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Abstract

To enhance the efficiency and reduce the operational costs of large-scale Unmanned Aerial
Vehicle (UAV) inspection missions limited by endurance, this paper addresses the coupled
problem of dynamically positioning landing/takeoff sites and routing the UAVs. A novel
Hierarchical Reinforcement Learning (H-DRL) framework is proposed, which decouples the
problem into a high-level strategic deployment policy and a low-level tactical routing policy.
The primary contribution of this work lies in two architectural innovations that enable
globally coordinated, end-to-end optimization. First, a coordinated credit assignment
mechanism is introduced, where the high-level policy communicates its strategic guidance
to the low-level policy via a learned “intent vector,” facilitating intelligent collaboration.
Second, an Energy-Aware Graph Attention Network (Ea-GAT) is designed for the low-
level policy. By endogenously embedding an energy feasibility model into its attention
mechanism, the Ea-GAT guarantees the generation of dynamically feasible flight paths.
Comprehensive simulations and a physical experiment validate the proposed framework.
The results demonstrate a significant improvement in mission efficiency, with the makespan
reduced by up to 16.3%. This work highlights the substantial benefits of joint optimization
for dynamic robotic applications.

Keywords: UAVs; facility location; vehicle routing problem (VRP); H-DRL; autonomous
systems

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) have been established as indispens-
able tools for a multitude of large-scale civilian and industrial operations [1-3]. The increas-
ing demand for automated infrastructure inspection, particularly in domains such as power
line maintenance, oil and gas pipeline surveillance, and post-disaster assessment, has
highlighted the significant potential of UAV technology [4,5]. The automation of such tasks
holds substantial socio-economic importance, offering the potential to reduce operational
costs, enhance the reliability of critical infrastructure, and mitigate risks to human person-
nel in hazardous environments [6]. However, the operational range and autonomy of these
platforms are fundamentally constrained by their limited battery endurance, which has
emerged as a critical bottleneck for extended, fully autonomous missions [7,8]. A prevailing
strategy to mitigate this limitation is the deployment of a network of landing and takeoff
sites. These sites, acting as hubs for battery swapping or recharging, can theoretically enable
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continuous, long-duration missions. The overall efficiency of such a system, nevertheless,
is critically dependent on the strategic placement of these sites [9].

To address the optimization of UAV operations, a significant body of research has
been produced. The existing solutions can be broadly classified into two main categories:
decoupled two-stage methods [10] and monolithic optimization methods [11].

Decoupled two-stage methods represent a conventional and widely adopted approach.
In this paradigm, the problem is decomposed into two sequential sub-problems: a facility
location problem (siting) followed by a Vehicle Routing Problem (VRP) [12]. For the initial
siting stage, various algorithms have been employed to determine the optimal placement of
a fixed number of sites. Classical optimization techniques, such as K-Means clustering for
identifying task-dense areas [13] and mixed-integer linear programming (MILP) for formal
optimization [14], are commonly utilized. Once the sites are fixed, the subsequent routing
stage is addressed. A plethora of algorithms have been applied to this VRP sub-problem.
Classical graph-based algorithms, including Dijkstra’s algorithm and A* [15], perform well
in static environments but exhibit limited adaptability to dynamic changes. To handle more
complex VRPs, heuristic and meta-heuristic algorithms have been extensively investigated.
These include evolutionary approaches like genetic algorithms (GAs) [16] and swarm
intelligence techniques such as particle swarm optimization (PSO) [17] and ant colony
optimization (ACO) [18]. The primary drawback of all decoupled methods, however, is
their inherent suboptimality. Since the siting decision is made without full knowledge of
the optimal routes it will enable, the final solution is seldom globally optimal [19].

In contrast, monolithic optimization methods attempt to solve the siting and routing
problems jointly within a single, unified framework to pursue global optimality. Traditional
monolithic approaches often formulate the problem as a large-scale MILP [20] or a complex
constraint satisfaction problem [21]. Due to the NP-hard nature of this joint optimization
problem [22], the computational complexity of these exact methods grows exponentially
with the problem scale, rendering them intractable for the large-scale, dynamic scenarios
frequently encountered in real-world inspection missions.

With the advent of artificial intelligence, Deep Reinforcement Learning (DRL) has
emerged as a powerful monolithic paradigm for solving complex sequential decision-
making problems under uncertainty [23,24]. DRL-based agents can learn sophisticated
policies directly from interaction with dynamic environments [25], making them a promis-
ing candidate for the PDFDRP. While DRL has been successfully applied to various UAV
control problems, such as autonomous navigation [26,27] and data collection [28], applying
a standard, “flat” DRL model to the joint siting and routing problem presents significant,
unique challenges. The action space is vast and hybrid, and the sparse and significantly
delayed rewards associated with a strategic siting decision make the credit assignment
problem exceptionally acute [29]. This suggests that a more structured approach is neces-
sary. While general-purpose Hierarchical Reinforcement Learning frameworks like Feudal
Networks (FuN) [30] or the options framework [31] provide foundational ideas for temporal
and state abstraction, they do not explicitly address the challenge of coordinating between
distinct strategic (siting) and tactical (routing) domains, nor do they offer a natural mech-
anism for communicating fine-grained strategic preferences. A specialized hierarchical
architecture is therefore required [32].

This leads to the central research questions of this paper: Can a hierarchical learning
structure effectively decompose the complex joint problem while maintaining end-to-
end optimization? And can specialized mechanisms be designed to facilitate efficient
communication [33] and handle hard physical constraints within such a framework? To
address these questions, this paper proposes a novel Hierarchical Reinforcement Learning
(H-DRL) framework. The main innovations and contributions of this work are as follows:
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¢ A Hierarchical Reinforcement Learning Framework for Joint Optimization. The dy-
namic UAV siting and routing problem is, for the first time, formulated and solved
within an H-DRL framework. This architecture naturally decouples the problem into
high-level strategic decisions and low-level tactical decisions, while a coordinated,
end-to-end optimization process is maintained.

* A Coordinated Credit Assignment Mechanism via Intent Vectors. An innovative credit
assignment mechanism is proposed. The high-level policy communicates its strategic
“intent” to the low-level policy through a learned vector. This approach facilitates
intelligent collaboration and addresses the credit assignment challenge inherent in
hierarchical systems.

