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Abstract: Evolution produces genuine novelty in morphology through the selection of 

competing designs as phenotypes. When applied to human creativity, the evolutionary 

paradigm can provide insight into the ways that our technology and its design are modified 

through time. The shape of European utilitarian cars in the past 60 years was analyzed in 

order to determine whether changes occur in a gradual fashion or through saltation, 

clarifying which are the more conserved and more variable parts of the designs. We also 

attempted to predict the future appearances of the cars within the next decade, discussing 

all results within the framework of relevant evolutionary-like equivalences. Here, we 

analyzed the modification in the shape of European utilitarian cars in the past 60 years by 

three-dimensional geometric morphometrics to test whether these changes occurred in a 

gradual or more saltatory fashion. The geometric morphometric shape analysis showed that 

even though car brands have always been preserving distinct shapes, all followed a gradual 

pattern of evolution which is now converging toward a more similar fusiform and compact 

asset. This process was described using Darwinian evolution as a metaphor to quantify and 

interpret changes over time and the societal pressures promoting them. 
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1. Introduction 

In the field of human endeavor, the conceptual framework of natural selection can provide insight 

into the ways that technology and derived artifacts change through time [1]. Darwin [2] already 

observed how breeders simulate the evolutionary process by shaping domestic animals and plants to 

suit artificially imposed utility or fashion criteria. Similarly, there is a parallel between the evolution of 

species and the temporal modification of humans’ items, particularly when considering a competitive 

capitalistic economy [3]. Using the evolution metaphor, the market is the field of selection for new 

technologies, which are produced by competing brands [4]. These brands contend for market share in 

specific product lines by proposing modifications (either true innovation or simply as modification in 

design), which are positively or negatively received by the consumers, political decision-makers, and 

governmental institutions [5]. Alternatively, preliminary market testing of a specific design could be 

used to test consumer reception. Trading could be compared to fitness in evolution: the proliferation of 

offspring with certain traits in a competitive environment is similar to the spreading of goods within 

the market (i.e., increased trade). The comparison is so striking that biologists also often describe 

evolution using “economic jargon” and the economists do the way-round [6,7]. They frame their analyses 

within the framework of natural selection and evolution in a metaphorical but still informative manner. 

The design of any traded artifact is a complex and iterative process with a strict goal of maximizing 

sales [8]. Cars may represent a good item for studying the design modifications of highly traded 

objects within human society through time since they are a practical necessity for people in 

industrialized and nearly industrialized societies [9]. Automotive displacement represents one of the 

most important technological advancements of modern societies in the past century [10]. The 

development of new car models occurs within a brand, often as a result of modifications in the design 

of a previous type [11], but a full quantification of that process has not yet been done.  

Changes in car shape design can be studied by geometric morphometrics, which provides the 

statistic tools for the quantitative analysis of biological forms and their covariation with genetic and 

environmental factors [12,13]. Because geometric morphometrics is based on the characterization of shape, 

it can identify those features that differ between genotypes, forecasting changes in terms of trade-offs 

between constraints imposed by inherited anatomic assets and selective pressures [14–16]. While 

shape variation studies in cars chiefly focused on socio-anthropologic motivations of trading (e.g., 

cars’ attributes and buyers’ personalities) [17–19], their modifications were comparatively poorly 

quantified through time. Such an analysis is of interest since its results could be extended to design 

changes of virtually any other traded technological product. Here, we carried out this analysis within 

the framework of the Darwinian evolution metaphor. We analyzed the shape evolution of European 

utilitarian cars over the past 60 years in order to determine whether changes occur in a gradual fashion 

or through saltation, clarifying which are the more conserved and more variable parts of the designs. 
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We also attempted to predict future appearances through regression shape analysis of the cars within 

the next decade, discussing all results within the framework of relevant evolutionary-like equivalences. 

2. Experimental Section 

2.1. Data Sources 

We selected main European brands that have existed since 1949. The external shapes of 44 European 

models belonging to four established brands (Fiat, Ford, Renault, and Volkswagen) were analyzed to 

test for parts of the overall design, which are more conserved through time and across lines (i.e., shape 

convergence) (Table 1). The vehicles belonged to two segments: A (mini cars) and B (small cars). 

