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Abstract: Robotic manipulators have been widely used in many arenas, when the robotic arm
performs positioning, a traditional controller (e.g., a proportional-integral-derivative, PID controller)
has the problem of not being able to compensate the payload variations. When the end-effector of the
robotic arm grasps different payload masses as most applications require, the output of joint motion
will vary under different payload masses, which will decrease the end-effector positioning accuracy
of the robotic arm system. Based on the model reference adaptive control technique, the payload
variation effect can be solved, therefore improving the positioning accuracy. This paper studies
payload effects on the joint motion accuracy of serial mechanical mechanisms.
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1. Introduction

Proportional-integral-derivative (PID) control is a widely used control method in many industries.
For example, in many industries using robotic arms, PID control applies to each joint to control
the whole robotic arm. By adjusting the PID gains of the PID controller, one can have the desired
output performance. In [1], a discrete PID controller was designed for use in nano scale systems.
In [2], a PID controller with additional imposed nonlinear logic was reviewed for robot motion
positioning control. In [3], control strategies that implement planar micro assembly using groups of
stress-engineered MEMS micro robots controlled through a single global control signal were presented.
Model reference adaptive control (MRAC) is another control method that was proposed early on by
Landau [4], and it has since been developed [5–8]. In [9], the implementation of MRAC to a dynamically
unknown hydraulic robot for position tracking was presented. A recursive parameter estimator was
employed for the parameter estimation in the MRAC system. The hydraulic robot was tested for
a step input signal change, and it was found that the MRAC can provide better tracking than that
of the PID controller, and the MRAC is sufficient enough to replace the classical PID controller.
However, a minor problem was discovered, in that there is a small oscillation at the beginning
of the motion when MRAC is applied. In [10], the study presented the application of a MRAC
composite system used for tracking the endpoint of a flexible joint manipulator used in space. In [11],
a model reference tracking-based adaptive PID controller was designed by inserting a PID controller
to the feedback path for robot motion control, and the control system allows one to manipulate
motions of an unstable robot. The reason that one needs to apply the adaptive control—especially
the model reference adaptive control approach—is that traditional controllers cannot compensate
the payload variations. When the end-effector grasps different payload masses, the joint output will
vary under different payload masses, which will affect the positioning accuracy of the end-effector.
Whereas for the model reference adaptive control, the above problem can be effectively resolved,
and payload variation effect can be compensated. The MRAC (model reference adaptive control)
technique was first proposed by Whitaker [12] in 1958, when he examined the adaptive flight control
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system, employing a reference model to produce the difference between the real and expected behavior.
The difference was employed to adjust the parameters of the control system in order to obtain the
expected outcome, regardless of some uncertainties and changing dynamics. The MRAC was later
developed further. Dubowsky [5] was the first to apply the MRAC in a robotic manipulator. A linear
time-invariant differential equation was employed as a reference model for every single joint in the
robotic arm. The robotic arm was manipulated by tuning the gains of the position and velocity feedback
system to track the model. The author employed the steepest-descent approach for renewing the
feedback system gains, after which Horowitz applied the hyper-stability method and developed
an adaptive algorithm [13] for a mechanical system, with the aim of compensating a nonlinear term in
the dynamic equation and decoupling the existing interactions between the each joint of the robotic
system. The MRAC proposed by Horowitz, and later associated developments by other authors,
contains an adaptive algorithm block and a position feedback loop which provides the difference
between desired and actual position of the joints. This difference is acted upon by the integral portion
of a seemingly PID control structure before feedback values of position and velocity are subtracted
from it. The problem associated with using a PID controller of not being able to compensate the
payload variation is illustrated, and the general theory of model reference control is presented in the
following section.

