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Abstract: In this paper, a direct uncertainty minimization framework is developed and demonstrated
for model reference adaptive control laws. The proposed framework consists of a novel architecture
involving modification terms in the adaptive control law and the update law. In particular, these terms
are constructed through a gradient minimization procedure in order to achieve improved closed-loop
system performance with adaptive control laws. The proposed framework is first developed for
adaptive control laws with linear reference models and then generalized to adaptive control laws
with nonlinear reference models. Two illustrative numerical examples are included to demonstrate
the efficacy of the proposed framework.
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1. Introduction

Research in adaptive control algorithms is primarily motivated by the fact that these algorithms
have the capability to estimate and suppress the effect of system uncertainties resulting from imperfect
system modeling, degraded modes of operation, abrupt changes in dynamics, damaged control
surfaces and sensor failures, to name but a few examples. Although government and industry agree on
the potential of these algorithms in providing safety and reducing system development costs, a major
issue is their poor transient performance.

To address this problem, the authors of [1–8] present modifications to adaptive update laws.
In particular, the work in [1–3] uses filtered versions of the control input and state; [4–6] uses a moving
time window of the system uncertainty; and [7,8] uses recorded and instantaneous data concurrently.
In contrast to these approaches, the authors of [9–11] present an approach called artificial basis
functions that adds modification terms not only to the update law, but also to the adaptive controller
and show that the system error can be suppressed during the transient system response. The common
denominator of the approaches in [1–11] is that they introduce additional mechanisms to model
reference adaptive control laws that capture a form of the system uncertainty in order to suppress
its effect.
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In this paper, we introduce a novel framework called direct uncertainty minimization for model
reference adaptive control laws. Unlike the approaches in [1–8], the proposed framework consists of
an architecture involving modification terms in both the adaptive controller and the update law, such
that these terms are activated when the system error is nonzero and vanishes as the system reaches
its steady state. In addition, this new framework directly allows one to suppress the effect of system
uncertainty on the transient system response through a gradient minimization procedure and, hence,
leads to improved system performance. Furthermore, unlike the approaches in [9–11], the proposed
framework is computationally less expensive, and it can enforce the system error to approximately stay
in an a priori given, user-defined error performance bound. The proposed framework is first developed
for adaptive control laws with linear reference models and then generalized to adaptive control laws
with nonlinear reference models. This generalization adopts tools and methods from [12,13].

The organization of this paper is as follows. Section 2 highlights the notation used in this paper
and states necessary mathematical preliminaries. Section 3 introduces the proposed direct uncertainty
minimization framework, while Section 4 generalizes the results of Section 3 to a class of nonlinear
reference models. Two illustrative numerical examples are provided in Section 5 to demonstrate the
efficacy of the proposed approach to model reference adaptive control, and conclusions are finally
summarized in Section 6.

2. Notation and Mathematical Preliminaries

We use a fairly standard notation, where R denotes the set of real numbers, Rn denotes the set
of n × 1 real column vectors, Rn×m denotes the set of n × m real matrices, R+ (resp. R+) denotes
the set of positive (resp. non-negative-definite) real numbers, Rn×n

+ (resp. Rn×n
+ ) denotes the set of

n× n positive-definite (resp. non-negative-definite) real matrices, Dn×n denotes the set of n× n real
matrices with diagonal scalar entries, (·)T denotes transpose, (·)−1 denotes inverse, tr(·) denotes the
trace operator,

∣∣∣∣·∣∣∣∣2 denotes the Euclidean norm,
∣∣∣∣·∣∣∣∣F denotes the Frobenius matrix norm and “,”

denotes equality by definition. Furthermore, we write λmin(A) (resp., λmax(A)) for the minimum
(resp. maximum) eigenvalue of the Hermitian matrix A.

We next state necessary preliminaries on the model reference adaptive control problem. For this
purpose, consider the uncertain dynamical system given by:

ẋp(t) = Apxp(t) + BpΛu(t) + Bpδp(xp(t)), xp(0) = xp0, (1)

where xp(t) ∈ Rnp is the state vector available for feedback, u(t) ∈ Rm is the control input restricted to
the class of admissible controls consisting of measurable functions, δp : Rnp → Rm is an uncertainty,
Ap ∈ Rnp×np is a known system matrix, Bp ∈ Rnp×m is a known control input matrix with BT

p Bp being
nonsingular, Λ ∈ Rm×m

+ ∩Dm×m is an unknown control effectiveness matrix and the pair (Ap, Bp) is
controllable. The next assumption is standard in the adaptive control literature [14–16].

Assumption 1. The uncertainty in Equation (1) is parameterized as:

δp(xp(t)) = WT
p σp(xp(t)), xp(t) ∈ Rnp , (2)

where Wp ∈ Rs×m is an unknown weight matrix and σp : Rnp → Rs is a known basis function of the
form σp(xp(t)) = [σp1(xp(t)), σp2(xp(t)), . . . , σps(xp(t))]T.