*  An Energy-Aware Graph Attention Network (Ea-GAT) for Feasible Routing. A novel
graph neural network, designated Ea-GAT, is designed for the low-level routing policy.
By explicitly embedding an energy feasibility model into its attention mechanism, this
network endogenously handles the UAV’s hard endurance constraints.

The remainder of this article is organized as follows. In Section 2, the problem formu-
lation is presented. In Section 3, the proposed H-DRL framework is detailed. In Section 4,
the feasibility and effectiveness of the proposed method are assessed. Finally, the conclu-
sions are presented in Section 5.

2. Problem Formulation

This section provides a formal description of the dynamic UAV siting and routing prob-
lem. First, an overview of the system components and operational scenario is presented.
Then, a mathematical model is established, defining the decision variables, objective func-
tion, and constraints. Finally, the problem is formulated as a Hierarchical Markov Decision
Process (HMDP) to lay the groundwork for the proposed reinforcement learning solution.

2.1. System Overview

The operational scenario considered in this study involves a centralized system respon-
sible for coordinating a fleet of UAVs to perform inspection tasks over a large geographical
area. The key components of this system are illustrated in Figure 1.

The operational area is defined as a two-dimensional workspace A C R2. Within this
area, a set of inspection targets, denoted by 7 = {t1,ty,...,tny}, must be visited by UAVs.
Each target t; € T is characterized by its fixed coordinates p; = (x;,y;) and a priority level,
p; € R*. A higher value of p; indicates a more urgent or important task.

The system employs a fleet of M homogeneous UAVs, denoted by U = {uy,up, ..., upm}.
Each UAV is characterized by a maximum flight endurance Enax, which limits the max-
imum duration or distance of a single flight sortie, and is assumed to fly at a constant
speed vyay.

Ground support is provided by a set of candidate locations for landing and takeoff
sites, £ = {I3,1,...,Ix}, and a single mobile base, B. The base serves as the operational
hub for UAVs to be launched, retrieved, and serviced (e.g., battery swapping), a process
which takes a fixed time ;. The mobile base can be repositioned to strategic locations and
moves at a speed Vpgge-

The dynamism of the problem is a key characteristic. The set of tasks is time-varying,
denoted as 7T (k) at a discrete time step k. New tasks can be stochastically generated.
Furthermore, the priorities of existing tasks can also change over time, i.e., p;(k). Simi-
larly, environmental constraints, such as no-fly zones, can also be dynamic, denoted as
NFZ (k) [34]. The proposed framework is designed to generate policies that are robust and
adaptive to these real-time changes.
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Figure 1. Overview of the considered multi-UAV inspection system, illustrating a specific scenario
with N = 9 tasks, M = 3 UAVs, and K = 2 candidate sites. Key components include a mobile base
(B), candidate static sites (I1, [5), the full task set (t1—t9), and the UAV fleet (u1—u3). The solid blue
line illustrates a feasible sortie for 11, departing from site I; and completing a rendezvous with the
mobile base B after visiting its assigned tasks.

2.2. Mathematical Model

The problem is formally defined as the Dynamic UAV Facility Deployment and
Routing Problem (PDFDRP). This problem is known to be NP-hard, as it combines complex
aspects of both the facility location and vehicle routing problems [22]. The goal is to
determine a joint policy for deploying the mobile base and routing the UAVs to minimize
the overall mission completion time.

2.2.1. Decision Variables

The solution to the PDFDRP is a set of policies that determine two types of decisions
over a time horizon. The first is the base deployment policy, which specifies the sequence
of locations. pg(k) for the mobile base B at different time steps k. The second is the UAV
routing policy, which for each UAV u; and each sortie, defines an ordered sequence of tasks
to visit, denoted by a path 77]- = (tjl, ti, ... ). The objective is to find the optimal set of
policies that minimizes the overall makespan while satisfying all constraints.

2.2.2. Objective Function

The primary objective is to minimize the makespan, Jiakespan, Which is defined as the
time at which the last inspection task is completed. Let C(t;) be the completion time for
task t;. The objective function is given by

i = C(t; 1
min ]makespan Itflea%({ ( 1)} 1)

Minimizing the makespan implicitly encourages the system to reduce UAV flight
time and base relocation time, thus capturing the trade-off between deployment and
operational costs.
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2.2.3. Constraints

A feasible solution to the PDFDRP must satisfy several operational constraints. First,
the task coverage constraint requires that every task in the set 7 must be visited exactly
once by a UAV.

The second and most critical constraint is the UAV endurance constraint. For any
single flight sortie of a UAV, the total time consumed cannot exceed its maximum endurance
Emax- A sortie consists of the flight from the base to a sequence of one or more tasks and the
return flight to the base. Let a sortie’s path be a sequence of points (pi2, py, ..., py, ngsde)'

The constraint is formulated as

__ start k=1 14y, _ 1. end _
||P1 pbase” + le"rl PZH + ”pbase Pk” < Emax (2)
Vuav i1 Ouav Ouav

where || - || denotes the Euclidean distance.

Third, the path feasibility constraint dictates that the flight path of any UAV must not
intersect with any no-fly zone.

Finally, the synchronization constraint ensures that a UAV must start and end its sortie
at a designated base or site. Let tsiart be the launch time and tqng be the retrieval time.
The start and end waypoints of a sortie path must correspond to the facility location at the
respective times.

The PDFDRP is an NP-hard problem, as it generalizes both the facility location and
vehicle routing problems. The dynamic and coupled nature of the decisions motivates the
use of a learning-based approach, which is detailed in the following sections.

2.3. Hierarchical Markov Decision Process Formulation

To effectively address the coupled and dynamic nature of the PDFDRP, the problem is
formulated as a Hierarchical Markov Decision Process (HMDP) [30]. This hierarchical struc-
ture, illustrated in Figure 2, decomposes the complex, monolithic decision-making problem
into two manageable, interconnected layers: a high-level (meta-controller) policy for strate-
gic deployment and a low-level (controller) policy for tactical routing. The components of
the high-level and low-level MDPs are defined below.