Both segments were chosen because their presence within the market is more temporally continuous 

and less affected by the contraction of consumers (i.e., reduction in family per capita income) than that 

of luxury cars (see studies of segments E, F, and S (21)). For Fiat segment B, two sub-segments were 

considered (B1 and B2). 

Table 1. Brands, segments, models, and years of cars considered in the morphometric analysis. 

Brand Segment Model Year Brand Segment Model Year 

Fiat 

A 

Nuova 500 1968 

Ford 

A Ka 1998 

126 1973 

B 

Fiesta 1979 

Panda 1985 Fiesta 1982 

Cinquecento 1995 Fiesta 1993 

Seicento 1998 Fiesta 2001 

Panda 2003 Fiesta 2005 

500 2007 Fusion 2005 

Panda 2012 

Renault 

A 

4cv 1957 

B1 

600 1962 4 1979 

Uno 1992 
Twingo 

Mk1 2000 

Punto 1993 
Twingo 

Mk2 2012 

127 1995 

B 

Dauphine 1960 

Punto 1999 6 1972 

Grande Punto 2005 5 1980 

Punto Evo 2010 Supercinque 1986 

Punto 2012 Clio 1995 

B2 

1100 1949 Clio II 2004 

1100 1954 Clio III 2006 

128 1971 Modus 2006 

Ritmo 1978 

Volkswagen
A 

Fox 2006 

Brava 1995 Up 2011 

Stilo 2005 B Polo III 2006 
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2.2. Shape Analyses 

Differences between models were analyzed by means of geometric morphometrics, which allows 

for the visualization and quantification of morphological differences by representing the differences 

captured by a set of corresponding points (landmarks) in a coordinate space [15,20,21]. Landmarks are 

defined as points bearing key information on the geometry of forms [22]. In a scheme representing 

three orthogonal views (lateral, front, and back) of each model (Figure 1), 29 landmarks were digitized 

using the software TpsDig [23]. Corresponding two-dimensional (2D) landmarks were then 

transformed into three-dimensional (3D) coordinates using the x and y coordinates from the lateral 

view and adding the third dimension (z) as x, which was based on the front or back view. 

 

Figure 1. Landmarks used to quantify external car shape: (1, 22) anterior and posterior 

upper-lateral corner of the roof of the car; (2, 3) upper- and lower-lateral corner of the 

anterior glass; (4) maximum lateral convexity of the car at the level of the anterior part of 

the front door; (5) the lowest point of the bottom of the car at the level of the anterior part 

of the front door; (6) central-lower point of the anterior glass; (7) central-anterior point of the 

anterior hood; (8, 26) central point of the anterior and posterior bumper; (9) the lowest central 

point of the anterior bottom part; (10, 29) center part of the principal anterior and posterior 

light; (11, 12) superior and inferior parts of the wheel; (13, 14) upper- and lower-corner of the 

lateral glass of the anterior door; (15) superior center of the car at the level of the posterior 

part of the front door; (16–18) upper- and lower-posterior corner of the front door;  

(17) lower-posterior corner of the lateral anterior window; (19, 20) anterior- and posterior-upper 

corner of the back lateral glass; (21) posterior-lower corner of the back lateral glass;  

(23, 24) central-upper and -lower point of the posterior glass; (25) center of the posterior 

plate; (27, 28) lateral-upper and -lower point of the posterior glass. 

The coordinates of the landmarks were aligned by Generalized Procrustes analysis, a procedure 

consisting of three steps: the translation of point coordinates to a common centroid located at the origin 

(0, 0); the scaling of each outline with the unitary centroid size; and the rotation of coordinates to 

minimize the sum of squared distances between corresponding landmarks [13]. Residuals from the 
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fitting were analyzed with the thin-plate spline (TPS) interpolating function [15,22,24]. The name thin 

plate spline refers to a physical analogy involving the bending of a thin sheet of metal. In the physical 

setting, the deflection is in the z direction, orthogonal to the plane. In order to apply this idea to the 

problem of coordinate transformation, one interprets the lifting of the plate as a displacement of the x 

or y coordinates within the plane. In 2D cases, given a set of K corresponding points, the TPS warp is 

described by 2(K + 3) parameters, which include six global affine motion parameters and 2K 

coefficients for correspondences of the control points [24]. These parameters are computed by solving 

a linear system; in other words, TPS has a closed-form solution. 