For addressing command following, let c(t) ∈ Rnc be a given piecewise continuous command
and xc(t) ∈ Rnc be the integrator state given by the dynamics:

ẋc(t) = Epxp(t)− c(t), xc(0) = xc0, (3)
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where Ep ∈ Rnc×np selects a subset of xp(t) to follow c(t). Based on the above construction,
Equations (1) and (3) are now augmented as:

ẋ(t) = Ax(t) + BΛu(t) + BWT
p σp(xp(t)) + Brc(t), x(0) = x0, (4)

where x(t) , [xT
p(t), xT

c (t)]T ∈ Rn, n = np + nc, is the augmented state vector,
x0 = [xT

p0, xT
c0]

T ∈ Rn, and:

A ,

[
Ap 0np×nc

Ep 0nc×nc

]
∈ Rn×n, (5)

B , [BT
p , 0T

nc×m]
T ∈ Rn×m, (6)

Br , [0T
np×nc , −Inc×nc ]

T ∈ Rn×nc . (7)

Consider now the feedback control law given by:

u(t) = un(t) + ua(t), (8)

where un(t) and ua(t) are the nominal feedback control law and the adaptive feedback control law,
respectively. Let the nominal feedback control law be further given by:

un(t) = −Kx(t), K ∈ Rm×n, (9)

such that Ar , A− BK is Hurwitz. Using Equations (8) and (9) in Equation (4) yields:

ẋ(t) = Arx(t) + Brc(t) + BΛ[ua(t) + WTσ(x(t))], (10)

where:

W , [Λ−1WT
p , (Λ−1 − I)]T ∈ R(s+m)×m (11)

is an unknown aggregated weight matrix and:

σ(x(t)) , [σT
p (xp(t)), xT(t)KT]T ∈ R(s+m) (12)

is a known aggregated basis function. Considering Equation (10), the adaptive control law is given by:

ua(t) = −ŴT(t)σ(x(t)), (13)

where Ŵ(t) ∈ R(s+m)×m is the estimate of W satisfying the weight update law:

˙̂W(t) = γσ(x(t))eT(t)PB, Ŵ(0) = Ŵ0. (14)

In Equation (14), γ ∈ R+ is the learning rate, e(t) , x(t)− xr(t) is the system error state vector
with xr(t) ∈ Rn being the reference state vector satisfying the reference model dynamics:

ẋr(t) = Arxr(t) + Brc(t), xr(0) = xr0, (15)

and P ∈ Rn×n
+ is a symmetric solution of the Lyapunov equation:

0 = AT
r P + PAr + R, R ∈ Rn×n

+ . (16)
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Now, using Equation (13) in Equation (10) yields:

ẋ(t) = Arx(t) + Brc(t)− BΛW̃T(t)σ(x(t)), (17)

and the system error dynamics are given using Equations (15) and (17) as:

ė(t) = Are(t)− BΛW̃T(t)σ(x(t)), e(0) = e0, (18)

where W̃(t), Ŵ(t)−W ∈ R(s+m)×m and e0 , x0 − xr0.

Remark 1. The update law given by Equation (14) can be derived using Lyapunov analysis by considering the
Lyapunov function candidate (see, for example, [14–16]):

V(e, W̃) = eTPe + γ−1tr (W̃Λ1/2)T(W̃Λ1/2). (19)

Note that V(0, 0) = 0 and V(e, W̃) > 0 for all (e, W̃) 6= (0, 0). Now, differentiating Equation (19) yields:

V̇(e(t), W̃(t)) = −eT(t)Re(t)− 2eT(t)PBΛW̃T(t)σ(x(t)) + 2γ−1tr W̃T(t) ˙̂W(t)Λ, (20)

where using Equation (14) in Equation (20) results in:

V̇(e(t), W̃(t)) = −eT(t)Re(t) ≤ 0, t ∈ R+, (21)

which guarantees that the system error state vector e(t) and the weight error W̃(t) are Lyapunov stable
and, hence, are bounded for all t ∈ R+. Since σ(x(t)) is bounded for all t ∈ R+, it follows from Equation (17)
that ė(t) is bounded, and hence, V̈(e(t), W̃(t)) is bounded for all t ∈ R+. Now, it follows from Barbalat’s lemma
[17] that:

lim
t→∞
V̇
(
e(t), W̃(t)

)
= 0, (22)

which consequently shows that e(t)→ 0 as t→ ∞.

Remark 2. In this paper, we assume that the uncertainty can be perfectly parameterized as in Equation (2),
which implies that the structure of the uncertainty is known. To elucidate this point, consider an example with
the uncertainty δp(xp(t)) = α1xp1(t) + α2x2

p1(t) + α3xp2(t), where xT
p(t) = [xp1(t), xp2(t)] is the state

vector and α1, α2 and α3 are some unknown parameters. In this case, it follows from the parameterization
in Equation (2) that WT

p = [α1, α2, α3] and σT
p (xp(t)) = [xp1(t), x2

p1(t), xp2(t)]. That is, provided that one
knows the structure of the uncertainty as in this representative example, the basis function can be easily formed.
For situations when one does not know the structure of the uncertainty and the uncertainty in Equation (1)
cannot be perfectly parameterized, then Assumption 1 can be relaxed by considering [18,19]:

δp(t, xp(t)) = WT
p (t)σp(xp(t)) + εp(t, xp(t)), xp(t) ∈ Dxp , (23)

where Wp(t) ∈ Rs×m is an unknown time-varying weight matrix satisfying ‖Wp(t)‖F ≤ w and ‖Ẇp(t)‖F ≤
ẇ with w ∈ R+ and ẇ ∈ R+ being unknown scalars, σp : Dxp → Rs is a known basis function of the form
σp(xp(t)) = [1, σp1(xp(t)), σp2(xp(t)), . . . , σps−1(xp(t))]T, εp : R+ ×Dxp → Rm is the system modeling
error satisfying ‖εp(t, xp(t))‖2 ≤ ε with ε ∈ R+ being an unknown scalar and Dxp is a compact subset of
Rnp . In this case, the update law given by Equation (14) can be replaced by, for example,

