. machines

Review

A Survey of Autonomous Driving Trajectory Prediction:
Methodologies, Challenges, and Future Prospects

Miao Xu *¥, Zhi Liu, Bingyi Wang and Shengyan Li

check for
updates

Academic Editor: Yahui Liu

Received: 1 August 2025
Revised: 4 September 2025
Accepted: 5 September 2025
Published: 6 September 2025

Citation: Xu, M,; Liu, Z.; Wang, B.; Li,
S. A Survey of Autonomous Driving
Trajectory Prediction: Methodologies,
Challenges, and Future Prospects.
Machines 2025, 13, 818. https://
doi.org/10.3390/ machines13090818

Copyright: © 2025 by the authors.
Licensee MDP], Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

The School of Automotive and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China;
2222304091@stmail.ujs.edu.cn (Z.L.); 2222404111@stmail.ujs.edu.cn (B.W.); 2222404102@stmail.ujs.edu.cn (S.L.)
* Correspondence: miaoxu09@163.com

Abstract

Trajectory prediction is a critical component of autonomous driving decision-making
systems, directly impacting driving safety and traffic efficiency. Despite advancements,
existing reviews exhibit limitations in timeliness, classification frameworks, and challenge
analysis. This paper systematically reviews multi-agent trajectory prediction technologies,
focusing on generating future position sequences from historical trajectories, high-precision
maps, and scene context. We propose a multi-dimensional classification framework inte-
grating input representation, output forms, method paradigms, and interaction modeling.
The review comprehensively compares conventional methods and deep learning architec-
tures, including diffusion models and large language models. We further analyze five core
challenges: complex interactions, rule and map dependence, long-term prediction errors,
extreme-scene generalization, and real-time constraints. Finally, interdisciplinary solutions
are prospectively explored.

Keywords: autonomous vehicles; trajectory prediction; machine learning; deep learning;
multi-agent interaction

1. Introduction

The rapid development of autonomous driving technology has raised higher require-
ments for the accuracy and robustness of trajectory prediction. As the core component of
the autonomous driving decision-making system, trajectory prediction directly determines
driving safety and traffic efficiency [1]. In complex dynamic traffic environments, vehicles
need to predict the future movement trajectories of surrounding traffic participants (such
as vehicles and pedestrians) in real time to avoid collision risks and plan the optimal
path [2-4]. However, the randomness of traffic participant behavior, the complexity of
multi-agent interaction, and the uncertainty of environmental perception pose significant
challenges to high-precision trajectory prediction.

Although there are existing reviews covering traditional methods and deep learning
models, the following deficiencies still exist: (1) lagging in timeliness: lacking systematic
analysis of frontier technologies such as diffusion models and large language models
(LLMs); (2) single classification framework: not unified in the classification dimensions
based on interaction modeling, output modalities, and uncertainty handling; (3) insufficient
analysis of challenges: no in-depth exploration of key challenges such as cumulative
long-term prediction errors and generalization in rare scenarios. This paper focuses on
the multi-agent trajectory prediction problem and aims to systematically review the key
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technologies for generating future position sequences based on historical trajectories, high-
precision maps, and scene context. This paper focuses on the following issues:

e  Modeling of input elements: how dynamic information, static information, and scene
context can be collaboratively represented;

e  Evolution of output form: from single-modal deterministic trajectories to multi-modal
probabilized trajectories;

e Innovation of method paradigms: the efficacy boundaries of traditional methods and
deep learning methods;

o  Completeness of evaluation system: the adaptability of dataset characteristics and
multi-dimensional evaluation indicators.

Therefore, we propose a multi-dimensional classification framework, integrating tra-
ditional methods and deep learning models; deeply analyze the mechanisms of five major
challenges (complex interaction, rule dependence, long-term prediction error, extreme
scene generalization, real-time constraints); and prospectively explore interdisciplinary
integration directions such as embodied intelligence and vehicle-road collaboration. The
main contributions of this paper are as follows:

e  Proposing a multi-dimensional classification framework, organizing the evolution of
trajectory prediction technology from four dimensions: input representation, output
form, method paradigm, and interaction modeling;

e  Systematically comparing the advantages and limitations of traditional methods and
deep learning models, covering the latest progress of diffusion models, Transformer
architectures, and generative methods;

e  Deeply analyzing the current five major challenges (complex interaction, rule depen-
dence, long-term prediction error, extreme scene generalization, real-time constraints),
providing directional guidance for future research.

This paper is organized as follows. Section 2 establishes the trajectory prediction
problem formulation and classification framework. Section 3 reviews conventional meth-
ods: physics models, maneuver-based approaches, and probabilistic graphical models.
Section 4 analyzes deep learning methods categorized by architecture: RNNs, CNNs, GNNs,
Transformers, and generative models, detailing feature encoding/fusion.
Section 5 evaluates datasets and metrics. Section 6 discusses multi-task applications and
core challenges with solutions. Section 7 concludes and proposes future directions including
end-to-end frameworks and causal reasoning systems.

2. Key Problems and Method Classification
2.1. Core Input Element

The precision of trajectory prediction relies significantly on the quality and nature of
input data, which encompass dynamic information, static information, and scene context.
Collectively, these elements offer a thorough depiction of the traffic setting for the trajectory
prediction algorithm.

2.1.1. Dynamic Information

Dynamic information primarily comprises historical trajectory data of the host vehicle
and surrounding traffic participants, encompassing their position, velocity, acceleration,
and heading angle. This data characterizes the immediate movement status of traffic
participants and serves as the foundation for trajectory prediction, particularly crucial
in short-term trajectory prediction, as it directly indicates the instantaneous movement
tendencies of traffic participants [5-7]. The collection of dynamic information typically
relies on the vehicle’s sensors and V2X communication technology [8].
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2.1.2. Static Information

Static information in the traffic environment includes lane lines, curbs, traffic signs,
traffic lights, drivable areas, and intersection structures. This data serves as a constant
representation of the traffic surroundings and forms the foundational backdrop for trajec-
tory prediction. Typically acquired from high-precision maps and on-board sensors, static
information aids vehicles in comprehending traffic regulations and road layout. It holds
significant relevance in long-range trajectory forecasting and route mapping by furnishing
a comprehensive overview of the traffic landscape [9].

2.1.3. Scenario Context

Enabling vehicles to comprehend the attributes and possible hazards of the present
situation, scene context encompasses factors such as traffic regulations, lighting conditions,
weather, and the type of scene. This data is typically acquired through sensor data and
algorithms that are aware of the environment [10-13]. Across various scene categories, the
utilization of scene context information can assist vehicles in adapting prediction strategies
and enhancing the precision of predictions.

2.2. Output Representation
2.2.1. Trajectory Representation

Trajectory representation in autonomous driving trajectory prediction involves con-
verting the movement path of a vehicle or traffic participant into a format that can be
analyzed. The selection of a trajectory representation method significantly impacts both the
construction of prediction models and the comprehensibility of prediction outcomes [14].
Typical trajectory representation approaches comprise discrete point sequences, parametric
curves, and grid occupancy.

1.  Discrete Point Sequence

A discrete point sequence depicts a trajectory through a series of discrete points
in time, providing a direct representation of the trajectory’s temporal evolution. In the
context of autonomous driving, a discrete point sequence serves as an intuitive method to
capture the vehicle’s position at each time point, with each point encapsulating positional
coordinates along with potential speed, acceleration, and related data [15]. Each individual
point corresponds to the positional data at a specific time step, denoted as t. This can be
mathematically formulated as:

T={(x1,y1), (x2,92),- -, (xt,yt) } 1)

where (x4, ;) denotes the pedestrian position at time step ¢ and T is the total time step of
the trajectory.

2. Parametric Curve

A parametric curve is defined by one or more parameters that determine the coor-
dinates of points along the curve [16]. Examples of parametric curves commonly used
include polynomials and spline curves.