Shape changes over time were visualized as splines, by regressing the variables of the function (M’) 

on the production year. The correlation between shape variables and production year was tested with 

permutation tests (1000 random permutations). To summarize the variations in shape, M’ was used in a 

relative warp analysis (RWA). RWA is analogous to a Principal Component analysis (PCA) for this 

type of data [25,26]. The first axis of each RWA was plotted against the production year [13,27]. The 

use of the TPS function allowed the visualization of the shape changes as splines. Production years and 

shape changes were then visualized as splines relative to the consensus configuration, and a forecast 

for shape in 2020 was produced. These analyses were performed for each brand-segment group (with a 

sample size greater than five) and for the whole dataset. 

To distinguish (i.e., classify) between different brands, a canonical variate analysis (CVA) was 

performed for the whole dataset. CVA is a multiple-group form of discriminant analysis [28] that starts 

with an initially defined grouping of objects (supervisionate) and determines the extent to which a set 

of quantitative descriptors can effectively explain the grouping. CVA was performed on the obtained 

shape coordinates (i.e., the weight matrix W’) to discriminate between brands [13,20,29]. Geometric 

morphometric statistical analyses were performed using MorphoJ and MATLAB (rel. 7.1). 

3. Results and Discussion 

Figure 2 showed, for each car brand within all segments, the regression between the first (i.e., the 

most informative) relative warp axis and the production year (left side of the figure) in order to observe 

if a certain trend occurs. On the right part of Figure 2, the splines relative to the different views 

(lateral, front, and back) of the consensus configuration (thin grey line and white points), together with 

the forecasted splines for 2020 (thick black line and black points), are also shown. We detected a 

general and strong relation between shape (expressed as RW1) and production year for all car brands 

within all segments (Figure 2). This relationship is stronger for Fiat-A, with the exception of the  

500 (2007), and for Fiat-B1, with the exception of the Punto (1993 and 1999), for Fiat-B2, for Ford-B, 

with exception of the Fiesta (2001), and for Renault-B, with the exception of the Clio II (2004) and 

Clio III (2006). If we examine the shapes (see Figure 2, right side) of the forecasted prototypes for 

2020, we observe a general forward protrusion of the car’s lateral profile, which tends to be smoother. 

We also observed a progressive replacement of the more squared appearance (from the roof to the 

hood passing through the anterior glass) with a smoother appearance. The opposite trend is observed in 

the posterior lateral profile, which is becoming more vertically squared. Looking more closely at each 

specific brand and model, it is possible to observe in Fiat-A (backside view) that there is a rising of the 

posterior plate and principal light, and an area of reduction of the posterior glass. In Fiat-B1, the same 
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reduction of the posterior glass is shown. Moreover, the horizontal axis of the lateral glass 

progressively gets inclined toward the front of the car, and its shape appears to sharpen, with the 

posterior light moving upward. Another general trend is the global reduction in height. Fiat-B2 has a 

sharp spherical shape. The anterior wheel is smaller and positioned forward, with a lower insertion of 

the posterior light. Ford-B has a general blocky shape, and the posterior part (from the lateral view) is 

wider. Additionally, the anterior light is displaced to the front, and the posterior one is placed higher. 

The same light displacements are observed for Renault-B. 

 

Figure 2. Regression analysis outputs for the first relative warp axis and the production 

year for each brand segment as a group, with sample size greater than five (left side of the 

figure). On the right side of the figure, the splines relative to the different views (lateral, 

front, and back) of the consensus configuration (thin grey line and white points) are shown. 

The forecasted splines for 2020 (thick black line and black points) are also shown. 