2.3.1. High-Level MDP

The high-level MDP is responsible for the strategic deployment of the mobile base B.
Its objective is to learn a policy 7meta (Ameta|Smeta) that maximizes the long-term cumula-
tive reward.

The state Smeta € RIXWXC provides a global, macroscopic snapshot of the entire
mission, represented as a multi-channel feature map, suitable for processing by a convolu-
tional neural network (CNN). It includes channels representing the spatial distribution of
uncompleted tasks, the current locations of all UAVs, the location of the mobile base, and a
map of known hazards.

The action Ameta = (1,2z), where ! € {1,...,K} is the index of the selected candidate
location and z € AK is the intent vector, where AKX is the (K" — 1)-dimensional simplex.
This composite action determines the next strategic location for the base and communicates
tactical guidance to the low-level policy.

The reward Rpeta is a delayed reward, calculated after the low-level policy has com-
pleted its sub-task. It is a function of the tasks completed, the cost of base relocation, and a
term measuring consistency between the strategic intent z and the actual performance of
the executed sorties.
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2.3.2. Low-Level MDP

The low-level MDP is responsible for the tactical routing of a single UAV for one sortie.
Its objective is to learn a policy 7oy (Ajow|Siow) that generates an energy-feasible path to
maximize the rewards defined by the intent vector.

The state Sy, is formulated as a graph G = (V, ), where V is the set of nodes
representing the UAV, assigned tasks, and base locations. This graph-based representation
is highly effective for capturing the topological relationships in routing problems [35].
Each node v € V is associated with a feature vector h, € RP, including coordinates and
remaining energy for the UAV node.

The action Ajgyw € Tunvisited 1S the selection of the next task to visit from the set of
currently unvisited tasks for the current sortie.

The reward Ry, is an immediate reward whose structure is dynamically modulated
by the intent vector z. It balances objectives such as path length, task completion, and safety,
according to the high-level strategy. The detailed design of these components is presented
in the next section.

Meta-Controller
__--| (High-level

/ Policy) eta (Global State)

\ Ameta

| Prext (Base Location)|_>

A

\
Outcome for Rmeta
.

SR Environment
~~_|.z (Intent Vector)

Y

Controller
(Low-level

] Siow (Local State)
Policy)

djow (Path segment)

Figure 2. The proposed Hierarchical Markov Decision Process (HMDP) framework. The meta-
controller observes the global state and outputs a composite action Ameta, Which decomposes into a
base location command ppext sent to the environment, and an intent vector z that directly guides the
low-level controller.

3. The Proposed H-DRL Framework

To solve the HMDP formulated in the previous section, a novel Hierarchical Reinforce-
ment Learning (H-DRL) framework is proposed. This framework is designed to effectively
manage the distinct responsibilities of strategic deployment and tactical routing through
specialized high-level and low-level policies. The architecture enables end-to-end train-
ing, allowing the two policies to co-evolve and discover globally coordinated solutions.
The overall architecture of the proposed framework is depicted in Figure 3, and the detailed
design of each component is presented in the subsequent sections.
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Figure 3. The overall architecture of the proposed H-DRL framework, detailing the interaction
between the high-level and low-level policies, their respective neural network structures (CNN, MLP,
Ea-GAT), and the flow of information including states, actions, and intent vectors.

3.1. High-Level Policy for Proactive Deployment

The high-level policy, or meta-controller, is responsible for learning a long-term strat-
egy for mobile base deployment. It operates at a lower frequency, making decisions at the be-
ginning of each macro-episode, which typically encompasses one or more low-level sorties.

3.1.1. State Representation

The high-level state Smeta € R*"*C provides a global, macroscopic snapshot of the
entire mission, formulated as a multi-channel image-like tensor. This representation is
processed by a convolutional neural network (CNN) [36] to extract salient spatial features.
The state consists of C channels, including the following: (1) a task density map, where
each pixel value represents the number or cumulative priority of uncompleted tasks in
that region; (2) a UAV location map, indicating the current positions of all UAVs; (3) a base
location map, marking the position of the mobile base B; and (4) a hazard map, encoding
the locations of static and dynamic no-fly zones.

3.1.2. Action Space

The meta-controller outputs a composite action Ameta = (I,z), wherel € {1,...,K}
is the index of the selected candidate base location. The second component is the intent
vector z € RK', which communicates strategic guidance to the low-level policy. Each
dimension of z is semantically anchored to a specific, measurable tactical objective (e.g.,
speed, coverage, safety), and the vector is generated by a softmax output layer, ensuring it
lies on the simplex.

This composite action structure is a deliberate design choice to enable joint, end-to-end
optimization. By generating both the location and the intent in a single forward pass,
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the policy network is compelled to learn the intricate dependencies between where to oper-
ate and how to operate. The two components are not independent but are synergistically
linked. For example, selecting a base location [ that is far from the main task cluster may
only be optimal if paired with an intent vector z that prioritizes long-range, high-coverage
sorties. Conversely, positioning the base amidst a dense cluster of tasks might be best
served by an intent that prioritizes speed to rapidly service them. The framework learns
these complex interactions by evaluating the final mission outcome (Rmeta) that results from
the combined “(l, z)” decision, thereby avoiding the suboptimality inherent in decoupled,
two-stage decision-making processes.

3.1.3. Network Architecture

The high-level policy is implemented as an actor—critic architecture [37], trained using
Proximal Policy Optimization (PPO) [38]. The network takes the state Smeta as input.
The CNN backbone extracts a feature vector, which is then passed to two separate Multi-
Layer Perceptron (MLP) heads. The actor head outputs a probability distribution over the
discrete base locations and the parameters of the Dirichlet distribution for the continuous
intent vector z [39]. The critic head outputs a scalar value representing the estimated value
of the current state.

3.1.4. Coordinated Credit Assignment

A key innovation of this framework is the coordinated credit assignment mechanism,
which ensures the intent vector z learns to represent meaningful, transferable strategies
rather than just a set of arbitrary reward weights. This is realized through the design of the
high-level reward function Rmeta:

Rmeta = wperprerformance + wconsistRconsistency — Wdep Cdeployment ®3)

where Wpert, Weonsist, aNd Wqep are weighting coefficients.