˙̂W(t) = γProj
[
Ŵ(t), σ(x(t))eT(t)PB

]
, Ŵ(0) = Ŵ0, (24)

to guarantee the uniform boundedness of the system error state vector e(t) and the weight error W̃(t), where
Proj denotes the projection operator [20].
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3. Direct Uncertainty Minimization for Adaptive System Performance Improvement: Linear
Reference Model Case

For the model reference adaptive control framework introduced in Section 2, we now develop
the direct uncertainty minimization mechanism to improve transient system response. In particular,
we first modify the adaptive feedback control law given by Equation (13) as:

ua(t) = −ŴT(t)σ(x(t))− φ(t), (25)

where φ(t) ∈ Rm is the system performance improvement term that satisfies:

φ(t) = φ(0) + k(BTB)−1BT
[(

e(t)− e(0)
)
−
∫ t

0
Are(τ)dτ

]
, (26)

with k ∈ R+ being a design parameter. Using Equation (25), the system error dynamics in
Equation (18) become:

ė(t) = Are(t)− BΛ
[
W̃T(t)σ(x(t)) + φ(t)

]
, e(0) = e0. (27)

Notice that the ideal system error dynamics have the form:

ė(t) = Are(t), e(0) = e0, (28)

under nominal conditions with φ(t) ≡ 0 when there is no system uncertainty or control uncertainty.
Motivating from this standpoint, the mismatch term W̃T(t)σ(x(t)) + φ(t) in Equation (27) has to be
minimized during the transient system response to improve system performance. In the next theorem,
we show that the proposed system performance improvement term given by Equation (26) achieves
this objective through a gradient minimization procedure.

Theorem 1. The modification term of the adaptive feedback control law in Equation (26) is the negative gradient
of the cost function given by:

J (·) =
k
2

∣∣∣∣Λ1/2(W̃T(t)σ(x(t)) + φ(t)
)∣∣∣∣2

2. (29)

Proof. The negative gradient of the cost function given by Equation (29) with respect to φ(t) has the
form given by:

−∂J (·)
∂φ(t)

= −k
[
Λ
(
W̃T(t)σ(x(t)) + φ(t)

)]
, (30)

which can be rewritten using Equation (27) as:

−∂J (·)
∂φ(t)

= k(BTB)−1BT
[
ė(t)− Are(t)

]
. (31)

In Equation (31), note that BTB = BT
p Bp is nonsingular by its definition in Section 2. To construct

the modification term of the adaptive feedback control law in Equation (26), let:

φ̇(t) = −∂J (·)
∂φ(t)

= k(BTB)−1BT
[
ė(t)− Are(t)

]
, (32)

where Equation (26) is a direct consequence of Equation (32) using integration by parts.
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Remark 3. The proposed modification term of the adaptive feedback control law in Equation (26) allows for
the system error to be shaped by suppressing the mismatch term W̃T(t)σ(x(t)) + φ(t) in Equation (27) due to
gradient minimization, since it is constructed to be the negative gradient of Equation (29) with respect to φ(t).
Therefore, by adjusting k in Equation (26), the uncertain dynamical system response and the reference model
response can be made close to each other for all time including the transient phase. See Section 5 for illustrative
numerical examples.

Next, to maintain closed-loop system stability under the modified adaptive control signal given
by Equation (25), we now modify the update law given by Equation (14) as:

˙̂W(t) = γσ(x(t))
[
eT(t)PB + ξφT(t)

]
, Ŵ(0) = Ŵ0, (33)

with ξ = k/a and a ∈ R+ being a design parameter.

Remark 4. Note that the structure of Equation (26) is much simpler than the structure of (44) in [11], in that
the former does not involve Ŵ(t) dependence and additional integration terms. Furthermore, the same conclusion
is also true when Equation (33) is compared with (31)–(33) of [11], where the latter has an extra differential
equation in addition to the modification terms. Thus, the approach proposed here is much less computationally
expensive than [9–11].

Now, we are ready to state the following theorem, which shows the asymptotic stability of the
pair

(
e(t), φ(t)

)
, as well as the Lyapunov stability of W̃(t).

Theorem 2. Consider the uncertain dynamical system given by Equation (1) subject to Assumption 1, the
reference model given by Equation (15) and the feedback control law given by Equation (25) with Equations (26)
and (33). In addition, let ξ be chosen such that:

λmin(R)− 1
ξ

∣∣∣∣PB
∣∣∣∣2

FΛ∗ > 0 (34)

holds, where
∣∣∣∣Λ∣∣∣∣F≤ Λ∗ (here, Λ∗ ∈ R+ is a known, possibly conservative bound on the control effectiveness).

Then, the solution
(
e(t), φ(t), W̃(t)

)
of the closed-loop dynamical system is Lyapunov stable for all initial

conditions and t ∈ R+, limt→∞ e(t) = 0 and limt→∞ φ(t) = 0.