Figure 3 showed the regression between the first (i.e., the most informative) relative warp axis and 

the production year (left side of the figure) considering the entire dataset altogether. Two different 

trend lines (one for each segment: r2 segment A = 0.89; r2 segment A = 0.86) were plotted on the right 

part of Figure 3. The splines relative to the different views (lateral, front, and back) of the consensus 

configuration (thin grey line and white points), together with the forecasted splines for 2020 (thick 

black line and black points), are also shown.The trend appears to be the same and is easily 
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distinguishable for all cars in the dataset (Figure 3), with a few exceptions, such as the Fiat 500 (2007) 

for segment A and the Renault Dauphine (1960) for segment B. The rate of change (i.e., the slope) 

observed for the trend line of segment A is stronger than the one observed for segment B. The general 

shape trend observed in Figure 2 could be observed on the right side of Figure 3 with respect to the 

two segments. In particular, for both segments, a general forward-oriented lateral profile and smoother 

appearance gradually replace the more squared appearance (from the roof to the hood passing through 

the anterior glass); the opposite trend is seen in the posterior lateral profile, which is becoming more 

squared. The posterior light is gradually taking on a higher position. 

 

Figure 3. Regression between the first relative warp axis and the production year for the 

entire dataset (left side of the figure); the two lines represent the trend lines for segment  

A (black) and segment B (grey). On the right side of the figure, the splines relative to the 

different views (lateral, front, and back) of the consensus configuration (thin grey line and 

white points) are shown for each segment. The predicted splines for 2020 (thick black line 

and black points) are also shown for each segment. 

 

Figure 4. Canonical Variate Analysis (CVA) output for the four brands. All around the 

central plot, it is possible to observe the splines (lateral, front, and back views) relative to 

the extremes of the two CV axes (CV1 left and right; CV2 up and down). 



Machines 2015, 3 263 

 

 

Figure 4 showed the plot of the first two axes of the CVA; all around the central CVA plot, it is 

possible to observe the splines (lateral, front, and back views) relative to the extremes of the two CV 

axes. This discriminant analysis shows a strong separation between the four brands on the first two CV 

axes. In particular, the first axis discriminates between Fiat and Ford/Volkswagen, and the second axis 

discriminates between Renault and Volkswagen. The splines relative to the extremes of the axes show 

the extreme shapes characterizing the four brands. 

The shape of automotive design of utilitarian cars showed gradual patterns of change through time 

and no abrupt modifications appeared. Changes in car design seemed to be constrained within each 

brand due to restrictions imposed by the features of previous models. Interestingly, despite such 

gradualism, all car lines seem to converge toward more fusiform and compact shapes, as we have 

shown through our predictive modeling. Although we are aware that any analogy between 

morphological evolution in organisms and cars is only metaphorical (the former is governed by 

chance, whereas the latter is teleologically oriented toward the best-selling products) [30], it is possible 

to set our discussion within the framework of the following equivalences: shape = phenotype and 

market = natural selection. 

We observed a gradual and independent pattern of automotive design changes within different 

brands, which suggests a type of conditioning established by the features of the previous models within 

each brand. Organismal evolution occurs by recombination, random mutation, and subsequent 

selection. According to an inheritance restriction principle [31], morphological change can be 

described in a line of ancestors ordered according to a common temporal axis. Interestingly, there are 

organisms that do not entirely follow this rule; gradualism is often replaced by saltation. Unicellular 

organisms can exchange genetic material in a horizontal fashion, incorporating genes (or partial 

sequences) from the surrounding environment, not only during their replication but also when fully 

formed [32,33]. Our results indicate that car design is conservative within each brand and it seems to 

not be influenced by the horizontal transfer of automotive design ideas. Car models show independent 

gradual changes within each line, hence behaving more like multicellular than unicellular organisms. 

Cars, similar to animals, for example, “evolve” independently within each line. Horizontal innovation, 

when it occurs, more likely refers to internal components (e.g., electronics) [34], and internal 

components have had only moderate effects on the overall external shape of cars in the past 30 years. 