The polynomial curve follows a fundamental structure:

p(t) = ag + ayt + aot® + ... + ayt" 2)

where t represents the time variable and «; denotes the polynomial coefficient.
For instance, Buhet et al. [17] introduce a probabilistic prediction approach utilizing
polynomial trajectories. This method represents the vehicle trajectory as a polynomial
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function and forecasts the future trajectory distribution through a probabilistic model,
effectively addressing trajectory uncertainty and diversity.

A spline curve, commonly employed for interpolation and fitting, is a smooth curve
determined by a series of control points. The B-spline curve is currently the most prevalent
type utilized. For instance, Cao et al. [18] illustrates the creation of a trajectory from
predetermined waypoints, delineating the path’s form through the node vectors and control
polygons of the B-spline. Furthermore, a real-time path planning strategy leveraging the
B-spline curve is introduced in [19], enabling swift generation of obstacle-avoidance paths
in dynamic environments.

3. Grid Occupation

The concept of grid occupancy involves partitioning space into grids and projecting
the likelihood of each grid being occupied in the future. Schreiber et al. [20] proposed a
new encoder—decoder framework, which utilizes convolutional long short-term memory
networks to predict future trajectory patterns based on the grid occupancy mapping.
Additionally, Zeng et al. [21] proposed an end-to-end interpretable neural motion planner,
which employes a grid occupancy graph to delineate various potential trajectories.

2.2.2. Unimodal Prediction and Multimodal Prediction

The unimodal prediction method involves predicting the most likely trajectory for
each target. A physical model-based single-modal prediction method utilizes kinematic
and dynamic properties to determine a singular, probable future trajectory by considering
the vehicle’s position, velocity, and yaw rate [22]. Conversely, a machine learning-based
unimodal prediction method extracts key feature information from vehicle lane change
trajectory data using SVM’s nonlinear learning and pattern recognition capabilities. This
method models the vehicle’s actual lane change process and calculates the probability
distribution of behavior parameters that represent changing motion characteristics [23].

The multimodal prediction approach can produce multiple plausible trajectories while
accounting for the uncertainty in the target’s intention [24]. By incorporating probabilistic
models or deep learning techniques, this approach can assign a probability to each trajectory,
reflecting its likelihood. This method integrates historical target trajectories, environmental
data, and potential driving intentions to create a probability distribution model using
recurrent neural networks and mixed density network output functions, enabling the
generation of diverse trajectories and their associated probabilities [25]. Another multi-
modal trajectory prediction technique, employing deep learning and adversarial training
of generator and discriminator, generates multiple feasible trajectories, capturing the
uncertainty in vehicle behavior [26]. Table 1 conducts a comparative analysis of unimodal
and multimodal trajectory prediction methods, summarizing their applicable scenarios,
main advantages, disadvantages, and representative methods.

Table 1. Comparison of unimodal prediction and multimodal prediction.

Items

Unimodal Prediction Multimodal Prediction

Applicable scenarios

Simple, purposeful scenarios Complex scenarios with uncertain intent

Merit

Efficient, fast, and with few computing resources

Provide multiple trajectories, consider intention

uncertainty
.. - . . High ional lexi 1
Drawback Inability to deal with intention uncertainty 181 computational complexity and large data
requirements
Example Freeway straight ahead Urban road intersections, confluence areas,

pedestrian dense areas
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Table 1. Cont.
Items Unimodal Prediction Multimodal Prediction
Method Physical models, machine learning models Probabilistic models, deep learning models
Output A most probable trajectory Multiple possible trajectories and their probabilities

2.2.3. Uncertainty Quantification

Accurately quantifying uncertainty is crucial for ensuring the reliability and robust-
ness of trajectory predictions, especially given the intricate nature of traffic environments
and sensor data noise. Decision support systems rely heavily on precise uncertainty quan-
tification methods such as probability distributions, confidence intervals, and generative
model sampling to enhance the accuracy of prediction outcomes [27,28].

Common probability distributions comprise the Gaussian distribution and the mixture
Gaussian distribution. Yoon et al. [29] employed Gaussian process regression to derive the
probability distribution of behavioral parameters that depict lane change motion charac-
teristics, thereby offering a probability estimate for trajectory prediction. Mao et al. [30]
introduced a random trajectory prediction approach grounded on the jump diffusion model,
and characterized the uncertainty of trajectory prediction through the Gaussian mixture
distribution. This technique adeptly addresses multi-modal and uncertainty challenges.

The confidence interval is a statistical tool used to quantitatively and intuitively mea-
sure the uncertainty of trajectory predictions. It not only reflects the reliability of the
prediction results but can also be applied to tasks such as path planning and collision
detection. The confidence interval based on the Gaussian distribution provides the un-
certainty range of the predicted values, which is helpful for evaluating the prediction
stability of the model, while the confidence interval based on non-parametric methods can
determine its coverage range through Monte Carlo simulation based on a large number of
pseudo-experiments, thereby improving the accuracy of the estimation [31,32].

Uncertainty quantification combined with generative model sampling allows for
a more comprehensive treatment of uncertainty in trajectory prediction. Li et al. [33]
employed uncertainty quantification methods to estimate the uncertainty range of trajectory
prediction, and then sampled the model within this range to generate trajectory samples
that conform to the uncertainty.

2.3. Classification of Trajectory Prediction Methods
2.3.1. Based on Method Paradigm

Predictions based on the method paradigm can be mainly classified into traditional
methods and those based on deep learning.

Traditional trajectory prediction methods typically rely on physical models, kinematic
models, or rule-based models [34,35]. The advantages of these methods are interpretability
and computational efficiency, but they may not be flexible enough to deal with complex
traffic scenarios and nonlinear behaviors.

Trajectory prediction methods based on deep learning can automatically extract fea-
tures and make predictions by learning patterns and relationships in data. Deep learning
models, such as recurrent neural networks (RNN), long-short term memory networks
(LSTM), and Transformer architectures, have been widely used for trajectory prediction
tasks. These methods perform well in dealing with complex traffic scenarios and nonlinear
behavior, but often require large amounts of data and calculations [36]. Figure 1 shows
the percentage of articles using traditional and deep learning for trajectory prediction. The
proportions are derived from our analysis of over 100 relevant studies from 2014 to 2024.
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Figure 1. The proportion of prediction methods based on method.

2.3.2. Based on Interaction Modeling

Interaction among traffic participants is one of the key factors affecting the prediction
accuracy in autonomous driving trajectory prediction. Interaction modeling methods
can be divided into three categories according to whether they explicitly represent and
process these interactions: interaction modeling, implicit interaction modeling, and explicit
interaction modeling. Figure 2 shows the proportion of articles that use these three types of
interactions for trajectory prediction.

20%

45%

35%, Without ineraction

Implicit modeling

Explicit modeling
Figure 2. The proportion of prediction methods based on interaction modeling.

Methods that do not consider interaction treat each traffic participant as an indepen-
dent individual, regardless of its interaction with other traffic participants, and are usually
applied in low-density traffic scenarios, but in high-density traffic scenarios, interactions
between vehicles are complex and frequent, and methods that do not consider interaction
may lead to reduced prediction accuracy [29].

Implicit interaction modeling methods consider the interaction between traffic par-
ticipants by means of shared feature extraction or joint training, and are often applied to
medium density traffic scenes. Implicit interaction modeling methods can improve predic-
tion accuracy through learned implicit relationships while maintaining high computational
efficiency. Xin et al. [37] used LSTM to encode the historical trajectory data of vehicles
and predict their future trajectories. They proved that this method is capable of implicitly
capturing the interaction relationships among vehicles and is suitable for medium-density
traffic scenarios. However, in complex traffic scenarios, implicit modeling may fail to
capture complex interaction relationships, resulting in insufficient prediction accuracy.