2. Payload Variation Effect and Model Reference Control

2.1. Two-Degrees of Freedom (DOF) Link Case

In order to implement PID control of the two-DOF (degrees of freedom) link manipulator case,
as shown in Figure 1, the dynamic equation has to be derived. Here, by using the Lagrange method,
the torques applied to the joints are determined:

τ1 =
d
dt

∂L

∂
•
θ1

− ∂L
∂θ1

, τ2 =
d
dt

∂L

∂
•
θ2

− ∂L
∂θ2

(1)
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Figure 1. Two-link manipulator. 
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Figure 1. Two-link manipulator.

The kinetic energy and potential energy for link 1 are expressed as:

K1 =
1
2

m1(l1
•
θ1)

2
, P1 = m1g(l1sinθ1) (2)

where m1 is the mass of link 1 and m2 is the mass of link 2. For link 2, first write down the coordinates
of the end of link 2, then differentiate them with respect to time in order to obtain the kinetic energy.
Denote the Cartesian coordinates of the end of link 2 as (x2, y2).

x2 = l1cosθ1 + l2cos(θ1 + θ2), y2 = l1sinθ1 + l2sin(θ1 + θ2) (3)
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Differentiate with respect to time results in:

•
x2 = −l1

•
θ1sinθ1 − l2(

•
θ1 +

•
θ2)sin(θ1 + θ2),

•
y2 = l1

•
θ1cosθ1 + l2(

•
θ1 +

•
θ2)cos(θ1 + θ2)

Therefore, the kinetic energy for link 2 is expressed as:

K2 =
1
2

m2v2
2 =

1
2

m2l12
•
θ1

2
+

1
2

m2l22(
•
θ1 +

•
θ2)

2
+ m2l1l2cosθ2

•
θ1(
•
θ1 +

•
θ2) (4)

where v2
2 =

•
x2

2
+
•

y2
2
.

The potential energy for link 2 is expressed as:

P2 = m2gl1sinθ1 + m2gl2sin(θ1 + θ2) (5)

The total kinetic and potential energy are expressed as:

P = P1 + P2 = (m1 + m2)gl1sinθ1 + m2gl2sin(θ1 + θ2)

K = K1 + K2 =
1
2
(m1 + m2)l12

•
θ1

2
+

1
2

m2l22(
•
θ1 +

•
θ2)

2
+ m2l1l2cosθ2

•
θ1(
•
θ1 +

•
θ2).

The Lagrange is obtained as:

L = K− P =
1
2
(m1 + m2)l12

•
θ1

2
+

1
2

m2l22(
•
θ1 +

•
θ2)

2
+ m2l1l2cosθ2

•
θ1(
•
θ1 +

•
θ2)

− (m1 + m2)gl1sinθ1 −m2gl2sin(θ1 + θ2)

(6)

τ1 =
d
dt

∂L

∂
•
θ1

− ∂L
∂θ1

= ((m1 + m2)l12 + m2l22 + 2m2l1l2cosθ2)
••
θ1 + (m2l22 + m2l1l2cosθ2)

••
θ2

+ (−2m2l1l2sinθ2)
•
θ1
•
θ2 + (−m2l1l2sinθ2)

•
θ2

2
+ ((m1 + m2)l1cosθ1 + m2l2cos(θ1 + θ2))g

τ2 =
d
dt

∂L

∂
•
θ2

− ∂L
∂θ2

= (m2l22 + m2l1l2cosθ2)
••
θ1 + (m2l22)

••
θ2 + (m2l1l2sinθ2)

•
θ1

2
+ m2l2cos(θ1 + θ2)g

Putting them in a matrix form, we can obtain the following:[
τ1

τ2

]
= M

••
θ + N + Gg =

[
m11 m12

m12 m22

]  ••
θ1
••
θ2

+

[
n11

n21

]
+

[
g11

g21

]
g

where m11 = (m1 + m2)l12 + m2l22 + 2m2l1l2cosθ2, m12 = m2l22 + m2l1l2cosθ2, m22 = m2l22,

n11 = 2(−m2l1l2sinθ2)
•
θ1
•
θ2 + (−m2l1l2sinθ2)

•
θ2

2
, n21 = m2l1l2sinθ2

•
θ1

2
.