Also, we cannot ultimately discharge the occurrence of horizontal (i.e., inter-line) transference, since 

manufacturers may incorporate new design elements and ideas proceeding from other lines  

(e.g., when sharing a similar attitude to fashion). In any case, if that process occurs, it seems deeply 

subjected to constraints imposed by the previous design.  

We found that different morphological traits in cars show different rates of change. Three different 

selecting factors seem to act on car automotive design. First, there is the aerodynamics of the shape, 

which affect automotive efficiency and promote an overall smooth and forward-projected shape in the 

lateral profile of the car (from the roof to the hood, passing through the anterior glass). Second, there 

are traits that appear to be under market selection because they are conserved, being related both to 

automotive or fashion constraints. This is the case for landmarks located in the back of the car, which 

are related to utility and comfort requirements (see, for example, the trunk space shape of the Ford 

Fusion produced in 2005). Third, there is a pool of inter-brand highly variable traits that must be 

associated with fashion (e.g., light and plate positioning, and the peculiar shapes of the rear lateral 
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profile in the Renault and Fiat-B1 models). Cars shapes are a mixture of conservative and variable 

traits [35]. As a general rule, car design has to be able to cope with the selective pressures imposed by 

a trade-off between conservative automotive efficiency (i.e., energetic and aerodynamic/utility 

requirements) and comfort (increase of backward space). Our data indicate that both factors coexist, 

although in contradiction. Overall, car shapes have shown consistent changes in the past 30 years, 

despite the conservation of automotive engineering. Although the mechanical essence of automotive 

locomotion did not change throughout the century and the early evolution of the market significantly 

shaped car development [36], this only exerted moderate constraints on car shape variation. Very few 

exceptions of sudden shape variation due to automotive constraints seem to exist (e.g., the 2007 Fiat 

500; see Figure 2). Similarly, in animal evolution, conservation in the general anatomic design does 

not impede the evolution of other phenotypic characteristics (e.g., spectacular morphological 

adaptations in secondary sexual characteristics, or mimicry) [37]. 

We can only speculate about the reasons for the detected future convergence in car shapes among 

different lines as it appears in our prediction model. This convergence could be based on the adaptation 

of different car designs to common market selection pressures (e.g., a generalized change in public 

taste). The motivations that influence car purchases are very complex [28], but widespread shifts in 

consumer preference may force different brands to mimic each other’s products to increase their sales 

(i.e., the fitness of their cars). This occurs in a context in which true innovation (saltation) is rare, and 

the lack of innovation seems to be the result of a more conservative attitude on the part of producers 

toward the design of cars for utilitarian segments.  

The authors are aware about the difficulties in defending assumptions about how a long-duration 

Darwinian evolution can explain the process of appearance (visual features) modernization and quality 

improvement of the addressed class of engineered products. Though the Darwinian evolution was 

successfully modeled in and utilized by various artificial systems (e.g., genetic algorithms and 

evolutionary game algorithms; e.g., [38]), it often results in discrepancies and even logical flaws when 

applied to describing engineering developments or market mechanisms [39]. The geometric 

morphometrics revolution [25] in the 1990s laid the foundation for the algorithmic processing of 

organism shape for functional morphology [40] and ecomorphology [12,13], as well as other, more 

applied fields [21]. This highefficiency statistical paradigm for the quantification and modeling of 

phenotypic characteristics within the evolutionary ecology framework has now been applied to cars, 

which are subjected to human selection [40]. 

4. Conclusions 

In general, engineering change actions have different guiding rules than that of pure biological 

reproduction and selection over uncountable generations. What is often forgotten is that while  

self-organization manifests on a biological level, this mechanism is practically not implemented in 

typical industrial products. A future comprehensive analysis should take into consideration other 

tangible parameters, such as vehicle footprint, interior-to-exterior-volume ratio, overall dimensions, 

wheelbase, etc. Moreover, the new scientific results of engineering research, extended computational 

possibilities, intense development of new technologies and systems (more precisely, the improvement 

of computer support of manufacturing technologies and systems), and new materials and their 
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affordances should also be taken into account for the morphological-based analysis of design. These 

together do have at least as large an influence, or an even larger influence, on the design and 

development of cars asmarket preferences do. 
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