Proof. To show Lyapunov stability of the solution
(
e(t), φ(t), W̃(t)

)
, consider the Lyapunov function

candidate given by:

V
(
e, φ, W̃

)
= eTPe + a−1φTφ + γ−1tr (W̃Λ1/2)T(W̃Λ1/2). (35)

Note that V
(
0, 0, 0

)
= 0 and V

(
e, φ, W̃

)
> 0 for all

(
e, φ, W̃

)
6= (0, 0, 0). Differentiating Equation (35)

along the closed-loop dynamical system trajectories yields:

V̇
(
e(t), φ(t), W̃(t)

)
= −eT(t)Re(t)− 2ξφT(t)Λφ(t)− 2eT(t)PBΛ1/2Λ1/2φ(t). (36)

Using Young’s inequality [21] for the last term in Equation (36) gives:

−2eT(t)PBΛ1/2Λ1/2φ(t) ≤
∣∣−2eT(t)PBΛ1/2Λ1/2φ(t)

∣∣
≤ 1

µ
eT(t)PBΛBTPe(t) + µφT(t)Λφ(t).

(37)
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Now, setting µ = ξ and using Equation (37) in Equation (36) yields:

V̇
(
e(t), φ(t), W̃(t)

)
≤− eT(t)Re(t) +

1
ξ

eT(t)PBΛBTPe(t)− ξφT(t)Λφ(t)

≤− λmin(R)
∣∣∣∣e(t)∣∣∣∣22+1

ξ

∣∣∣∣e(t)∣∣∣∣22∣∣∣∣PB
∣∣∣∣2

FΛ∗ − ξλmin(Λ)
∣∣∣∣φ(t)∣∣∣∣22

=−
∣∣∣∣e(t)∣∣∣∣22[λmin(R)− 1

ξ

∣∣∣∣PB
∣∣∣∣2

FΛ∗
]
−ξλmin(Λ)

∣∣∣∣φ(t)∣∣∣∣22
(38)

Using the condition Equation (34) in Equation (38), it follows that V̇
(
e(t), φ(t), W̃(t)

)
≤ 0, which

guarantees the Lyapunov stability of the solution
(
e(t), φ(t), W̃(t)

)
. Since this implies the boundedness

of e(t), φ(t) and W̃(t) for all t ∈ R+, it follows from Equation (27) and Equation (32) that ė(t) and φ̇(t)
are bounded for all t ∈ R+, and hence, V̈

(
e(t), φ(t), W̃(t)

)
is bounded for all t ∈ R+. It now follow

from Barbalat’s lemma [17]:

lim
t→∞
V̇
(
e(t), φ(t), W̃(t)

)
= 0, (39)

which shows that limt→∞ e(t) = 0 and limt→∞ φ(t) = 0.

From a practical standpoint, if e(t) is sufficiently small, then the design parameter ξ, which affects
both modification terms in Equations (25) and (33), can be chosen to be small, such that Equation (34)
holds. However, as e(t) becomes large, then ξ may need to be increased accordingly to put more
weight on minimizing the cost function given by Equation (29) and, hence, to enforce system error
to approximately stay in a priori given, user-defined performance bounds. To achieve this practical
objective, we can let ξ(t) = k(t)/a, where ξ(t) ∈ [ξmin, ξmax], ξmin ∈ R+, ξmax ∈ R+, and consider the
cost function given by:

J (·) =
k(t)

2

∣∣∣∣Λ1/2(W̃T(t)σ(x(t)) + φ(t)
)∣∣∣∣2

2. (40)

Choosing the modification term in Equation (25) as the negative gradient of Equation (40), i.e.,
φ̇(t) = − ∂J (·)

∂φ(t) , and following similar steps as highlighted in the proof of Theorem 1, it follows by
integration by parts that:

φ(t) =φ(0) + a
[

ξ(t)(BTB)−1BTe(t)− ξ(0)(BTB)−1BTe(0)−
∫ t

0
ξ̇(τ)(BTB)−1BTe(τ)dτ

−
∫ t

0
ξ(τ)(BTB)−1BT Are(τ)dτ

]
.

(41)

Notice that in this case, the modified update law becomes:

˙̂W(t) = γσ(x(t))
[
eT(t)PB + ξ(t)φT(t)

]
, Ŵ(0) = Ŵ0, (42)

and the condition Equation (34) needs to be replaced with:

λmin(R)− 1
ξmin

∣∣∣∣PB
∣∣∣∣2

FΛ∗ > 0, (43)

where
∣∣∣∣Λ∣∣∣∣F≤ Λ∗ (here, Λ∗ ∈ R+ is a known bound on the control effectiveness). In addition,

we choose:

ξ̇(t) = −γξ

[
f (e)

(
ξ(t)− ξmin

)
+
(
1− f (e)

)(
ξ(t)− ξmax

)]
, ξ(0) = ξ0 ∈ [ξmin, ξmax], (44)



Machines 2017, 5, 9 8 of 20

where γξ ∈ R+ and f (e) ∈ [0, 1] is a continuously differentiable function, such that it is close to
one when e(t) is sufficiently small and otherwise close to zero. It follows from Equation (44) that
ξ(t) ∈ [ξmin, ξmax] and ξ(t) approach to ξmin (resp., ξmax) when f (e) = 1 (resp., f (e) = 0). A candidate
f (e) has the form f (e) = 1−

[
1− sech(c1||e(t)||P)

]c2 , ||e(t)||P ,
√

eT(t)Pe(t), where it is depicted in
Figure 1 for c1 = 5 (this is chosen to drive ξ(t) to ξmax if ||e(t)||P is larger than 0.5) and c2 = 10.