The performance reward, Rperformances @and the deployment cost, Cgeployment, are
straightforward metrics of mission outcome and cost. The crucial component for seman-
tic learning is the consistency reward, Reonsistency- This reward establishes a closed-loop
feedback mechanism that calibrates the meaning of the intent vector.

The intent vector z can be viewed as the high-level policy’s expectation of the low-
level policy’s behavior. To calculate the consistency reward, a corresponding vector of a
posteriori metrics, Z,ctyal € RK, is computed from the actually executed low-level trajectory.
Each component of z,,,] is a normalized measure corresponding to a dimension of z (e.g.,
inverse of time taken for speed, number of tasks visited for coverage, etc.). The consistency
reward is then defined by the similarity between the intended and the actual behavior,
for instance, using negative cosine distance:

Reonsistency = — <1 — o Zactual ) (4)
||Z|| Hzactual ||
This reward structure compels the meta-controller to learn an internal model of the
low-level policy’s capabilities. It is rewarded for issuing intents that are not only effective
(leading to high Rperformance) but also understandable and executable by the low-level
controller (leading to high Reonsistency)- Through this continuous calibration, the dimensions
of z converge to represent meaningful and transferable strategic intents.

3.2. Low-Level Policy with Energy-Aware Attention Network (Ea-GAT)

The low-level policy, or controller, is responsible for generating a feasible and efficient
flight path for a single UAV sortie, guided by the intent vector from the meta-controller.
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Given the combinatorial and sequential nature of the routing problem, this policy is imple-
mented using a graph-based neural network architecture.

3.2.1. Graph-Based State Representation

The local state Sy, for a given sortie is formulated as a fully connected graph
G = (V,&). The set of nodes V includes a node for the UAV’s current location, nodes
for all unvisited tasks assigned to this sortie, and a node representing the final destination
base/site. Eachnode v € V is associated with a feature vector h, € RPv. For a task node, h,
contains its coordinates. For the UAV node, the feature vector is augmented with its critical
remaining endurance, Erem. This graph representation effectively captures the topological
relationships essential for routing decisions.

3.2.2. Energy-Aware Graph Attention Network

The core of the low-level policy is the proposed Energy-Aware Graph Attention
Network, the architecture of which is shown in Figure 4. This network is designed to select
the next task to visit by computing an attention-based probability distribution over all
feasible successor nodes.

A standard Graph Attention Network (GAT) [40] computes the attention coefficient e;
between a query node i (the UAV’s current location) and a key node j (a candidate next
task) as

ei]' = IZ(Whi, Wh]) (5)

where W is a learnable linear transformation, and a is a shared attention mechanism (e.g.,
a single-layer feed-forward network). The coefficients are then normalized using a softmax
function to obtain the attention weights «;;.

The primary innovation of the Ea-GAT lies in the integration of an energy feasibility
model directly into this attention mechanism. An energy feasibility function, f.(i, ), is
introduced to modulate the attention scores. This function calculates the estimated energy
cost Eqost(i, ) for the UAV to travel from its current location i to a candidate task j and

subsequently return to the final destination base pf){a‘ge:

end

_ lIpj = pill + [IPbase — Pl

Ouav

Ecost (i/ ])

(6)

The feasibility function f,(7,j) then returns a value indicating whether this path
segment is viable given the UAV’s remaining energy Erem ():

1, if Ecost(i,j) < Erem(i)
0, otherwise

fe(ifj) = ()

A hard-gating function is used here for clarity, though a soft, differentiable version
(e.g., using a sigmoid) can be employed in practice. The original attention coefficients ¢;;
are then masked by this feasibility value before normalization. The masked coefficient ¢; jis
computed as

eij = eij+ (1= fe(i, ) - (—o0) ®)

Applying the softmax function to these masked coefficients effectively assigns zero
probability to any energy-infeasible actions, ensuring that only viable tasks are consid-
ered for the next step. This end-to-end approach guarantees that all generated paths are
inherently feasible with respect to the UAV’s endurance.
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Figure 4. The architecture of the Ea-GAT. The standard attention mechanism is augmented with an Energy Feasibility Module, which masks the attention scores of
energy-infeasible actions before the final policy output.
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3.2.3. Intent-Driven Reward Shaping

The final output of the Ea-GAT is a probability distribution over all feasible next tasks.
An action is sampled from this distribution to select the next destination. The rewards,
Riow, used to train this policy are shaped by the intent vector z = (z1, 25, z3) received from
the meta-controller. The reward function is a linear combination of sub-rewards:

Riow = Zlepeed + Z2Rc0verage + Z3Rsafety + Rierminal )

where Rspeed 18 a negative reward proportional to the distance traveled, Reoverage is a
positive reward for visiting a new task, Rgafety is @ penalty for flying close to hazards,
and Rierminal 1S a large positive or negative reward for successfully completing the sortie or
failing (e.g., due to energy depletion), respectively. This mechanism allows the low-level
agent to adapt its routing behavior to align with the current high-level strategy.

3.3. Training Procedure

The H-DRL framework is trained in an end-to-end, alternating fashion. The training
process cycles through experience collection and network updates. During experience
collection, the high-level policy first selects a base location ppext and an intent vector z.
Subsequently, the low-level policy, conditioned on z, executes a full sortie by generating a
sequence of actions until a terminal state is reached. The resulting trajectories, containing
states, actions, and rewards for both levels, are stored in separate replay buffers.

The network parameters for both policies are updated by sampling mini-batches from
their respective buffers. As specified in Table 1, the low-level policy is updated more fre-
quently (every Uy, = 2 episodes) than the high-level policy (every Umeta = 10 episodes).
This difference in update frequency is a key aspect of hierarchical training: the low-level
controller requires more frequent updates to quickly master the fine-grained, tactical rout-
ing task under various strategic intents, while the high-level meta-controller learns from
the aggregated outcomes of multiple low-level episodes, allowing it to focus on the slower,
long-horizon strategic deployment policy. The actor—critic networks for both levels are
trained using the PPO algorithm with the Adam optimizer [41]. This alternating training
scheme ensures that both policies co-evolve and adapt to each other, leading to a robust and
globally coordinated solution. The detailed training procedure is outlined in Algorithm 1.

Table 1. Hyperparameters for the DRL agent training.