Now apply the PID controller, as shown in Figure 2, the plant’s output compares with the
reference model, which generates a difference. This difference goes via the PID operation (i.e., through
“error times control actions”). The output from the PID operation goes to the plant model’s input,
and this circle keeps going, up to the point where the difference among the real plant’s output and the
ideal one approaches zero. The controller output is the torque; i.e.,

Kpe + Ki

w
edt + Kd

•
e =

[
τ1

τ2

]
(7)
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where error e = rp − xp. We know the two-link manipulator M and N matrices, the output from the
manipulator (i.e., acceleration of joints 1 and 2) can be determined as follows:[

τ1

τ2

]
= M

••
θ + N + Gg =

[
m11 m12

m12 m22

]  ••
θ1
••
θ2

+

[
n11

n21

]
+

[
g11

g21

]
g.

So Kpe + Ki
r

edt + Kd
•
e =

[
τ1

τ2

]
= M

••
θ + N + Gg

⇒

 ••
θ1
••
θ2

 = M−1(Kpe + Ki

w
edt + Kd

•
e− N) (8)

After deriving the acceleration of joints 1 and 2, take the time integral to obtain the velocity of
joints 1 and 2, and take another integral to obtain the positon of joints 1 and 2. •

θ1
•
θ2

 =
w
 ••

θ1
••
θ2

dt,

[
θ1

θ2

]
=

w
 •

θ1
•
θ2

dt (9)
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Figure 2. Proportional–integral–derivative (PID) control of the two-link manipulator.

After applying different payload masses, the joints’ motion outputs are illustrated in Figure 3.
For joint 1, when the payload is 0, joint one’s motion is quite steady; however, when the payload
increases to 5 and 15, one can see that joint 1’s motion is no longer the same, and the joint output is
also going up and down, as shown in Figure 3. The same applies to joint 2. The output of joint motion
varies, which decreases the end-effector positioning accuracy of the robotic arm system. In order to
address the above problem, model reference control is applied to compensate the payload variation
effect. Figure 4 shows a model reference control approach. The output of the reference model will be
compared with the output of the manipulator (plant), which produces an error (a difference). The error
will go through the adaptation mechanism to adjust the parameters of the dynamic model of the
manipulator (i.e., the adaptation process section employed the difference in order to generate the input
component that goes to the plant). The matrices Fp, Fv, Cp, and Cv are introduced in order to make the
system stable [4]. At the same time, the plant’s output compares with the desired model, and one can
therefore lead to generate another difference. This difference goes through the integration operation,
and subsequently deducts the feedback position and velocity. This action resembles the PID control
action. This process’ output, times the terms from the adaptation algorithm, then adding the terms
from the adaptation algorithm, is the plant’s input. This operation will resume until the difference
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between the plant’s output and the reference model’s output equals to zero. The ideal system is cut
off from the plant, meaning that the plant variables’ feedback values will not participate in handling
the reference model’s input. The input to the reference model will be handled from its own output
variables. The ideal system is entirely uninfluenced by the plant’s performance. As with the PID
control, the output from the controller can be determined as follows. For the model reference adaptive
control approach,

ControllerOut = τ =
∧
Mu +

∧
V − Fpe− Fv

•
e (10)

where u = KI
r
(rp − xp)− Kpxp − Kdxv.
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The manipulator dynamic equation is:

τ = Ma + V + Gg (11)

So, the output from the manipulator (i.e., acceleration of the joint) is:

∧
Mu +

∧
V − Fpe− Fv

•
e = τ = Ma + V

⇒
[

a1

a2

]
=

 ••
θ1
••
θ2

 = M−1(
∧
Mu +

∧
V − Fpe− Fv

•
e−V) (12)

After deriving the acceleration of the joint, take the time integral to obtain the velocity of the
joint, and take another integral to obtain the positon of the joint. The adaptive algorithm is derived as

follows. We now use the Popov’s asymptotic hyper-stability theorem [4], and set
≈
M =

∧
M−M. Since:

Tw

0

yT(t)w(t)dt =
Tw

0

yT(t)
≈
Mu(t)dt +

3

∑
i=1

Tw

0

yi(t)xv
T(
∧
Ni − Ni)xvdt (13)

where y = Cv
•
e + Cpe, and w(t) = (

∧
M−M)u(t) +


xv

T(
∧

N1(t)− N1)xv

xv
T(
∧

N2(t)− N2)xv

xv
T(
∧

N3(t)− N3)xv

. The first term is used to

derive the adaptive algorithm for M, and the second term is used to derive the adaptive algorithm
for N. For the first term:
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Tr

0
yT(t)

≈
Mu(t)dt =

Tr

0

[
y1

y2

]T  ≈
m11

≈
m12

≈
m12

≈
m22

 [
u1

u2

]
dt

=
Tr

0
[y1, y2]

 ≈
m11

≈
m12

≈
m12

≈
m22

 [
u1

u2

]
dt

=
Tr

0

≈
m11y1u1dt +

Tr

0

≈
m12(y1u2 + y2u1)dt +

Tr

0

≈
m22y2u2dt

(14)

∧
M and

∧
N are the adjusted parameters of the dynamic equation of the manipulator, the matrices

Fp, Fv, Cp, and Cv are introduced in order to make the system stable [4], and y(t) is the output from
the Cp and Cv block. Consider the first term in the above equation, and based on Popov’s asymptotic
hyper-stability theorem [4], to prove asymptotic convergence, it must be shown that, for all T ≥ 0,

we need to find
d
dt
∧

m11(t) =
d
dt
≈

m11(t), so that
Tr

0

≈
m11y1u1dt ≥ −γ2.

Where γ2 is a positive constant that is a function of the initial conditions. From
Tr

0
z(t)T

•
z(t)dt =

z(T)Tz(T)
2

− z(0)Tz(0)
2

≥ − z(0)Tz(0)
2

= −γ0
2, so by selecting

d
dt
∧

m11(t) =
d
dt
≈

m11(t) = km11y1u1,
one has

⇒ y1u1 =

•
≈

m11(t)
km11

(15)

Then,
Tr

0

≈
m11y1u1dt =

Tr

0

≈
m11

•
≈
m11

1
km11

dt =
1

km11

Tr

0

≈
m11

•
≈
m11dt ≥ −γ2, in order to make the system

stable [4].
Using the same analysis on the other two terms, we obtain

d
dt
∧

m12(t) =
d
dt
≈

m12(t) = km12(y1u2 + y2u1),
d
dt
∧

m22(t) =
d
dt
≈

m22(t) = km22y2u2

Derivation for M has finished. Now, using the same approach, we can obtain the adaptive
algorithm for N as follows:

d
dt
∧

n12(t) =
d
dt
≈

n12(t) = kn12(2y1xv1xv2 − y2xv1
2),

d
dt
∧

n22(t) =
d
dt
≈

n22(t) = kn22y1xv2
2

Figure 5 shows the joints’ output under different payload masses. By using the model reference
adaptive control approach, three lines coincide with each other under different payload masses;
i.e., the payload mass variation effect has been compensated.
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
τ1

τ2

τ3

 = M
••
θ + N + Gg =


m11 m12 m13

m12 m22 m23

m13 m23 m33



••
θ1
••
θ2
••
θ3

+


n11

n21

n31

+


g11

g21

g31

 g (16)

where m11 = m1a2 + m2r1
2 + m3r1

2, m12 = r1(m2b + m3r2)cos(θ2 − θ1), m13 = m3r1ccos(θ1 + θ3)

m22 = m2b2 + m3r2
2, m23 = m3r2ccos(θ2 + θ3), m33 = m3c2

n11 = −r1(m2b + m3r2)sin(θ2 − θ1)
•
θ2

2
−m3r1csin(θ1 + θ3)

•
θ3

2

n21 = r1(m2b + m3r2)sin(θ2 − θ1)
•
θ1

2
−m3r2csin(θ2 + θ3)