0 0.5 1 1.5 2 2.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

| |e(t) | |P

f
(e

)

Figure 1. A candidate f (e) for Equation (44).

4. Generalization to a Class of Nonlinear Reference Models

In most of the model reference adaptive control literature, it is common to design a reference
model with linear dynamics as given by Equation (15). While this is practical for several applications,
the control designer may prefer to use a nonlinear reference model to better capture the desired
closed-loop system performance for many robotics and flight control applications. By adopting the
tools and methods from [12,13], we now generalize the results in Section 3 such that the proposed
direct uncertainty minimization adaptive control architecture can be used to suppress the effect of
the system uncertainty on the transient system response and drive the states of a nonlinear uncertain
dynamical system to the states of a class of nonlinear reference models.

For this purpose, we recast the uncertain dynamical system given by Equation (1) with a more
general class of affine-in-control nonlinear system dynamics given by:

ẋp(t) = fp(xp(t)) + BpΛu(t) + Bpδp(xp(t)), xp(0) = xp0, (45)

where xp(t) ∈ Rnp is the state vector, u(t) ∈ Rm is the control input restricted to the class of admissible
controls consisting of measurable functions such that fp : Rnp → Rnp is a known system function
that satisfies fp(0) = 0, Bp ∈ Rnp×m is a known control input matrix, Λ ∈ Rm×m

+ ∩ Dm×m is an
unknown control effectiveness matrix and δp : Rnp → Rm is the system uncertainty, and it is implicitly
assumed that the required properties for the existence and uniqueness of solutions are satisfied for the
controllable uncertain dynamical system, such that Equation (45) has a unique solution forward in
time [17,22].

Once again, to address the command following, Equation (45) can be augmented with the
integrator state dynamics given by Equation (3) in the following form subject to Assumption 1:

ẋ(t) = f (x(t), c(t)) + BΛu(t) + BWT
p σp(xp(t)), x(0) = x0, (46)



Machines 2017, 5, 9 9 of 20

where x(t) , [xT
p(t), xT

c (t)]T ∈ Rn, n = np + nc, is the augmented state vector, x0 = [xT
p0, xT

c0]
T ∈ Rn,

c(t) ∈ Rnc is a given bounded command, B is given by Equation (6) and f : Rn ×Rnc → Rn is the
aggregated system function with the integrator state dynamics that satisfies f (0, 0) = 0 and:

f (x(t), c(t)) =

[
fp(xp(t))

Epxp(t)− c(t)

]
. (47)

Next, consider the nonlinear reference model given by:

ẋr(t) = fr(xr(t), c(t)), xr(0) = xr0, (48)

where xr(t) ∈ Rn is the reference state vector and fr : Rn ×Rnc → Rn is the reference model function
that satisfies fr(0, 0) = 0 and:

fr(xr(t), c(t)) , f (xr(t), c(t))− Bk(xr(t)), (49)

with k : Rn → Rm being a feedback law such that xr(t) is bounded for all t ∈ R+. In addition, it is
implicitly assumed that Equation (48) has a unique solution forward in time.

Let the nominal control law be given by:

un(t) = −k(x(t)), (50)

such that with Equation (8), Equation (46) can be rewritten as:

ẋ(t) = f (x(t), c(t))− Bk(x(t)) + BΛ
[
ua(t) + Λ−1WT

p σp(xp(t)) + (Λ−1 − I)k(x(t))
]

= fr(x(t), c(t)) + BΛ[ua(t) + WT
o σo(x(t))

]
,

(51)

where Wo , [Λ−1WT
p , (Λ−1 − I)]T ∈ R(s+m)×m and σo(x(t)) , [σT

p (xp(t)), kT(x(t))]T ∈ R(s+m).
The system error dynamics then follow from Equations (48) and (51) as:

ė(t) = fr(x(t), c(t))− fr(xr(t), c(t)) + BΛ
[
ua(t) + WT

o σo(x(t))
]
, e(0) = e0. (52)

Note that there exists a known signal v(x(t), xr(t), c(t)) ∈ Rm, which can be used as a feedback
linearization term, such that:

Are(t) = fr(x(t), c(t))− fr(xr(t), c(t)) + Bv(·) (53)

holds, and hence, Equation (52) can be written as:

ė(t) = Are(t) + BΛ
[
ua(t) + WT

o σo(x(t))−Λ−1v(·)
]

= Are(t) + BΛ
[
ua(t) + WTσ(·)

]
, (54)

with W , [WT
o , −Λ−1]T ∈ R(s+2m)×m being the unknown aggregated weight matrix and σ(·) ,

[σT
o (x(t)), vT(·)]T ∈ R(s+2m) being the known aggregated basis function.

Now, consider the adaptive feedback control law given by:

ua(t) = −ŴT(t)σ(·)− φ(t), (55)

where φ(t) ∈ Rm satisfies Equation (41) with Equation (44) and Ŵ(t) ∈ R(s+2m)×m satisfies:

˙̂W(t) = γσ(·)
[
eT(t)PB + ξ(t)φT(t)

]
, Ŵ(0) = Ŵ0. (56)
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Using Equation (55) in Equation (54), it follows that the system error dynamics can be written as:

ė(t) = Are(t)− BΛ
[
W̃T(t)σ(·) + φ(t)

]
, (57)

where W̃(t) , Ŵ(t)−W ∈ R(s+2m)×m.