Hyperparameter Value Description

DRL Algorithm PPO

Learning Rate («) 3 x10~*  For both actor and critic networks
Discount Factor () 0.99 For advantage estimation

PPO Epsilon (¢) 0.2 Clipping parameter

GAE Lambda (A) 0.95 For Generalized Advantage Estimation
Number of Epochs 10 Number of optimization epochs per update
Minibatch Size 128 Size of mini-batches for SGD

Optimizer Adam

High-level Update Freq. (Umeta) 10 Update meta-controller every 10 episodes
Low-level Update Freq. (Ujow) 2 Update controller every 2 episodes
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Algorithm 1 Training Algorithm for the H-DRL Framework

1: Initialize high-level policy network 7meta (@meta) and critic Vimeta (¢meta)
2: Initialize low-level policy network 7tjgy (O1ow ) and critic Vigw (Prow)

3: Initialize replay buffers Dmeta and Digyy

4: for episode =1 t0 Nepisodes d0

5. Get initial global state Smeta
6: // — High-level Decision Making —
7. Select high-level action Ameta = (I,2) ~ TTmeta(Smeta)
8:  Execute base relocation to location [/, incur cost Cdeployment
9:  Initialize cumulative low-level reward R ymuylative low < 0
10:  for sortie = 1 to Ngprties dO
11: Get initial local state Sy, for a UAV at location /
12: Initialize trajectory buffer T,
13: while Sy, is not terminal do
14: // — Low-level Path Planning —
15: Select low-level action a1y, ~ Tiow (Siow)
16: Execute action aj,,,, observe next state S| = and reward Rjqy,
17: Store (SIOW/ Mows Riow, S{OW) in Tow
18: Slow — Sfow
19: Rcumulative_low — Rcumulative_low + Riow
20: end while
21: Store trajectory Tigyw in Digw

22:  end for

23:  // — High-level Reward Calculation and Storage —

24:  Calculate Rperformance and Reonsistency from the executed sorties
25: Rmeta < wperprerformance + wconsistRconsistency — Wdep Cdeployment
26:  Get next global state S] .,
27:  Store (Smetar Ameta, Rmeta, Sineta) in Dieta
28: // — Network Updates —

29:  if episode mod U, == 0 then

30: Sample mini-batch from Dy, and update 04y, P1ow using PPO
31: endif

32:  if episode mod Uneta == 0 then

33: Sample mini-batch from Dmeta and update Ometa, Pmeta using PPO
34: end if

35: end for

4. Experiments and Results

This section presents a series of comprehensive experiments designed to evaluate the
performance of the proposed H-DRL framework. The evaluation is conducted in two stages:
first, a set of extensive simulation experiments are performed to compare the framework
against several baseline methods under various scenarios; second, a physical experiment is
conducted to validate the feasibility and practical advantages of the proposed approach in
a real-world setting.

4.1. Experimental Setup

4.1.1. Simulation Environment

All simulation experiments were conducted in a custom-built environment developed
in Python 3.8, utilizing libraries such as NumPy for numerical operations and PyTorch
for implementing the neural network models. The operational area is a two-dimensional
square grid of size 100 x 100 units. Inspection tasks are represented by points with coor-
dinates randomly sampled from a uniform distribution within this area, unless specified
otherwise. For dynamic scenarios, new tasks are introduced at predefined intervals during
the mission execution.
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All simulation experiments were conducted in a custom-built environment devel-
oped in Python (version 3.8, Python Software Foundation, Wilmington, DE, USA). The
environment utilized core scientific computing libraries, including NumPy for numerical
operations, and PyTorch (version 2.0, Meta Al, Menlo Park, CA, USA) for implementing
the neural network models. The operational area is a two-dimensional square grid of size
100 x 100 units. Inspection tasks are represented by points with coordinates randomly sam-
pled from a uniform distribution within this area, unless specified otherwise. For dynamic
scenarios, new tasks are introduced at predefined intervals during the mission execution.

4.1.2. System and Algorithm Parameters

The key parameters for the simulated UAV system are summarized in Table 2. These
parameters are selected to reflect realistic operational characteristics where endurance
is a significant constraint. The hyperparameters used for training the proposed H-DRL
framework and its variants are detailed in Table 1. These values were determined through
preliminary experiments and are kept consistent across all relevant test cases to ensure a
fair comparison.

Table 2. UAV system and environment parameters.

Parameter Value

Operational Area Size 100 x 100 units
Number of UAVs (M) 3

UAV Speed (vyav) 1.0 unit/s

UAYV Endurance (Epmax) 40s

Mobile Base Speed (vpage) 0.5 units/s

Battery Service Time (1) 5s

Number of Static Sites (K) 5 (for static methods)
Number of Tasks (N) 20, 50, 100

4.1.3. Performance Metrics

To provide a comprehensive evaluation, the performance of all algorithms is assessed
using the following metrics:

Makespan: This is the primary metric, defined as the total time elapsed from the start
of the mission until the last task is completed. It provides a holistic measure of the overall
mission efficiency.

Total Flight Distance: This metric is the sum of the distances traveled by all UAVs
throughout the mission. It serves as a proxy for the total energy consumption and opera-
tional cost of the UAV fleet.

Base Relocation Distance: This metric measures the total distance traveled by the
mobile base. It reflects the cost associated with the deployment and logistical effort of the
ground support system.

Success Rate: This metric is particularly relevant for challenging dynamic scenarios. It
is defined as the percentage of missions successfully completed (i.e., all tasks visited) out
of a large number of independent runs. A failure may occur if the system cannot find a
feasible solution within a given time limit or due to poor adaptive decisions.

4.2. Baseline Methods

To rigorously evaluate the performance of the proposed H-DRL framework, it is
compared against five baseline methods. These baselines include traditional decoupled
approaches, a simplified HRL variant, as well as ablated versions of our own framework,
designed to isolate and verify the effectiveness of its key innovative components.