Explicit interaction modeling method improves prediction accuracy by explicitly
expressing the interaction between traffic participants. Explicit modeling can significantly
improve prediction accuracy and is applicable to scenarios that require high-precision
predictions. Zhao et al. [38] proposed a trajectory prediction method based on Graph
Neural Network (GNN), which can explicitly simulate the interactions between vehicles.
This method performs well in complex traffic scenarios and is suitable for high-density
traffic situations. However, explicit modeling usually requires more computing resources
and may not be suitable for scenarios with high real-time requirements.
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3. Conventional Trajectory Prediction Methods

Conventional trajectory prediction methods each have their own focuses. Figure 3
illustrates several conventional methods and their application in addressing the trajectory
prediction task for Autonomous Vehicles (AVs). Analysis of the papers indicates that in
this review, 38% of the papers focus on Physics Model-Driven Approaches, 27% of the
papers concern Maneuver-Based Methods, 22% of the papers concentrate on PGM-Based
Approaches, and the remaining 13% are centered on Gaussian Process regression.

38%
Physics Model-Driven Approaches
Maneuver-Based Methods
Lt 13% PGM-Based Approaches
Gaussian Process Regression
22%

Figure 3. Participation of research articles in trajectory prediction task using conventional approaches.

Conventional methods for trajectory prediction form the foundation of the au-
tonomous driving trajectory prediction field. Centered around mathematical models and
statistical patterns, these methods estimate the future motion of traffic participants through
explicit physical principles or probabilistic reasoning. Although they have limitations in
complex interactive scenarios, these methods remain relevant in specific scenarios due to
their interpretability and efficiency. A summary of these models, including representative
models, strengths and weaknesses, and applicable scenarios, is presented in Table 2.

Table 2. Summary of research on cumulative errors and behavioral uncertainty issues.

Method Category Representative Models Advantages Limitations Applicable Scenarios
' Kalman Filter [39,40] Sl'mple 'and efficient, . Unabl.e to har}dle o
Physics Model- CV/CA model [41-45] highly interpretable, interactions or intent Short-term prediction
Driven Approaches bi i accurate in short- changes, large long- (<1 s), structured roads
icycle model [42,44-48] L
term prediction term errors
Maneuver identification + CYRA Behavioral intent explicit, ~ Limited maneuver library Highway scenarios,
Maneuver- . .
based approaches model, Monte Carlo conducive to coverage, weak conventional
PP methods [49-55] decision planning interaction modeling behavior prediction
. Complex model, high . .
Probabilistic Hidden Markov Models [56-58] Capable of mpdehng . inference computational Multl—fac.tor scenarios,
. - . uncertainty, fusing multi- s low-dimensional
Graphical model Dynamic Bayesian Network [59-63] ; . load, struggles with high- o
source information : A state prediction
dimensional spaces
Gaussian Provides natural C(I){r;g;i:;?;p;itfizflltatlo Small-sample scenarios,
Process Regression GPR + HMM [64,65] uncertainty estimation, handle large- high-precision

high flexibility

scale interactions

prediction requirements

3.1. Physics Model-Driven Methods

Physics model-driven approaches are grounded in principles of classical mechanics
and kinematics [66,67]. Physics-model-driven methods predict trajectories by constructing
mathematical equations of vehicle motion based on classical mechanics and kinematic
principles. The core idea is to treat vehicle motion as a process that can be described by
physical laws. These methods do not rely on large amounts of data; instead, they capture
the dynamic characteristics of vehicles through preset motion models and achieve high
accuracy within a short time range.
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3.1.1. Constant Velocity/ Acceleration Models

The Constant Velocity (CV) model assumes a vehicle maintains its current speed
throughout the prediction horizon, calculating future positions solely based on its present
location and velocity. The Constant Acceleration (CA) model further incorporates accel-
eration effects, making it suitable for scenarios involving vehicle acceleration or deceler-
ation. In practical applications, these models are often combined with Kalman filtering
to address uncertainties from sensor noise. For instance, Zhang et al. [39] proposed a
method based on Vehicle-to-Vehicle (V2V) communication and Kalman filtering, enabling
ego vehicles to predict trajectories of remote vehicles and achieve obstacle avoidance.
Lefkopoulos et al. [40] introduced an Interacting Multiple Model Kalman Filter (IMM-
KF), which enhances the accuracy of physics-based trajectory predictions by integrating
interaction-related parameters.

3.1.2. Bicycle Model

The bicycle model simplifies vehicles into a “bicycle” structure, characterizing motion
through front-wheel steering angles and longitudinal velocity. It comprises two variants:
Kinematic model: Ignores dynamic factors like tire forces, considering only geometric
constraints. Suitable for low-speed scenarios. Dynamic model: Incorporates parameters
such as tire forces and vehicle mass, better capturing motion characteristics during high-
speed or limit-handling conditions. In trajectory prediction, bicycle models often integrate
with filtering techniques to address motion disturbances. As noted in [46], some studies
combine this model with a Monte Carlo approach—randomly sampling input variables to
simulate state distributions and generate potential future trajectories.

3.1.3. Advantages and Limitations

Physics-based model-driven approaches offer distinct advantages: their principles
are simple, based on explicit kinematic or dynamic laws, requiring no complex training
process. With high computational efficiency, they fulfill real-time requirements. Their
strong physical interpretability ensures predictions align with human intuition about
vehicle motion, facilitating verification and calibration. For instance, physics models
demonstrate stable performance in short-term predictions (typically < 1 s), providing
reliable trajectory references for safety assessment [41].

However, physics-based model-driven approaches exhibit significant limitations. Its
core assumption is that the movement of vehicles follows fixed physical laws (as empha-
sized in [42]), which prevents them from capturing the interactions between vehicles and
the changes in the drivers’ intentions. Furthermore, as the prediction horizons extends, the
model errors will gradually accumulate, resulting in a significant decline in the accuracy of
long-term predictions.

3.2. Maneuver-Based Methods

Maneuver-based approaches abstract vehicle behavior into discrete “maneuver ac-
tions” such as lane changes, car-following, turns, etc., generating future trajectories by
recognizing current maneuver types.

3.2.1. Maneuver Recognition and Classification

Maneuver recognition serves as the prerequisite for maneuver-based methods, de-
termining a vehicle’s current behavior by analyzing historical trajectory features. Com-
mon maneuver types include longitudinal maneuvers and lateral maneuvers, with com-
bined maneuvers such as intersection turns and U-turns observed in complex scenarios.
Houenou et al. [49] identified lane-change maneuvers and integrated them with the Con-
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stant Yaw Rate and Acceleration (CYRA) model for trajectory prediction. Tran and Firl [50]
leveraged Monte Carlo Simulation (MCS) to forecast multimodal trajectories and employed
Gaussian Process Regression to learn behavioral patterns at intersections.

3.2.2. Maneuver Library-Based Trajectory Generation

Trajectory generation based on maneuver libraries involves predefining typical tra-
jectory models for various maneuvers to form a “maneuver library.” Upon identifying a
vehicle’s maneuver type, the corresponding model is retrieved from this library to generate
future trajectories by combining it with the current kinematic state. Wissing et al. [51]
proposed an interaction-aware trajectory prediction method that simulates interactive
behaviors using MCS, integrating the Intelligent Driver Model (IDM) and lane-change
models to generate distributions of potential future positions for target vehicles. Similarly,
Okamoto et al. [52] utilized identified maneuvers in their maneuver-based framework to
generate future trajectories through Monte Carlo methods.

3.2.3. Advantages and Limitations

The primary strength of maneuver-based methods lies in their explicit behavioral
intent representation, where prediction results directly correlate with a vehicle’s driving
objectives. This enables Autonomous Driving Systems (ADS) to intuitively comprehend
surrounding vehicles’ behavioral purposes, providing actionable input for decision-making
and planning.

While effective in intent interpretation, maneuver-based methods face three core
limitations, as discussed in [53]: (1) Maneuver library is unable to comprehensively
cover all possible actions, especially in edge scenarios such as emergency avoidance,
which can lead to prediction failures. (2) Inherent classification ambiguity exists as real-
world driving often involves transitional states overlapping multiple maneuver categories.
(3) Its interactive modeling capability is relatively weak, and it neglects dynamic interaction
relationships between vehicles.