•
θ3

2

n31 = −m3r1csin(θ1 + θ3)
•
θ1

2
−m3r2csin(θ2 + θ3)

•
θ2

2

a = l1/2, b = l2/2, c = l3/2; r1 = l1, r2 = l2, r3 = l3.
Now apply the PID controller, the controller output is the torque,

Kpe + Ki

w
edt + Kd

•
e =

 τ1

τ2

τ3

 (17)

where error e = rp − xp.
Knowing the two-link manipulator M and N matrices, the output from the manipulator

(i.e., acceleration of joints 1 and 2) can be determined as follows:


τ1

τ2

τ3

 = M
••
θ + N + Gg =


m11 m12 m13

m12 m22 m23

m13 m23 m33



••
θ1
••
θ2
••
θ3

+


n11

n21

n31

+


g11

g21

g31

 g (18)

So Kpe+Ki
r

edt+Kd
•
e =


τ1

τ2

τ3

 = M
••
θ + N +Gg ⇒


••
θ1
••
θ2

 = M−1(Kpe + Ki
r

edt + Kd
•
e− N) .

After deriving the acceleration of joints 1 and 2, take the time integral to obtain the velocity of
joints 1 and 2, and take another integral to obtain the positon of joints 1 and 2.

After applying different payload masses, the joints’ motion outputs are illustrated in Figure 7.
For joint 1, when the payload is 0, joint one’s motion is quite steady; however, when the payload
increases to 5 and 15, one can see that joint 1’s motion is not the same anymore. The same applies to
joints 2 and 3. For the model reference adaptive control approach,

ControllerOut = τ =
∧
Mu +

∧
V − Fpe− Fv

•
e (19)

where u = KI
r
(rp − xp)− Kpxp − Kdxv.

So, the output from the manipulator (i.e., acceleration of joint) is:

∧
Mu +

∧
V − Fpe− Fv

•
e = τ = Ma + V ⇒

 a1

a2

a3

 =


••
θ1
••
θ2
••
θ3

 = M−1(
∧
Mu +

∧
V − Fpe− Fv

•
e−V) (20)
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After deriving the acceleration of the joint, take the time integral to obtain the velocity of the joint
and take another integral to obtain the positon of the joint. By using the same approach, the adaptive
algorithm is derived as follows:

d
dt
∧

m11(t) =
d
dt
≈

m11(t) = km11y1u1,
d
dt
∧

m12(t) =
d
dt
≈

m12(t) = km12(y1u2 + y2u1)

d
dt
∧

m13(t) =
d
dt
≈

m13(t) = km13(y3u1 + y1u3),
d
dt
∧

m22(t) =
d
dt
≈

m22(t) = km22y2u2

d
dt
∧

m23(t) =
d
dt
≈

m23(t) = km23(y3u2 + y2u3),
d
dt
∧

m33(t) =
d
dt
≈

m33(t) = km33y3u3

d
dt
∧

n12(t) =
d
dt
≈

n12(t) = kn12(2y1xv1xv2 − y2xv1
2),

d
dt
∧

n13(t) =
d
dt
≈

n13(t) = kn13(2y1xv1xv3 − y3xv1
2)

d
dt
∧

n22(t) =
d
dt
≈

n22(t) = kn22y1xv2
2,

d
dt

∧
n33

1(t) =
d
dt

≈
n13

1(t) = k1
n33(2y1xv2xv3 − y1xv3

2)

d
dt

∧
n33

2(t) =
d
dt

≈
n13

2(t) = k2
n33(2y2xv2xv3 + y2xv3

2 − y3xv2
2).

Figure 8 shows the joints’ output under different payload masses. By using the model reference
adaptive control approach, the variation effect of payload mass has been resolved. One can see that
three lines coincide with each other under different payload masses; i.e., the payload mass variation
effect has been compensated.
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When the end-effector grasps different payload masses, the output of joint motion will vary, which
will decrease the positioning accuracy of the end-effector. Based on the model reference adaptive
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