Machines 2025, 13, 861

14 of 24

4.2.1. Static Two-Stage (S-TS)

This baseline represents a common and practical approach to the problem. It decouples
the problem into two sequential stages: siting and routing. In the first stage, the K-Means
clustering algorithm [42] is used to partition the task locations into K clusters. The centroid
of each cluster is then designated as the location for a fixed static site. In the second stage,
the tasks are assigned to their nearest site, and a state-of-the-art VRP solver, LKH-3 [43],
is employed to find the optimal routes for the UAVs operating from each site to cover
the assigned tasks. This method serves as a benchmark for traditional, non-learning-
based optimization.

4.2.2. Two-Stage Greedy (TS-G)

This baseline represents a stronger heuristic-based approach, similar to the one used
in the physical experiment. In the first stage, it determines the single best fixed location
for a base by selecting the candidate site that minimizes the average distance to all task
points. In the second stage, it employs a greedy routing policy: from the fixed base, a UAV
is dispatched and always travels to the nearest unvisited task until its endurance limit
forces it to return. This process is repeated until all tasks are covered. This baseline tests
the efficacy of simple, local heuristics against our learning-based global optimization.

4.2.3. H-DRL with Naive Communication (H-DRL w/Naive Comm)

This baseline serves as a comparison to other advanced HRL methods by implementing
a simpler, discrete form of inter-layer communication. In this variant, the high-level policy
does not generate a continuous intent vector z. Instead, it outputs a discrete “tactic mode”
from a predefined set (e.g., {'FASTEST_MODE’, ‘'COVERAGE_MODE'}). The low-level
policy then switches to a corresponding, fixed reward function based on this discrete
command. This baseline is designed to test whether the continuous, fine-grained guidance
provided by our intent vector offers a significant advantage over simpler, discrete forms of
hierarchical control.

4.2.4. H-DRL Without Coordination (H-DRL w /o Coor)

This is the first ablated version of our proposed framework, designed to specifically
evaluate the contribution of the coordinated credit assignment mechanism. In this version,
the high-level policy does not output an intent vector z. Consequently, the low-level policy
is trained with a fixed reward function that uses a predefined, static weighting of the sub-
rewards (e.g., speed, coverage, safety). By comparing our full framework to this baseline,
the benefits of the dynamic, intent-driven guidance can be quantified.

4.2.5. H-DRL with Standard GAT (H-DRL w/GAT)

This second ablated version is designed to verify the effectiveness of the Ea-GAT. In this
baseline, the low-level policy’s architecture is replaced with a standard Graph Attention
Network (GAT) that does not have the built-in energy feasibility module. To handle the
endurance constraint, this version relies solely on a large negative reward (penalty) for
sorties that violate the energy limit. This comparison will demonstrate the superiority of the
proposed end-to-end feasibility mechanism over traditional penalty-based reward shaping.

4.3. Simulation Results and Analysis

This section presents the results of the simulation experiments. The analysis is struc-
tured into three parts: first, the convergence behavior of the learning-based methods is
examined; second, the performance of all algorithms is compared in static scenarios of
varying scales; finally, the adaptability and robustness of the methods are evaluated in a
dynamic scenario.
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4.3.1. Convergence Analysis

The learning curves for the proposed H-DRL framework and its two ablated versions
(H-DRL w/o Coor and H-DRL w/GAT) are presented in Figure 5. The curves plot the
average mission reward as a function of training episodes.

As observed in the figure, the proposed full H-DRL framework demonstrates superior
convergence properties. It achieves a higher final reward and converges faster than both
ablated baselines. The H-DRL w /o Coor variant learns significantly slower, indicating
that the intent vector and the coordinated credit assignment mechanism provide a more
effective and targeted learning signal for the high-level policy. The H-DRL w/GAT variant
initially learns quickly but plateaus at a lower reward level and exhibits higher variance.
This suggests that relying solely on penalty-based rewards makes it difficult for the agent
to consistently discover energy-feasible, high-quality policies, highlighting the stability and
effectiveness of the proposed Ea-GAT architecture.

Convergence Analysis of Learning-based Methods

0.8

‘g‘g MJ‘";‘?‘-‘W 1“&""?“‘“" L
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= = H-DRL w/o Coordination
H-DRL w/ GAT

0 100 200 300 400 500
Training Episodes

Figure 5. Learning curves of the proposed H-DRL framework and its ablated versions, showing the
average reward per episode over the course of training.

4.3.2. Performance on Static Scenarios

The performance of all methods was evaluated on a set of static scenarios with varying
numbers of tasks (N = 20, 50, and 100). For each scenario size, 30 instances with randomly
generated task locations were tested, and the average results are summarized in Table 3.
Figure 6 provides a more detailed view of the makespan distribution for the N = 50 scenario.

The results consistently demonstrate the superiority of the proposed H-DRL frame-
work across all scales. As shown in Table 3, our method achieves the lowest makespan in
all scenarios. Compared to the traditional S-TS method, our framework shows an average
improvement of 15% in makespan. This is attributed to the joint optimization of siting and
routing, which allows the mobile base to be positioned more strategically than the fixed
centroids determined by K-Means.

Against the heuristic-based TS-G method, our approach also yields significant gains.
While TS-G is computationally efficient, its greedy nature often leads to myopic decisions,
resulting in inefficient routes in the long run. The learning-based approach of H-DRL is
capable of discovering more globally optimal strategies.

The comparison with the ablated versions further validates our design choices. H-
DRL w/o Coor performs worse than the full framework, confirming that the intelligent
guidance from the intent vector is crucial for achieving high performance. The H-DRL
w/GAT struggles significantly, especially on larger instances, often failing to find feasible
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solutions or producing very long paths, which underscores the importance of the Ea-GAT’s
endogenous constraint handling.

Table 3. Performance comparison on static scenarios of varying scales.

Makespan (s) Total Flight Distance (Units)

Method N=20 N =50 N =100 N=20 N =50 N =100
S-TS 150.2 380.5 850.1 250.6 650.8 1400.2
Ts-G 165.8 410.2 910.7 280.1 710.3 1550.9
H-DRL w/Naive Comm 132.5 351.6 795.3 225.8 610.2 1335.1
H-DRL w/GAT 145.5 395.1 — 240.3 690.4 —
H-DRL w /0 Coor 138.1 360.4 810.3 230.5 620.1 1350.6
Proposed H-DRL 125.6 330.9 750.4 210.2 580.7 1280.1

Makespan Distribution for N=50 Scenario (30 Instances)
T T T T
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S-TS TS-G H-DRL w/ GAT  H-DRL w/o Coor Proposed H-DRL
Algorithm

Figure 6. Box plot of the makespan for the N = 50 scenario across 30 random instances, comparing
the distribution of results for all methods.