3.3. PGM-Based Methods

Probabilistic Graphical Model (PGM)-based methods leverage graphical structures to
represent conditional dependencies among variables, employing probabilistic inference to
handle trajectory prediction uncertainties, thereby proving effective in complex operational
environments with multi-factorial interactions.

3.3.1. Hidden Markov Model

The Hidden Markov Model (HMM) conceptualizes trajectory generation as a stochas-
tic process governed by latent states (satisfying the Markov property) and observable
states, characterizing motion patterns through initial state probabilities, transition prob-
abilities, and emission probabilities [54]. For instance, Qiao et al. [56] employs HMM
with adaptive parameter selection to simulate real-time scenarios, enhancing dynamic
adaptability in trajectory prediction. Concurrently, Deng et al. [57] integrate HMM with
fuzzy logic to forecast driver maneuvers, ensuring prediction reliability through multiple
initial-value iterations.

3.3.2. Dynamic Bayesian Network

The Dynamic Bayesian Network (DBN) extends HMM by incorporating a temporal
dimension to model time-evolving dependencies among variables, specifically targeting
multi-vehicle interaction scenarios. This framework represents variables—including vehicle
states, road structures, and interaction relationships—as nodes interconnected via directed
edges to encode dependencies, subsequently enabling trajectory prediction through proba-
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bilistic inference. Gindele et al. [59] leverage DBN to model multi-vehicle maneuvers using
inputs of all vehicles’ states, interactions, and road structures. He et al. [60] employ it to
recognize car-following and lane-changing behaviors while predicting trajectories.

3.3.3. Advantages and Limitations

The core strength of probabilistic graphical model-based approaches lies in their
inherent ability to naturally accommodate uncertainties in trajectory prediction, repre-
senting potential future trajectories through probability distributions that support risk
assessment for autonomous driving systems. For instance, both HMM and DBN output
trajectory probability distributions—rather than single deterministic results—thereby en-
hancing robustness against sensor noise and environmental dynamics [58,68]. Furthermore,
these models integrate multi-source information and outperform physics-based models in
complex operational scenarios.

Probabilistic graphical model-based approaches exhibit notable constraints: (1) The
complexity of their structure requires manual specification of the dependencies between
variables, which demands profound domain expertise. (2) Precise reasoning necessitates a
thorough traversal of the entire state space, which often forces the use of approximate algo-
rithms, thereby reducing the accuracy of predictions. (3) In high-dimensional continuous
state spaces, scalability issues arise. As the number of variables increases, computational
efficiency and stability will sharply decline.

3.4. Gaussian Process Regression

Gaussian Process Regression (GPR), a non-parametric Bayesian approach, treats trajec-
tories as samples drawn from a Gaussian process, leveraging kernel functions to character-
ize similarities between data points for future trajectory prediction. Its core mechanism
estimates the mean and covariance functions of the Gaussian process from historical trajec-
tories, ultimately outputting future paths in the form of probabilistic distributions.

3.4.1. Principles and Applications in Trajectory Prediction

Gaussian Process Regression fundamentally operates by assuming all trajectory sam-
ples follow a multivariate Gaussian distribution, predicting unobserved future trajectories
through estimation of distribution parameters from observed data. In trajectory predic-
tion applications, it processes historical vehicle position sequences as input and outputs
probabilistic distributions of future locations. For instance, Laugier et al. [64] first assessed
possible vehicle behaviors via HMM before deploying GPR to predict corresponding tra-
jectories. Guo et al. [65] integrated GPR with Dirichlet processes (DP) to construct motion
models that extract latent movement patterns.

3.4.2. Advantages and Limitations

Gaussian Process Regression offers the distinctive advantage of naturally outputting
uncertainty estimates for trajectories, directly yielding probabilistic distributions of future
positions without additional processing. Furthermore, as a non-parametric model, GPR
requires no predefined functional forms for trajectories, flexibly fitting complex nonlinear
motion patterns while outperforming parametric counterparts in small-sample scenarios.

The main limitation of Gaussian process regression lies in its high computational
complexity, which results in a significant decrease in efficiency when dealing with large
datasets and makes it difficult to meet real-time requirements. Moreover, Gaussian process
regression performs poorly in handling multi-vehicle interaction scenarios because predict-
ing the joint trajectory will significantly increase the number of variables, thereby causing
excessively high computational and storage costs for the covariance matrix.
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4. Deep Learning-Based Trajectory Prediction Methods

Compared to conventional approaches, deep learning models move away from a
heavy reliance on explicit rules and prior models [69-71]. They leverage their deep network
structures and powerful nonlinear fitting capabilities to automatically learn spatio-temporal
dependencies and interaction patterns directly from vast amounts of real-world data [72].
This fundamental shift has led to breakthroughs in prediction accuracy and robustness,
significantly enhancing the models’ ability to handle extreme scenarios.

This chapter presents a systematic review of deep learning-based trajectory prediction
methods, following the general framework illustrated in Figure 4. The review begins with
the foundational technique of feature encoding. Subsequently, it follows the evolution-
ary trajectory of network architectures, delving into how RNN process temporal data,
Convolutional Neural Networks (CNN) extract spatial features, GNN model structured
relationships, and Transformers capture global dependencies. Finally, to address the inher-
ent uncertainty of forecasting, the chapter focuses on generative models—including GAN,
CVAE, and Diffusion Models—and analyzes their role in multimodal prediction.

~ .
Deep Learning Output Modalities
Mode -
Historical Trajectories /'—\ -
| Feature Encoder
: N/ -
.:,; iy ‘l/ Interaction ) Predict trajectory
Hl)Mn, ‘ \__/Fusion / ]
redic ~ | |
o =) () ‘\‘ Decoder /) INENN
) e G L ) Heat Map

Dynamic Context

Figure 4. Framework of deep learning trajectory prediction method. The input is multi-source
information, and the output is multimodal trajectory, accompanied by attention distribution map.

4.1. Feature Encoding

The primary task in deep learning trajectory prediction is to convert raw, multi-modal
inputs—like historical trajectories, HD maps, and the movement of other agents—into
dense features a neural network can process. The quality of this encoding is foundational
and sets the performance limit for the entire model. The raw input data is typically
heterogeneous, primarily including: the historical trajectory of the target agent itself, the
surrounding static high-definition (HD) map, and the dynamics of other traffic participants
in the environment.

4.1.1. Historical Trajectory Encoding

The historical trajectory, typically represented as a sequence of the agent’s states
S_T+1,...,5-1,50 over the past T timesteps, serves as the foundation for understanding
its motion patterns and intent. Each state S; usually contains position (x,y), and may also
include information such as velocity (Vx, V; ), acceleration (ay, a,), and heading angle 6.
The first step for a deep learning model is to use an Encoder to compress this variable-
length, temporally ordered sequence into a fixed-dimensional feature vector h. This vector
h should encapsulate all information from the trajectory valuable for future prediction, such
as current motion trends and critical past behaviors. The following are several mainstream
trajectory encoding techniques.

One-Dimensional Convolutional Neural Networks (1D CNN): This method treats
a trajectory as a one-dimensional signal, processing it by sliding a convolutional kernel
along the time steps to identify local motion patterns [73-75]. Gilles et al. [76] uses a 1D
CNN layer as a parallel local pattern detector to extract short-term motion features, such as
acceleration or turns, providing dynamic information for subsequent modeling. A more
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advanced version is the Temporal Convolutional Network (TCN), which captures longer-
range temporal dependencies with high parallel efficiency. Azadani and Boukerche [77]
use a TCN encoder on historical trajectories to extract spatio-temporal features and create
a compact latent representation. Wang et al. [78] leverage a TCN to replace traditional
RNN s for temporal modeling. By stacking layers with causal convolutions and dilated
convolutions, their model efficiently captures long-term temporal dependencies.