Remark 5. It should be noted that the term v(·) acts similar to a feedback linearization signal, which is an
important feature in generalizing the direct uncertainty minimization framework for the considered class of
nonlinear reference models. By appropriately selecting v(·), when possible, for the given application, such that
Equation (53) holds, and then embedding v(·) into the unknown weight matrix W and the known basis function
σ(·), the resulting system error dynamics given by Equation (57) has an identical structure to the system error
dynamics given by Equation (27) in Section 3 for the linear reference model. It then follows that the analysis
and synthesis of the direct uncertainty minimization mechanism and stability analysis presented in Section 3
directly translates to the case in which nonlinear reference models are used.

Theorem 3. Consider the nonlinear uncertain dynamical system given by Equation (45) subject to Assumption
1; the nonlinear reference model given by Equation (48) and the feedback control law given by Equation (55)
with Equations (41), (44) and (56). In addition, let ξmin be chosen, such that Equation (43) holds. Then, the
solution

(
e(t), φ(t), W̃(t)

)
of the closed-loop dynamical system is Lyapunov stable for all initial conditions, and

t ∈ R+, limt→∞ e(t) = 0 and limt→∞ φ(t) = 0.

Proof. As a consequence of the discussion highlighted in Remark 5, the proof is similar to the proof of
Theorem 2, and hence, is omitted.

5. Illustrative Numerical Examples

To demonstrate the efficacy of the proposed direct uncertainty minimization framework, we now
present two examples in the following two subsections. We first investigate the application to a
hypersonic vehicle using a linear reference model. The second example considers a wing rock dynamics
model for an aircraft with a nonlinear reference model, where the purpose of the nonlinear reference
model is to limit the pilot authority for envelope protection.

5.1. Example 1: Application to a Hypersonic Vehicle Model

For this example, we first formulate a state space model of a generic hypersonic vehicle (GHV).
Then, it is explained how the model is decoupled into longitudinal and lateral dynamics for which
separate controllers are designed. The longitudinal and lateral controllers have both a nominal and
adaptive portion where the simulation results illustrate both nominal control performance, a standard
adaptive control performance and the proposed adaptive control performance.
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For the configuration with an altitude of 80,000 feet and a Mach number of six, a linearized model
under nominal conditions (δp(xp(t)) = 0 and Λ = I) is obtained in the form of Equation (1) with:

Ap =



−3.70× 10−3 −7.17× 10−1 0 −3.18× 101 −2.67× 10−4

−5.35× 10−7 −2.39× 10−1 1 −2.95× 10−12 2.23× 10−7

−2.79× 10−5 4.26 −1.19× 10−1 0 3.94× 10−5

−4.76× 10−8 1.31× 10−13 1 −4.45× 10−14 −1.33× 10−11

−5.53× 10−10 −5.87× 103 0 5.87× 103 0
5.99× 10−16 −3.14× 10−11 0 −3.04× 10−19 −9.74× 10−16

1.47× 10−10 −4.45× 10−6 0 0 −1.00× 10−11

−5.29× 10−12 3.98× 10−8 0 0 1.28× 10−12

8.08× 10−28 2.04× 10−22 1.01× 10−20 1.17× 10−16 −1.73× 10−31

· · ·

· · ·

−8.81× 10−1 0 0 −1.77× 10−15

−1.06× 10−3 0 0 −3.18× 10−21

−1.47 0 0 0
−1.08× 10−19 4.44× 10−16 −9.58× 10−16 −2.58× 10−18

0 0 0 −3.26× 10−13

−6.97× 10−2 −1.04× 10−2 −9.99× 10−1 −5.35× 10−3

−1.31× 103 −2.03 −7.54× 10−3 0
2.07 −1.55× 10−3 −5.31× 10−2 0

−2.38× 10−4 8.54× 10−1 −8.84× 10−3 −3.00× 10−6



(58)

Bp =



−6.53× 10−3 −1.24× 10−13 −2.98× 10−3

−1.33× 10−4 −2.44× 10−13 1.17× 10−7

−1.84× 10−1 −1.60× 10−13 2.48× 10−4

0 0 0

0 0 0

−1.40× 10−16 −2.47× 10−5 −2.18× 10−4

−5.90× 10−11 −8.04 10.3

8.56× 10−14 3.17× 10−2 2.85× 10−1

0 0 0



(59)

with the state vector being defined as xp(t) = [V(t), α(t), q(t), θ(t), h(t), β(t), p(t), r(t), φ(t)]T,
where V(t) denotes the total velocity, α(t) denotes the angle of attack, q(t) denotes the pitch rate,
θ(t) denotes the pitch angle, h(t) denotes the altitude, β(t) denotes the sideslip angle, p(t) denotes the
roll rate, r(t) denotes the yaw rate and φ(t) denotes the roll angle. The control input vector is defined
as u(t) = [δe(t), δa(t), δr(t)]T, where δe(t) denotes the elevator deflection, δa(t) denotes the aileron
deflection and δr(t) denotes the rudder deflection. To control the model described above, we decouple
the system into its longitudinal and lateral dynamics, design nominal and adaptive controllers for
the decoupled system and then combine the separate controllers to control the overall coupled GHV
model (see Figures 2 and 3).
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Longitudinal Reference System

Uncertain System

Longitudinal Weight 

Update Law

Longitudinal Adaptive 

Control

+

+-

+

Figure 2. Block diagram of separated longitudinal control design.