4.3.3. Performance on a Dynamic Scenario

To evaluate the framework’s adaptability, a dynamic scenario was designed. The mis-
sion starts with 40 initial tasks. After 200 s of mission time, 10 new, high-priority tasks are
unexpectedly added to a specific quadrant of the map. Table 4 compares the final makespan
of the methods that can handle dynamic events.

The results highlight the significant advantage of the proposed H-DRL framework in
dynamic environments. Upon the arrival of new tasks, the meta-controller of our H-DRL
framework can re-evaluate the global state and make a proactive decision to relocate the
mobile base to better serve the new cluster of tasks. This adaptability leads to a substantially
lower final makespan compared to the TS-G method, which reacts more slowly, and the
non-adaptive S-TS method, which is unable to adjust its pre-planned sites and routes at all.

Table 4. Final makespan in the dynamic scenario.

Method Final Makespan (s)
S-TS Not Applicable (Static)
TS-G 550.8

H-DRL w/Naive Comm 482.5

H-DRL w/o Coor 490.2

Proposed H-DRL 465.1
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4.3.4. Performance on a Scenario with Priority Changes

To further investigate the framework’s adaptability to diverse uncertainties, a scenario
involving dynamic task priority changes was designed. The mission starts with 50 tasks
of uniform priority (p; = 1). At a mission time of 150 s, all uncompleted tasks within a
predefined quadrant of the map have their priorities suddenly increased tenfold (p; = 10).
This scenario tests the ability of the meta-controller to shift its strategic focus in response to
changing mission objectives.

The performance is evaluated by the final makespan and, more importantly, by the
average completion time of the high-priority tasks after the change event. The results are
presented in Table 5.

The proposed H-DRL framework demonstrates a clear advantage in this scenario. Its
meta-controller, observing the change in the priority distribution on its state input map,
proactively issues new intents and, if necessary, relocates the mobile base to expedite the
servicing of the now-critical tasks. This results in a significantly lower average completion
time for high-priority tasks. The TS-G baseline, guided only by proximity, continues to
service nearby low-priority tasks, failing to adapt its strategy to the new urgency. This
experiment underscores the importance of a global, priority-aware strategic layer for
effective decision-making in complex, evolving environments.

Table 5. Performance comparison in the dynamic priority change scenario.

Method Final Makespan (s) Avg. Completion Time of High-Priority Tasks (s)
TS-G 425.6 310.2
H-DRL w/Naive Comm 385.7 278.4
H-DRL w/o Coor 390.1 285.5
Proposed H-DRL 380.4 255.8

4.3.5. Case Study I: Strategy in a Static Scenario

To visually illustrate the fundamental strategic differences in a static environment,
Figure 7 provides a comparison for a representative N = 50 instance. The figure contrasts
the solution generated by the proposed H-DRL framework against the S-TS baseline.

As depicted in Figure 7a, the S-TS method is constrained by its fixed, centrally-located
sites, which are determined a priori by clustering. This static placement forces UAVs to
undertake numerous long-haul flights to service tasks located on the periphery of the map,
resulting in significant unproductive transit time. In stark contrast, Figure 7b shows the
behavior of the proposed H-DRL framework. The mobile base dynamically repositions
itself multiple times throughout the mission, effectively “chasing” the dense clusters of
tasks. This strategic deployment allows UAVs to be launched from optimal proximity,
significantly reducing the average length of each sortie. This case study visually confirms
the substantial benefits of a tightly coupled, dynamic siting and routing strategy even in
static environments.
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Visualization of Generated Solutions for a Static N=50 Instance
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Figure 7. Visualization of generated solutions for a static N = 50 instance. (a) The fixed sites and
resulting long UAV paths of the S-TS baseline. (b) The dynamic relocation path of the mobile base
and the more efficient, shorter UAV sorties of the proposed H-DRL framework.

4.3.6. Case Study II: Adaptation in a Dynamic Scenario

To provide an intuitive understanding of the framework’s adaptability, Figure 8 visual-
izes the strategic responses in the dynamic scenario where new tasks emerge mid-mission.
The figure compares the proposed H-DRL framework with the reactive TS-G baseline.

Figure 8a depicts the critical moments after 10 new high-priority tasks (highlighted in
yellow) appear in the top-right quadrant. The TS-G baseline, being purely reactive and tied
to its pre-determined optimal fixed base, is forced to dispatch a UAV on a long-haul flight
across the map to address the new tasks. This results in a significant response delay and
inefficient path. In contrast, the meta-controller of the proposed H-DRL framework, shown
in Figure 8b, demonstrates true adaptability. Upon detecting the change in the global state,
it makes a proactive decision to relocate the mobile base towards the new task cluster. This
strategic repositioning enables the subsequent launch of UAVs on short, efficient sorties
to rapidly service the emergent high-priority tasks. This case study powerfully illustrates
the advantage of a proactive, learning-based deployment strategy over simple reactive
heuristics in dynamic environments.

Visualization of Strategies in a Dynamic Scenario
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Figure 8. Visualization of strategies in the dynamic scenario. (a) The slow, reactive response of the
TS-G baseline from its fixed base. (b) The proactive base relocation and rapid, efficient response of
the proposed H-DRL framework.
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4.4. Physical Experiment Validation

To bridge the gap between simulation and real-world application, a physical experi-
ment was conducted. It is important to note that the primary goal of this experiment was
not to perform an exhaustive statistical analysis or to demonstrate large-scale scalability.
Instead, it was designed as a proof-of-concept validation. The objectives were twofold:
(1) to confirm the feasibility of executing the trajectories generated by the framework
on a physical UAV platform and (2) to provide a tangible, qualitative demonstration of
the core strategic advantage of the coordinated approach over a traditional baseline in a
controlled setting.

4.4.1. Experimental Setup

The experiment was performed in an indoor laboratory space of approximately
3 x5 x 1.5 m. The UAV platform used was a custom-built quadrotor equipped with an
onboard flight controller capable of autonomous waypoint navigation. The physical layout
of the experiment is shown in Figure 9.