The most natural and classic approach for processing sequential data is the RNN
and its advanced variants—LSTM and Gated Recurrent Unit (GRU)—which are essential
tools for handling temporal dynamics [79,80]. Within the basic Sequence-to-Sequence
(Seq2Seq) framework, Zyner et al. [81] utilized an RNN to encode the vehicle’s historical
data, compressing the historical trajectory into a context vector rich in dynamic information.
As research progressed, the RNN encoder became the backbone of more complex generative
models, such as Generative Adversarial Networks (GAN) [82] and Conditional Variational
Autoencoders (CVAE) [83]. Its task is to map the historical trajectory into a latent space to
achieve multi-modal prediction. Even in cutting-edge GNN methods, the RNN remains a
critical component. It is commonly utilized to pre-encode the temporal dynamics of each
node (agent), furnishing the graph convolution operations with node features that are rich
in historical context.

4.1.2. Map Information Encoding

Unlike models relying solely on trajectory history, advanced autonomous systems
must deeply understand their static surroundings. High-Definition (HD) maps offer
powerful prior knowledge of road topology, traffic rules, and geometric constraints, which
is critical for generating safe, compliant, and plausible trajectories. To use this information,
deep learning models employ specialized encoders to transform static map features into
numerical representations. This geographic information is generally categorized and
encoded as either rasterized or vectorized maps.

CNN-based Rasterized Map Encoding. The most intuitive approach involves rasteriz-
ing vectorized map data into a multi-channel Bird’s-Eye View (BEV) image centered on the
ego-vehicle. As in [84], a multi-channel image is created where each channel represents a
specific semantic element. In this format, each channel corresponds to a specific semantic
element, such as lane lines or drivable areas. This BEV image is then processed by a
standard 2D CNN to extract rich spatial context features.

PointNet-based Vectorized Map Encoding. To overcome information loss associated
with rasterization, researchers operate directly on vectorized map data by treating elements
like lane centerlines as an unordered point cloud. Bojarski et al. [85] utilizes a shared MLP
and a symmetric function to process the unordered set of points from forward-looking road
imagery to aid in decision-making, thereby ensuring permutation invariance to the order of
the points. Despite their strength in geometry, these models were designed for unordered
sets and thus cannot capture the connectivity between points.

Graph Neural Networks offer a state-of-the-art framework for map encoding that
models both geometric and topological structures. This method explicitly constructs a
graph from the scene, where nodes represent meaningful map units and edges encode
their topological relationships. The GNN then iteratively propagates information between
nodes via a message-passing mechanism, allowing each node’s feature representation
to incorporate data from its surroundings and the broader network structure for a deep
understanding of the environment. As exemplified by [86], this approach has proven to be
highly effective at capturing the relationships between agents and the map, as well as the
indirect relationships between agents established through the map.
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4.1.3. Context Information Fusion

For effective trajectory prediction, it is crucial to analyze both an agent’s historical
trajectory (dynamic information) and the scene map (static information). Efficiently fusing
these modalities is a critical step for high-performance models [87,88]. We will introduce the
mainstream fusion strategies, categorized as basic static methods and the more advanced
attention-based dynamic methods that represent the current standard.

Concatenation and MLP. Basic static fusion methods were applied in early models
due to their simplicity and computational efficiency. In research by Chandra et al. [89],
features from trajectories and maps were extracted by separate encoders, concatenated into
a single vector, and then processed by an MLP to learn nonlinear associations. The main
limitation of this static approach is its inability to dynamically prioritize information based
on context. Furthermore, flattening structured data into a single vector can lead to the loss
of important geometric and topological relationships.

Dynamic Fusion Methods. To overcome these limitations, state-of-the-art models
now widely employ dynamic fusion mechanisms based on Cross-Attention [8,90,91]. This
is a specific form of attention mechanism where the ‘Query’ vectors originate from one
modality (e.g., the dynamic agent’s state), while the ‘Key” and “Value’ vectors are derived
from another modality (e.g., the static map features or other agents” states). This allows the
model to dynamically and selectively retrieve relevant information from the environment
context for each agent, much like how a person focuses on specific landmarks or vehicles
when making a driving decision. This approach mimics selective human attention by
using an agent’s state as a “Query” to dynamically probe “Key-Value” pairs derived
from the environmental context. Zhou et al. [92] has demonstrated that this approach
enables selective and explicit interaction between agents and the map, as well as between
agents themselves.

4.2. RNN-Based Methods

As the earliest deep learning architectures successfully applied to sequence modeling,
RNN and their variants, especially LSTM and GRU, naturally became the primary tools
for solving the trajectory prediction problem. The chain-like structure and internal gating
mechanisms of RNN allow them to naturally and effectively learn and remember both
long-term and short-term dependencies in time-series data [93,94]. This aligns perfectly
with the inherent temporal evolution of trajectory data.

To systematically organize these research findings and clearly present the technological
evolution, the comprehensive comparison is presented in Table 3. We can observe that
RNN-based prediction methods have evolved from basic models that handle a single
agent and output a deterministic trajectory to advanced frameworks capable of handling
multi-modal uncertainty and ultimately modeling complex social interactions.

Table 3. Summary of RNN-based trajectory prediction methods.

Reference

Core Contribution/Method Interaction Modeling Key Architectural Feature

Zyner et al. (2018) [95]

The basic Seq2Seq framework is used to
predict drivers’ intentions at Unmodeled Single RNN encoder—decoder
unsignalized intersections.

Alahi et al. (2016) [96]

LSTM with social
pooling layer

Propose Social LSTM, the first systematic

introduction of social interaction modeling. Social Pooling

Xue et al. (2019) [97]

A multi-scale social information
representation method called “Social Social Pyramid Pooling
Pyramid” has been proposed

Hybrid attention layer dual
encoder architecture
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Table 3. Cont.

Reference

Core Contribution/Method Interaction Modeling Key Architectural Feature

Xu et al. (2018) [98]

2-layer LSTM motion encoder,
Explicit interaction modeling 3-layer MLP
coordinate encoder

First explicit learning of spatial affinity
weighted interactions for all pedestrians

Deo et al. (2018) [99]

Implicit modeling (through Single encoder + multiple

Multi modal prediction based on mobility maneuver classification) mobile specific decoders

Sriram et al. (2020) [100]

The Joint Prediction paradigm allows the
model to enforce consistency constraints
between the predictions of all agents

Explicit modeling (global

joint modeling) Multi-Agent RNN

4.2.1. The Basic Seq25eq Framework

The Seq2Seq model is the foundational application paradigm for RNNs in trajectory
prediction. This framework utilizes an Encoder and a Decoder, typically built from LSTM
or GRUs. The Encoder’s primary function is to compress an entire historical state sequence
into a single, information-dense context vector. This fixed-dimensional vector serves as a
holistic summary of the agent’s past motion, acting as the informational bridge connecting
the observed past to the predicted future. The Seq2Seq framework’s effectiveness was
initially demonstrated by research from Zyner et al. [95] on single-agent vehicle prediction.
The inherent drawback of this basic framework was its determinism—the inability to
generate multiple potential future trajectories. Later efforts aimed to overcome this by
extending the framework to support multi-modality, such as the work by Sriram et al. [100],
which proposed forecasting for all agents in the scene simultaneously instead of one
by one.

4.2.2. Social Pooling

While the basic and probabilistic Seq2Seq frameworks can handle the temporal dy-
namics and uncertainty of a single agent, their common and more critical limitation is
their lack of interaction awareness. They treat each traffic participant as an independent
entity, completely ignoring the fact that in dense traffic environments, the mutual influence
between individuals is a key factor in determining future behavior.