Lateral Reference System

Uncertain System

Lateral Weight 

Update Law
Lateral Adaptive Control

+

+-

+

Figure 3. Block diagram of separated lateral control design.

5.1.1. Longitudinal Control Design

For the decoupled longitudinal dynamics, we consider the state vector defined as
xplo(t) = [α(t), q(t)]T, with the respective system matrices:

Aplo =

[−2.39× 10−1 1

4.26 −1.19× 10−1

]
, (60)

Bplo =

[−1.33× 10−4

−1.84× 10−1

]
. (61)

LQR theory is used to design the nominal controller with Eplo = [1, 0] such that a desired
angle of attack command is followed. The controller gain matrix Klo is obtained using the
highlighted augmented formulation (Equations (5) and (6)), along with the weighting matrices
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Qlo = diag[20000, 25000, 400000] to penalize xlo(t) and Rlo = 12.5 to penalize ulo(t), resulting in
the following gain matrix:

Klo =
[
−1.65× 102 −6.09× 101 −1.79× 102

]
. (62)

The solution to AT
rlo

Plo + Plo Arlo + R1lo = 0, where Arlo , Alo − BloKlo, is calculated using
R1lo = diag[1, 1, 100] for both the standard adaptive control design and the proposed controller.
For the proposed design, we use Equations (25), (41) and (42) and resort to Equation (44) for enforcing
‖elo(t)‖Plo

≤ 0.5. Additionally, note that ξmin = 10 is selected to satisfy Equation (43), and we choose
a = 2. To visualize the overall longitudinal control design, a block diagram is provided in Figure 2.

5.1.2. Lateral Control Design

The decoupled lateral dynamics follows similarly. Specifically, we consider the state vector
defined as xpla(t) = [β(t), p(t), r(t), φ(t)]T, with the respective system matrices:

Apla =


−6.97× 10−2 −1.04× 10−2 −9.99× 10−1 −5.35× 10−3

−1.31× 103 −2.03 −7.54× 10−3 0

2.07 −1.55× 10−3 −5.31× 10−2 0

−2.38× 10−4 8.54× 10−1 −8.84× 10−3 −3.00× 10−6

 , (63)

Bpla =


−2.47× 10−5 −2.18× 10−4

−8.04 10.3

3.17× 10−2 2.85× 10−1

0 0

 . (64)

LQR theory is used to design the nominal controller with:

Epla =

[
1 0 0 0

0 0 0 1

]
(65)

such that a desired sideslip angle command and roll angle command are followed. The controller
gain matrix Kla is obtained using the highlighted augmented formulation along with the weighting
matrices Qla = diag[100, 100, 100, 100, 400000, 2500] to penalize xla(t) and Rla = diag[1.25, 50] to
penalize ula(t), resulting in the following gain matrix:

Kla =

[
2.78× 102 −9.08 −3.62× 101 −3.15× 101 1.21× 102 −4.37× 101

8.70× 101 1.52× 10−1 −2.72× 101 1.30 8.74× 101 1.51

]
. (66)

The solution to AT
rla

Pla + Pla Arla + R1la = 0, where Arla , Ala − BlaKla is calculated using
R1la = diag[1, 1, 1, 1, 100, 100] for both the standard adaptive control design and the proposed
controller. For the proposed design, we use Equations (25), (41) and (42) and resort to Equation (44) for
enforcing ‖ela(t)‖Pla

≤ 0.5. Additionally, note that ξmin = 10 is selected to satisfy Equation (43), and
we choose a = 2. Similar to the previous section, a block diagram is provided in Figure 3 to visualize
the control design using the decoupled lateral dynamics to control the overall uncertain system.

5.1.3. Nominal System without Uncertainty

The longitudinal and lateral controllers are augmented and applied to the overall coupled system.
We first consider the case when there is no uncertainty in the system to show the nominal performance
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of the control designs. Figure 4 shows the response of the nominal control performance. It can also
be seen from this figure that the error signals are not equal to zero, which is expected due to the
coupling effects.
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Figure 4. Nominal controller performance without uncertainty.

5.1.4. Uncertainty in Control Effectiveness and Stability Derivatives

We now consider the case when the control effectiveness matrix is unknown, as well as the
stability derivatives Cmα and Cnβ

. For this purpose, we let Λ = 0.5I, and we increase Cmα and decrease
Cnβ

. Figure 5 shows the response with the nominal control, which goes unstable.
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Figure 5. Nominal controller performance with uncertainty in Λ, Cmα and Cnβ .
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Figure 6. Standard adaptive controller performance with uncertainty in Λ, Cmα and Cnβ (Γlo =

I2×2 and Γla = I3×3).

A standard adaptive control design is first implemented. For the standard adaptive controllers,
we select the basis functions σlo(xlo(t)) = [xT

lo(t)K
T
lo, α(t)]T and σla(xla(t)) = [xT

la(t)K
T
la, β(t)]T

respectively for the longitudinal and lateral controllers. Figures 6 and 7 show the standard adaptive
control response. Specifically, Figure 6 shows that for a low learning gain, the system transient
performance in the sideslip angle and angle of attack is poor. In addition, the control surface deflection
angles exceed practical working limits. To improve the performance, the learning gain is increased as
shown in Figure 7. Both the tracking performance and the control response improve; however, as seen
in the bottom part of the figure, the standard adaptive controller is unable to enforce a pre-defined
bound on the error.
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Figure 7. Standard adaptive controller performance with uncertainty in Λ, Cmα and Cnβ