The scenario was designed to directly test the framework’s ability to perform co-
ordinated siting and routing. As detailed in Table 6, one fixed starting site (A) and
two candidate landing sites (B and C) were marked on the ground, along with four task
points (T1-T4) marked at specified heights. The tasks were intentionally clustered in
the far end of the workspace, near the optimal candidate landing site B, creating a clear
strategic choice.

A critical state characteristic for the low-level policy is the remaining energy, Erem.
In the physical experiment, real-time battery voltage monitoring was not employed. Instead,
a linear energy consumption model based on flight time was used for decision-making
within the algorithm. The remaining endurance at any given time ¢ was estimated as
Erem () = Emax — Flights where Enax was set to a conservative value based on the platform’s
known flight capabilities, and tgjgp is the elapsed time since the start of the current sortie.
While this is a simplified model, it is sufficient for validating the waypoint navigation
feasibility and the high-level strategic decision-making of the framework.

(a) Custom-built quadrotor. (b) UAV during autonomous flight.

Figure 9. The physical experimental setup. (a) The custom-built quadrotor used in the valida-
tion. (b) A snapshot of the UAV during its autonomous flight, executing a path segment between
two waypoints.
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Table 6. Coordinates of sites and tasks in the physical experiment.
Point X (m) Y (m) Z (m)
Site A (Start) 0.5 0.5 0.02
Site B (Optimal End) 1.5 4.5 0.02
Site C (Suboptimal End) 2.5 1.0 0.02
Task T1 0.5 3.5 1.0
Task T2 2.5 3.5 1.2
Task T3 0.5 4.5 0.8
Task T4 25 4.5 0.7

4.4.2. Procedure and Results

The experiment consisted of two trials to compare the strategies generated by the
proposed H-DRL framework and the Two-Stage Greedy (TS-G) baseline. For each trial,
the algorithm first computed a mission plan based on the coordinates in Table 6. This plan
was then converted into a sequence of waypoints and uploaded to the UAV’s flight con-
troller for autonomous execution. The mission time was recorded from takeoff to landing.

The conceptual difference between the two executed paths is visualized in Figure 10,
and the quantitative results are summarized in Table 7. The proposed H-DRL framework,
performing a global optimization, generated a dynamic ‘A -> B’ deployment strategy, which
resulted in a shorter overall path. The TS-G baseline, constrained to a fixed-base strategy,
planned a path starting from and returning to A, necessitating a long final return leg.

The successful completion of both autonomous flights confirmed the feasibility of
the generated trajectories. The quantitative results in Table 7 clearly demonstrate the
superiority of the proposed method. By intelligently selecting the landing site, the H-
DRL framework reduced the total path length by 18.0% and the actual measured mission
time by a significant margin of 16.3%. This provides direct physical evidence of the
framework’s ability to achieve more efficient global solutions through its coordinated siting
and routing strategy.

(a) TS-G Baseline (A — A) (b) Proposed H-DRL (A — B)

Figure 10. Conceptual visualization of the two paths executed in the physical experiment. (a) The
suboptimal path of the TS-G baseline with its long return leg to site A. (b) The globally optimized
path of the proposed H-DRL framework with an efficient landing at the closer site B.
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Table 7. Quantitative results of the physical experiment.
Metric TS-G Baseline Proposed H-DRL
Deployment Strategy A — A (Fixed) A — B (Dynamic)
Planned Path Length (m) 11.15 9.14 (—18.0%)
Actual Mission Time (s) 32.5 27.2 (—16.3%)

5. Conclusions

This paper has addressed the central research question of whether a hierarchical learn-
ing structure can effectively solve the joint UAV siting and routing problem. To this end,
a novel Hierarchical Reinforcement Learning (H-DRL) framework was proposed. This
framework effectively decouples the problem into a high-level strategic deployment policy
and a low-level tactical routing policy. Its core innovations—a coordinated credit assign-
ment mechanism using a learned intent vector, and an Energy-Aware Graph Attention
Network (Ea-GAT) that endogenously handles UAV endurance constraints—proved crucial
for achieving a robust and globally coordinated solution.

The comprehensive experimental results confirm the hypothesis that a hierarchical
approach is superior for this problem. The proposed framework was shown to significantly
outperform traditional optimization and heuristic baselines. For instance, in static scenarios
with 50 tasks, the H-DRL framework reduced the mission makespan by an average of 13.0%
compared to the Static Two-Stage (S-TS) method. The value of both the inter-layer coordi-
nation and the intra-policy constraint handling was confirmed through rigorous ablation
studies. Furthermore, a physical experiment with a custom-built quadrotor validated the
real-world feasibility of the generated trajectories, showing that the intelligent deployment
strategy reduced the actual mission time by 16.3% against the greedy baseline.

While this work provides a robust solution for automating complex UAV operations,
several avenues for future research remain open. A key limitation of the current framework
is its reliance on the assumption of perfect global information for the meta-controller’s
state. Real-world scenarios often involve communication delays and partial observabil-
ity, which presents a significant challenge. Future work should therefore explore the
integration of Partially Observable MDP (POMDP) formalisms. The physical validation,
while demonstrating feasibility, was limited to a small-scale indoor setting with single-run
comparisons. Therefore, future work should focus on extensive testing in larger, more
complex outdoor environments with multiple trials to enable rigorous statistical analysis
of the performance differences. From a methodological perspective, the scalability and
computational cost of the proposed framework present challenges for extremely large-
scale problems. The training of deep hierarchical models is inherently sample-intensive,
requiring significant computational resources. Future research could explore methods such
as imitation learning [44] to accelerate convergence. Exploring decentralized multi-agent
H-DRL frameworks [45], where coordination is achieved through local communication [33],
is a promising direction for larger UAV fleets. Finally, incorporating more sophisticated,
physics-based energy consumption models [46] and extending to full 3D environments
are also important next steps toward real-world deployment. In conclusion, this research
not only offers a practical solution for a challenging robotics problem but also contributes
valuable insights into the design of intelligent, hierarchical control systems for real-world
logistics and critical infrastructure management.
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