To address this challenge, Alahi et al. [96] pioneered Social-LSTM, which employed
the “Social Pooling” mechanism. This mechanism operates by first defining a spatial grid
around each agent. The hidden states of all agents whose current positions fall into the
same grid cell are aggregated (e.g., pooled together using a max or average operation). This
creates a social tensor that encodes the collective state of an agent’s local neighborhood.
This tensor is then concatenated with the agent’s own hidden state and used for the next
prediction step. This integrated social interactions into an RNN framework for the first
time, enabling each agent to “perceive” its surroundings when predicting its future path,
resulting in more realistic, collision-free trajectories. The core concept introduced by Social-
LSTM laid the groundwork for the field of interaction-aware prediction, with subsequent
works by Xue et al. [97], Xu et al. [98], and others replacing simple pooling with more
sophisticated attention mechanisms or GNN.

4.2.3. Advantages and Limitations

RNN and their variants offer powerful temporal modeling capabilities, making them a
flexible and scalable backbone for trajectory prediction. Their encoder—decoder architecture
allows for the seamless integration of components for multi-modality and social interactions.
Despite these strengths, RNN have inherent limitations. Even with LSTM and GRU
mitigating the classic vanishing/exploding gradient problem, an information bottleneck
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can still arise with very long historical sequences. Furthermore, they are often inadequate
at modeling spatial relationships.

4.3. CNN-Based Methods

While RNN excel at modeling temporal dependencies, they often struggle to capture
the rich spatial context of the traffic scene. In contrast to the temporal focus of RNN, CNN
offers a powerful alternative for understanding the spatial context of trajectory predic-
tion. Leveraging their proven ability to extract hierarchical spatial features, CNN-based
methods rasterize the complex traffic scene into one or more image-like grids. Standard
convolutional operations are then applied to automatically learn and extract the spatio-
temporal patterns essential for prediction [101-104]. A typical framework for this approach
is depicted in Figure 5, with key works summarized in Table 4.
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Figure 5. CNN model trajectory prediction framework.

Table 4. Summary of reviewed DL-based Models relying on CNNs.

Reference

Core Contribution/Method

Interaction Modeling

Key Architectural Feature

Encode dynamic attributes into raster images

Cui et al. (2019) [105] and use CNN for relationship learning. Implicit modeling Pure CNN architecture
Nikhil et al. (2019) [106] Usmg stacked conV(')lut'lonal layers to capture Social-unaware Seq2Seq
spatiotemporal continuity
Zhang et al. (2021) [84] Using ResNet—34 as an end-to-end Implicit modeling ResNet
regression network
Deo et al. (2018) [99] The 'ﬁrs.t exphqt hleriarchmal modeling of Convolutional Social Pooling CNN-LSTM
spatial interaction using CNN
Chaabane et al. (2020) [107] Not §hr.ectly predicting trajectories, but Implicit modeling ConvLSTM + 3D CNN
predicting future scenarios
Used for weighted interaction modeling and
Chandra et al. (2019) [89] Explicit modeling CNN-LSTM

trajectory prediction of heterogeneous agents
in busy traffic scenarios

4.3.1. Prediction Based on Rasterized Scenes

A prevalent paradigm in trajectory prediction utilizes CNN with BEV representation.
This approach encodes static and dynamic information into a multi-channel BEV image
centered on the ego-vehicle. This image is then processed by a CNN backbone for feature
extraction. Cui et al. [105] pioneered this end-to-end multi-modal method by systematically
rasterizing complex traffic scenes into a BEV representation for direct input into a deep
CNN. The effectiveness of this paradigm was validated by CoverNet, which demonstrated
that scene rasterization allows a CNN to implicitly model agent interactions, leading to
more plausible and compliant trajectory predictions.

4.3.2. Variant Architectures

While CNNs excel at spatial modeling, they lack inherent capabilities for explicitly
modeling time series data. To overcome this limitation, hybrid architectures combining
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CNNs with RNNs have been proposed for more effective spatio-temporal fusion [108-111].
In this framework, the CNN serves as a spatial feature extractor, processing a BEV scene
image at each timestep to produce a feature vector. This sequence of vectors is then fed
into an RNN (such as LSTM or GRU), which models the temporal dynamics. TraPHic [89]
exemplifies this CNN-LSTM approach, explicitly modeling spatio-temporal interactions
among agents at intersections to achieve state-of-the-art results. Conversely, Deo et al. [99]
proposed an alternative flow: first, an LSTM encodes each agent’s temporal dynamics,
then Social Pooling aggregates these hidden states into a spatial tensor, which a CNN
subsequently processes to learn high-level spatial correlations.

With advancing research, CNN applications have moved beyond 2D image processing.
While 2D CNN excel at static spatial features, they cannot directly model the temporal
dimension. The CNN-TP framework by Nikhil et al. [106] utilizes stacked convolutional
layers to process all timesteps in parallel, efficiently modeling spatio-temporal trajectory
dependencies with a lightweight and real-time structure. The work of Chaabane et al. [107]
represents a leap toward modeling higher-dimensional spatio-temporal sequences. Its key
innovation lies in redesigning the model’s fundamental units to simultaneously capture
spatial and temporal correlations within a unified module, rather than simply stacking
CNNs and RNNS.

4.3.3. Advantages and Limitations

The widespread adoption of CNNSs in trajectory prediction is due to their significant
advantages, particularly their highly parallelizable nature. Unlike the sequential processing
of RNNs, CNNs’ convolutional operations can fully leverage modern GPU capabilities,
leading to faster inference, a critical requirement for real-time autonomous driving appli-
cations. However, a fundamental limitation of CNN methods that rely on BEV images is
the information loss from rasterization. The process of converting precise, continuous vec-
torized data—such as map details and agent coordinates—into a discrete, fixed-resolution
grid inevitably discards geometric details and reduces accuracy.

4.4. GNN-Based Methods

Despite their effectiveness, CNN-based methods that rely on rasterization suffer from
information loss and difficulties in modeling the explicit topological structure of roads
and interactions. GNN offers a powerful alternative by natively operating on vectorized
data, allowing them to explicitly model the relationships between agents and map elements
as a graph. Therefore, GNNs are particularly effective for modeling the complex interac-
tions between agents and the environment in traffic scenes, as illustrated in Figure 6 and
summarized in Table 5.

Table 5. Summary of GNN based trajectory prediction methods.

Reference Key Architectural Feature Interaction Modeling Map Representation
Lietal. (2019) [112] GCN + LST™M Spatiotemporal proximity map Not used

fometal Qoo 11y Ykl sl -l rramic bltecton TSN T vtz map
Liang et al. (2020) [114] GAT + CNN Agent Lane Attention Vectorized lane map
Ding et al. (2021) [116] Dual GAT Vehicle repulsion + Space attraction Rasterized grid
Salzmann et al. (2020) [117] ~ GNN + LSTM + CVAE Heterogeneous spatiotemporal graph Vectorized map

Gao et al. (2020) [115]

GNN (Hierarchical) Agent Lane graph, global attention Vectorized subgraph
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Table 5. Cont.
Reference Key Architectural Feature Interaction Modeling Map Representation
Chen et al. (2021) [118] Spatio-temporal Transformer + GNN Spatial self-attention + Time Transformer ~ Not used
Hypergraph neural network + High-order trajectory
Wen etal. (2014) [119] SSVM optimization dependency relationship Not used

| =

Decoder Layer

GNN Layer

[ )
[ ]
O G N

Historical Trajectory

Figure 6. GNN model trajectory prediction framework. The scene is first represented as a graph
where nodes denote agents and map elements, and edges represent their relationships.

4.4.1. Graph Representation

To apply a GNN, the traffic scene must be abstracted into a relational graph. This
involves defining dynamic agents and static elements as nodes, and their complex relation-
ships as edges. Typically, nodes represent agents like vehicles and map features like lane
centerlines. This creates an “irregular graph” where edges signify distinct relationships:
social interactions between agents, environmental constraints linking agents to the map,
and the road network’s topology connecting map nodes. This process transforms the
unstructured scene into a structured, relational network with embedded prior knowledge,
enabling efficient GNN processing.

