. Magn. 2013, 49, 3945–3948. [CrossRef]

2. Eggers, D.; Steentjes, S.; Hameyer, K. Advanced Iron-Loss Estimation for Nonlinear Material Behavior.
IEEE Trans. Magn. 2012, 48, 3021–3024. [CrossRef]

3. Alatawneh, N.; Rahman, T.; Hussain, S.; Lowther, D.A.; Chromik, R. Accuracy of time domain extension
formulae of core losses in non-oriented electrical steel laminations under non-sinusoidal excitation. IET Electr.
Power Appl. 2017, 11, 1131–1139. [CrossRef]

4. Krings, A.; Soulard, J. Overview and comparison of iron loss models for electrical machines. J. Electr. Eng.
2010, 10, 162–169.

5. Ionel, D.M.; Popescu, M.; Dellinger, S.J.; Miller, T.J.E.; Heideman, R.J.; McGilp, M.I. On the variation with
flux and frequency of the core loss coefficients in electrical machines. IEEE Trans. Ind. Appl. 2006, 42, 658–667.
[CrossRef]

6. Ionel, D.M.; Popescu, M.; McGilp, M.I.; Miller, T.J.E.; Dellinger, S.J.; Heideman, R.J. Computation of Core
Losses in Electrical Machines Using Improved Models for Laminated Steel. IEEE Trans. Ind. Appl. 2007, 43,
1554–1564. [CrossRef]

7. Gerlando, A.D.; Perini, R. Evaluation of the Effects of the Voltage Harmonics on the Extra Iron Losses in the
Inverter Fed Electromagnetic Devices. IEEE Trans. Energy Convers. 1999, 14, 57–62. [CrossRef]

8. Rasilo, P.; Belahcen, A.; Arkkio, A. Experimental determination and numerical evaluation of core losses in
a 150-kVA wound-field synchronous machine. IET Electr. Power Appl. 2013, 7, 97–105. [CrossRef]

9. Zhao, H.; Wang, Y.; Zhang, D.; Zhan, Y.; Xu, G.; Luo, Y. Piecewise variable parameter model for precise
analysis of iron losses in induction motors. IET Electr. Power Appl. 2017, 11. [CrossRef]

10. Han, S.-H.; Soong, W.L.; Jahns, T.M.; Guven, M.K.; Illindala, M.S. Reducing harmonic eddy-current loss in
the stator teeth of interior permanent magnet synchronous machines during flux weakening. IEEE Trans.
Energy Convers. 2010, 25, 441–449. [CrossRef]

11. Li, Q.; Fan, T.; Wen, X.; Ye, L.; Tai, X.; Li, Y. Stator teeth eddy-current loss analysis of interior permanent
magnet machine during flux weakening. In Proceedings of the IEEE International Conference on Electrical
Machines and Systems (ICEMS), Busan, Korea, 26–29 October 2013; pp. 1226–1230. [CrossRef]

12. Yokoi, Y.; Higuchi, T.; Miyamoto, Y. General formulation of winding factor for fractional-slot concentrated
winding design. IET Electr. Power Appl. 2015, 10, 231–239. [CrossRef]

13. Liu, Y.; Pei, Y.; Yu, Y.; Shi, Y.; Chai, F. Increasing the saliency ratio of fractional slot concentrated winding
interior permanent magnet synchronous motors. IET Electr. Power Appl. 2015, 9, 439–448. [CrossRef]

14. Yamazaki, K. Torque and efficiency calculation of an interior permanent magnet motor considering harmonic
iron losses of both the stator and rotor. IEEE Trans. Magn. 2003, 39, 1460–1463. [CrossRef]

15. Akatsu, K.; Narita, K.; Sakashita, Y.; Yamada, T. Impact of flux weakening current to the iron loss in an IPMSM
including PWM carrier effect. In Proceedings of the Energy Conversion Congress and Exposition, San Jose,
CA, USA, 20–24 September 2009; pp. 1927–1932.

16. Yamazaki, K.; Ishigami, H. Rotor-shape optimization of interior permanent-magnet motors to reduce
harmonic iron losses. IEEE Trans. Ind. Electron. 2010, 57, 61–69. [CrossRef]

17. Yamazaki, K.; Kumagai, M.; Ikemi, T.; Ohki, S. A novel rotor design of interior permanent-magnet
synchronous motors to cope with both maximum torque and iron-loss reduction. IEEE Trans. Ind. Appl. 2013,
49, 2478–2486. [CrossRef]

18. Kuttler, S.; El KadriBenkara, K.; Friedrich, G.; Abdelli, A.; Vangraefschepe, F. Fast iron losses model of
stator taking into account the flux weakening mode for the optimal sizing of high speed permanent internal
magnet synchronous machine. Math. Comput. Simul. 2017, 131, 328–343. [CrossRef]

19. Tessarolo, A.; Mezzarobba, M.; Menis, R. Modeling, Analysis, and Testing of a Novel Spoke-Type Interior
Permanent Magnet Motor With Improved Flux Weakening Capability. IEEE Trans. Magn. 2015, 51, 1–9.
[CrossRef]

20. Atiq, S.; Kwon, B. Susceptibility of the winding switching technique for flux weakening to harmonics and
the choice of a suitable drive topology. Int. J. Electr. Power Energy Syst. 2017, 85, 22–31. [CrossRef]

http://dx.doi.org/10.1109/TMAG.2013.2244072
http://dx.doi.org/10.1109/TMAG.2012.2208944
http://dx.doi.org/10.1049/iet-epa.2016.0737
http://dx.doi.org/10.1109/TIA.2006.872941
http://dx.doi.org/10.1109/TIA.2007.908159
http://dx.doi.org/10.1109/60.749148
http://dx.doi.org/10.1049/iet-epa.2012.0242
http://dx.doi.org/10.1049/iet-epa.2016.0009
http://dx.doi.org/10.1109/TEC.2009.2033195
http://dx.doi.org/10.1109/ICEMS.2013.6713370
http://dx.doi.org/10.1049/iet-epa.2015.0092
http://dx.doi.org/10.1049/iet-epa.2015.0092
http://dx.doi.org/10.1109/TMAG.2003.810515
http://dx.doi.org/10.1109/TIE.2009.2025285
http://dx.doi.org/10.1109/TIA.2013.2262662
http://dx.doi.org/10.1016/j.matcom.2016.06.009
http://dx.doi.org/10.1109/TMAG.2014.2357225
http://dx.doi.org/10.1016/j.ijepes.2016.07.001


Machines 2017, 5, 30 15 of 15

21. Rekik, M.; Besbes, M.; Marchand, C.; Multon, B.; Loudot, S.; Lhotellier, D. Improvement in the
field-weakening performance of switched reluctance machine with continuous mode. IET Electr. Power Appl.
2015, 9, 439–448. [CrossRef]

22. Vaez-Zadeh, S.; Zahedi, B. Modeling and analysis of variable speed single phase induction motors with iron
loss. Energy Convers. Manag. 2009, 50, 2747–2753. [CrossRef]

23. Li, Q.; Fan, T.; Wen, X. Characterization of Iron Loss for Integral-Slot Interior Permanent Magnet Synchronous
Machine during Flux Weakening. IEEE Trans. Magn. 2017, 53, 1–7. [CrossRef]
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