(Γlo = 100I2×2 and Γla = 100I3×3).
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To improve performance further and enforce a user-defined bound on the error, the proposed
adaptive controller is then implemented using the same basis functions as the standard adaptive
control design. Figures 8 and 9 show the proposed controller performance using the gain varying
control. Specifically, Figure 8 illustrates the superior tracking performance, and Figure 9 shows the
guaranteed bound ‖e(t)‖P ≤ 0.5 for both the longitudinal and lateral dynamics.
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Figure 8. Proposed gain varying adaptive control performance with uncertainty in Λ, Cmα and Cnβ

(Γlo = I2×2 and Γla = diag[0.1, 1, 1], ξ0 = 10 and a = 2).
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5.2. Example 2: Wing Rock Dynamics with Nonlinear Reference Model

We now consider the nonlinear dynamical system representing a controlled wing rock dynamics
model given by:[

ẋp1(t)

ẋp2(t)

]
=

[
0 1

0 0

] [
xp1(t)

xp2(t)

]
+

[
0

1

] (
Λu(t) + δp(xp(t))

)
,

[
xp1(0)

xp2(0)

]
=

[
0

0

]
, (67)

where xp1 represents the roll angle in radians and xp2 represents the roll rate in radians per second.
In Equation (67), δp(xp) represents an uncertainty of the form δp(xp) = α1xp1 + α2xp2 + α3|xp1|xp2 +

α4|xp2|xp2 + α5x3
p1, where αi, i = 1, . . . , 5, are unknown parameters that are derived from the aircraft

aerodynamic coefficients. For this numerical example, we set α1 = 0.5, α2 = 1.0, α3 = −1.0, α4 = 1.0,
α5 = 0.5 and Λ = 0.5.

Note that for this example, the wing rock dynamics are linear, such that fp(xp(t)) in Equation (45)
is written as Apxp(t). As a result, we let Ep =

[
1, 0

]
such that the roll angle command is followed and

use LQR theory with the augmented formulation Equations ((5) and (6)), along with the weighting
matrices Q = diag[50, 1, 100] and R = 1 to obtain the gain matrix K =

[
12.30, 5.06, 10.0

]
. In addition,

we adopt the same nominal control structure to limit pilot authority as in [13] to design the nonlinear
reference model as:

ẋr(t) =


0 1 0

0 0 0

1 0 0

 xr(t)−


0

1

0

 k(xr(t)) +


0

0

−1

 c(t), xr(t) = 0, (68)

with k(xr(t)) = K
[
xr1(t), xr2(t), Φ(xr(t))xr3(t)

]T, c(t) = cd(t)Φ(xr(t)) and:

Φ(xr(t)) = tanh

(
5
∣∣∣|xr1(t)| − 2

∣∣∣). (69)

Note that cd(t) is a desired command applied by the pilot and Φ(xr(t)) is a nonlinear function that
limits the pilot authority by constraining the absolute value of the roll angle to remain less than or
equal to two. Motivated from the structure of the nonlinear reference model, the feedback linearization
term is designed as:

v(·) = −Ke(t) + K
[
x1(t), x2(t), Φ(x(t))x3(t)

]T−K
[
xr1(t), xr2(t), Φ(xr(t))xr3(t)

]T, (70)

such that Equation (53) holds. Using this, we select the basis function as:

σ(·) =
[
xp1, xp2, |xp1|xp2, |xp2|xp2, x3

p1, xT(t)KT, vT(·)
]T, (71)

and we set R = I3×3 for both the standard adaptive controller and the proposed adaptive controller.
Furthermore, for the proposed design, we use Equations (55), (41) and (56) and resort to Equation (44)
for enforcing ‖e(t)‖P ≤ 0.5. Additionally, note that ξmin = 1 is selected to satisfy Equation (43), and
we choose a = 2.

Figure 10 shows the standard adaptive control response. It can be seen from the figure that even
though the roll angle command is reasonably followed, the roll rate and the control response have
undesirable high-frequency content, which can cause instability. In addition, as seen in the bottom part
of the figure, the standard adaptive controller is unable to enforce a pre-defined bound on the error.

To improve performance and enforce a user-defined bound on the error, the proposed adaptive
controller is then implemented. Figures 11 and 12 show the proposed controller performance using the
gain varying control. It is clear from Figure 11 that the proposed adaptive controller obtains superior
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command-following performance, and Figure 12 shows that the system error stays in the a priori given,
user-defined performance bound.
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Figure 10. Standard adaptive controller performance (γ = 1).
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Figure 11. Proposed gain varying adaptive control performance (γ = 1 and γξ = 1, ξ0 = 1 and a = 2).
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Figure 12. System error bounds and adaptation gain for Figure 11.

6. Conclusions

We proposed a direct uncertainty minimization approach that uses modification terms in the
adaptive control law and the update law to suppress the effect of system uncertainty on the transient
system response through a gradient minimization procedure for improved system performance.
In addition, the use of a varying gain on the modification term was shown to keep the system
error approximately within a priori given, user-defined error performance bounds. The proposed
approach was then generalized to incorporate a nonlinear reference model to better capture the desired
closed-loop system performance for a class of nonlinear uncertain dynamical systems. Two illustrative
numerical examples were included to demonstrate the efficacy of the proposed adaptive control
framework. Future research will include generalizations of the proposed framework to output feedback
adaptive control, as well as applications to large-scale dynamical systems.
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