4.4.2. Mainstream Architectures

After the scene graph is constructed, the mainstream GNN architectures learn the
relationships between nodes through their core message-passing mechanism. Graph Con-
volutional Network (GCN) and Graph Attention Networks (GAT) are two key architectures,
and the main difference between them lies in how to aggregate information from neighbor-
ing nodes.

GCN is a foundational graph learning architecture that updates node representations
by aggregating features from their neighbors. In trajectory prediction, the pioneering works
GRIP++ [112] applied GCNs to explicitly model spatio-temporal interactions. Traffic partici-
pants are treated as nodes with edges defined by spatio-temporal proximity, allowing GCN
layers to propagate interaction information. Furthermore, SCALE-Net [113] employed an
Edge-enhanced GCN (EGCN) to demonstrate the architecture’s scalability and effectiveness
with a varying number of agents.

GAT is a significant advancement over the GCN. It incorporates an attention mecha-
nism, enabling the model to dynamically assign different importance weights to neighbor-
ing nodes based on the current context, rather than treating them all equally. LaneGCN [114]
is a prime example of applying GAT, where it specifically constructs a lane graph from
vectorized HD maps and uses GAT to learn the interaction strength between an agent and
different lane lines, thereby achieving highly accurate, context-aware trajectory prediction.
Similarly, in VectorNet [115], GAT is also used to aggregate information from different
subgraphs to form a comprehensive understanding of the entire scene. RAGAT [116]
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utilizes two stacked GATs to model these distinct social forces separately, and combines
them with vehicle state and free-space information for prediction.

4.4.3. Variant and Hybrid Architectures

While basic GCN and GAT architectures provide powerful tools for capturing in-
teractions in a single spatial snapshot, the spatio-temporal and multi-modal nature of
trajectory prediction necessitates more advanced models. Purely spatial modeling can-
not capture dynamic evolution, and deterministic outputs fail to account for behavioral
diversity. Consequently, the research frontier has shifted to complex GNN variants and
hybrid architectures. Trajectron++ [117] is a prime example, constructing a scene as a
heterogeneous spatio-temporal graph. It integrates GNNs and LSTMs for spatio-temporal
encoding, which then conditions a CVAE to achieve precise multi-modal prediction. This
“GNN encoder + RNN temporal modeling” paradigm became a state-of-the-art approach.
S2TNet [118] follows a similar structure but substitutes the RNN with a Transformer, mak-
ing it theoretically more effective than RNNs at capturing long-term and non-continuous
dynamic patterns.

To model group behaviors beyond pairwise relationships, research has explored
Hypergraph Networks. As shown in Figure 7, a standard graph edge connects only
two nodes, representing a pairwise interaction. Real-world scenarios, however, often
involve higher-order interactions, like multiple vehicles at an intersection. A hypergraph
generalizes this concept by allowing a ‘hyperedge’ to connect any number of nodes. This
provides a flexible and natural way to represent higher-order group interactions, such
as the collective behavior of multiple vehicles negotiating a busy intersection or a crowd
of pedestrians. For instance, Wen et al. [119] use clustering to identify agent groups and
construct a hyperedge for each. A hypergraph network then learns the complex dynamics
both within and between these groups, it offers a promising framework for understanding
complex collective behaviors.

@  Tracklet
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_/ Trajectory
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Figure 7. (a) Standard graph. (b) Undirected hierarchical relation hypergraph. [119].

4.4.4. Advantages and Limitations

The core strengths of GNNs are their explicit relational modeling and native support
for non-Euclidean data. This allows them to effectively integrate agent interactions and road
topology into a deep learning framework, enhancing prediction plausibility and accuracy.
In dense scenes, the resulting large graphs lead to high computational complexity from
message passing, which can compromise the real-time performance required for on-board
systems. Furthermore, GNNSs are primarily powerful “spatial snapshot” processors and
are not complete spatio-temporal solutions on their own. They typically rely on external
modules like RNNs or Transformers for temporal modeling, making their handling of time
indirect and separate.

4.5. Transformer-Based Methods

GNN are powerful for relational reasoning but often require additional modules
(e.g., RNN) for temporal modeling and can be computationally intensive for large graphs.
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The Transformer architecture, with its self-attention mechanism, provides a unified and
highly parallelizable framework for capturing both long-range temporal dependencies
and complex spatial interactions globally. Transformer architecture has introduced a third
paradigm to trajectory prediction, enabling a shift towards global modeling [120-122]. As
illustrated in Figure 8, this allows the model to directly and simultaneously compute the
association strength between any element in a sequence and all other elements, overcoming
the limitations of previous architectures.

Predicted States

Add & Norm
Multi-Head
Attention

Add & Norm
FeedForward

Add & Norm
Multi-Head
Attention

Add & Norm
Multi-Head
Attention

Positional Positional
Encoding Encoding

History States -

Figure 8. Illustration of Transformer for trajectory prediction. The attention mechanism allows the

é

model to globally contextualize all elements in the scene.

4.5.1. Self-Attention and Global Modeling

The core of Transformer-based trajectory prediction is the Self-Attention mechanism.
This mechanism treats all historical trajectory and scene context information as a single
set of tokens, enabling the direct and parallel computation of associations between all
elements [123-125]. This unified process captures both long-range temporal dependencies
and complex spatial interactions. To counteract the inherent permutation-invariance of
self-attention, Positional Encoding is introduced to provide temporal context. This is further
enhanced by Multi-Head Attention, which allows the model to learn diverse dependency
relationships in parallel across different representational subspaces.

4.5.2. Representative Architectures

The power of the self-attention mechanism has catalyzed a series of advanced
Transformer-based prediction models. Pioneering work by Giuliari et al. [126] employed
a standard encoder-decoder Transformer to process trajectory sequences, proving that
self-attention alone, without recurrent structures, could effectively capture temporal depen-
dencies and generate plausible predictions. SceneTransformer [127] takes a holistic view,
treating all dynamic and static scene elements as an unordered set of “tokens” and using
a single powerful Transformer to learn all interactions end-to-end. AgentFormer [128]
offers a more granular approach to social dynamics. Its core innovation is an attention
mechanism that distinguishes and simultaneously models individual temporal dynamics
(intra-agent attention) and multi-agent social interactions (inter-agent attention), resulting
in high-quality, socially compliant predictions.

While the aforementioned models have achieved significant success in accuracy and
expressiveness, they also highlight the standard Transformer’s inherent high computational
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complexity in large-scale scenes. To address the quadratic complexity bottleneck of the
self-attention mechanism, HiVT [129] proposed a hierarchical solution. It first uses a
lightweight local module to efficiently process each agent’s interaction with its immediate
environment, such as its current lane. Subsequently, it employs a global attention module to
capture more critical, long-range dependencies between agents. Achaji et al. [130] designed
a Factorized Spatio-Temporal Attention module. This module uses separate, lightweight
attention layers to efficiently process spatial interactions between agents and their own
temporal dynamics independently, before fusing this information.

4.5.3. Advantages and Limitations

The Transformer architecture, while a leading methodology in trajectory prediction,
presents a trade-off between its revolutionary performance and inherent challenges. Its
primary advantage is superior global dependency modeling; the self-attention mechanism
overcomes the limitations of RNN and CNN by capturing long-range spatiotemporal
dependencies in a single computational step. This capability is critical for understanding
global scene layouts and long-term driving intentions. Additionally, its highly parallelizable
nature aligns perfectly with modern hardware, providing superior training efficiency and
scalability over RNN. However, these strengths are accompanied by significant challenges.
As a model with weak inductive bias, the Transformer requires massive and diverse training
data, and its ability to generalize to out-of-distribution, long-tail scenarios is a concern.

4.6. Generative Model-Based Methods

While the aforementioned discriminative models predict a deterministic output, they
often fail to capture the inherent multi-modality and uncertainty of future trajectories. To
fundamentally address this, researchers have turned to generative models. Generative
models address this core limitation by learning the underlying probability distribution of
future motions, enabling the prediction of multiple plausible outcomes. The objective of
these models is not to predict a single correct answer but to learn and fit the underlying
probability distribution of the training data. This provides the autonomous driving system
with a complete, probabilistic, and multi-faceted view of the future. The three most
prominent generative models in trajectory prediction are GAN, CVAE, and Diffusion
Models, with representative works summarized in Table 6.

Table 6. Summary of reviewed DL-based models reloading on Generative Model Methods.

Reference

Method Interaction Modeling Key Architectural Feature

Gupta et al. [131]

GAN

Social Pooling Generator and Discriminator Based on LSTM

GAN combining CNN scene encoding and

Sadeghian et al. [132] GAN Physical and Social Attention Mechanisms . )
attention mechanism
Zhao et al. [133] GAN Multi-agent tensor fusion Tensor-based feature fusion + LSTM decoder
Lee et al. [134] CVAE Implicit modeling CVAE + RNN + rating module
Salzmann et al. [117] CVAE Heterogeneous Spatiotemporal Graph GNN encoder + CVAE + dynamic component
Neural Network
Jiang et al. [135] Diffusion Model Implicit interaction modeling Tram.a l?le leapfrog initializer + reduced
denoising steps
Yuan et al. [136] Diffusion Model Implicit interaction Diffusion model + physical constraints

4.6.1. Generative Adversarial Networks

GAN learns data distributions through a sophisticated “two-player zero-sum game”
framework. In trajectory prediction, the Generator creates synthetic future trajectories
from historical and scene context, while the Discriminator learns to distinguish these fakes
from real data. This adversarial process compels the Generator to master the complex
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dynamics and constraints of real trajectories, enabling it to produce highly realistic and
diverse multi-modal outputs.

The pioneering work, Social-GAN [131], first applied this framework to interaction-
aware pedestrian prediction. It combined LSTM-based encoders with a Social Pooling
mechanism, demonstrating the potential of GANs to generate socially compliant trajectories.
Subsequent research has built upon this foundation; for instance, SoPhie [132] introduced an
attention mechanism for more refined constraint modeling, while MATE-GAN [133] tackled
more complex vehicle interactions through multi-agent tensor fusion, further enhancing
the model’s expressive power.

4.6.2. Conditional Variational Autoencoder

CVAE provides a stable, probabilistic alternative to adversarial training for generating
diverse future trajectories. Instead of the competitive framework of GAN, a CVAE learns
a low-dimensional, structured latent space designed to capture unobservable factors like
intent or goals that drive behavioral diversity. Its classic encoder—decoder architecture
functions by first having the encoder map historical trajectories to a probability distribution,
typically a Gaussian, in the latent space. The decoder then samples from this latent space.
This sampled latent vector, combined with the encoded historical information, is used to
generate a specific future trajectory. By repeatedly sampling from this latent space, a CVAE
can produce a variety of distinct, conditioned future paths.

DESIRE [134] is a classic application of the CVAE framework. It uses CVAE to generate
multiple initial trajectory hypotheses and introduces a sophisticated scoring module to
select the final prediction. The highly influential Trajectron++ [117] seamlessly combines
CVAE with an advanced GNN encoder. It leverages the GNN to capture complex spatio-
temporal interactions and then conditions the CVAE on this rich contextual information to
model the uncertainty of future trajectories in the latent space.

4.6.3. Diffusion Models

Diffusion Models represent the latest and most powerful wave in generative
modeling [137], their success in fields like image generation having inspired their ap-
plication to trajectory prediction. The model’s principle involves two stages: a fixed
Forward Process and a learnable Reverse Process. In the forward process, Gaussian noise is
iteratively added to real trajectory data until it becomes pure noise. The reverse process
involves training a denoising network, typically a Transformer, to reverse these steps. For
inference, the model begins with pure noise and repeatedly applies the learned denoising
network to generate a new, high-quality future trajectory.

Due to their iterative generation process and powerful modeling capabilities, diffusion
models generally outperform GAN and CVAE in terms of the quality and diversity of
the generated trajectories. MotionDiffuser [135] utilizes a Transformer-based denoiser to
capture complex spatio-temporal dependencies and introduces various guidance mecha-
nisms to ensure the physical plausibility and goal-orientation of the generated trajectories.
Yuan et al. [136] directly embed kinematic or dynamic models into the iterative denoising
process of the diffusion model. This approach fundamentally eliminates physical artifacts
and ensures the dynamic feasibility of every generated trajectory.

4.6.4. Advantages and Limitations

The primary advantage of generative models is their inherent ability to model the
multi-modal uncertainty of trajectory prediction, producing a probabilistic view of the
future that is crucial for safe downstream planning. However, this expressive power
comes with specific challenges for each paradigm: GAN can generate sharp, realistic tra-
jectories, but their adversarial training is notoriously unstable, prone to mode collapse
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and divergence, and requires careful tuning. CVAE offer stable training and a robust
probabilistic framework, but their outputs can be overly smooth. Diffusion Models typi-
cally produce the highest quality and most diverse samples, but their iterative denoising
process results in very slow inference speeds. Furthermore, objectively assessing the qual-
ity of a predicted distribution, rather than a single trajectory’s error, remains an open
research problem.

5. Evaluation
5.1. Datasets

To assess the accuracy of an autonomous driving trajectory prediction model, the
predicted trajectory is typically compared to the real trajectory. The trajectory data comes
from multiple public datasets collected by sensors such as LiDAR, cameras, radar, etc. In
recent years, modern benchmark datasets have made significant progress in the field of
autonomous driving trajectory prediction, overcoming the limitations of earlier datasets in
environmental and traffic participant categories, such as NGSIM-180 and highD datasets
that capture vehicle motion on highways using drones and surveillance cameras, focusing
primarily on a single type of traffic participant whose possible actions include turning left,
turning right, and keeping straight.

As Al model complexity increases, more image data is needed to achieve efficient
generalization [138-140]. The vehicle-centric dataset and the pedestrian/hybrid centric
dataset not only contain camera and lidar data, but also provide high-precision (HD) maps
for capturing the topology of the road. Compared to earlier datasets, these datasets cover
more categories, record mileage data for own vehicles, cover multiple cities, different
weather and lighting conditions (including rain and night), and provide labels for other
traffic participants such as traffic lights and road rules.

Vehicle-centric datasets focus on vehicle trajectory prediction. These datasets usually
contain rich vehicle motion information and are suitable for studying vehicle interac-
tions and vehicle relationships with road environments [141,142]. Pedestrian/mix-centric
datasets focus not only on vehicle trajectories, but also on pedestrian trajectories and in-
teractions with other traffic participants [96]. These datasets are of great significance for
studying trajectory prediction in multimodal traffic environment. Table 7 provides detailed
information about the commonly used datasets in the existing research.

Table 7. Commonly used datasets.

Dataset Name Scene Type Annotated Information

nuScenes City roads, highways. Trajectory, velocity, acceleration, direction, etc.
Argoverse (1 & 2) City roads Trajectory, road topology, traffic lights, etc.

Waymo Open Dataset Multiple traffic scenarios Trajectory, category, velocity, acceleration, etc.

Lyft Level 5 Autopilot related scenarios Trajectory, motion state, environmental information
Apolloscape Trajectory Multiple traffic scenarios Trajectory, law of motion, etc.

ETH/UCY Campus, square, etc. Trajectory, environmental information

Stanford Drone Dataset Campus, street, etc Trajectory, environmental information

TrajNet++ Campus, square, street, etc. Trajectory, velocity, acceleration, etc.
INTERACTION Datase Autopilot scenarios (multimodal) Trajectories, maps, traffic lights, etc.

5.2. Evaluation Index

The evaluation index of trajectory prediction of automatic driving is the key to measur-
ing the performance of the model. These indexes evaluate the accuracy, reliability, efficiency
and practicability of the model from different angles. According to the characteristics of
trajectory prediction task, the evaluation indicators are divided into modal, multimodal,
probability /uncertainty, cross-correlation and computational efficiency indicators.



Machines 2025, 13, 818

23 of 34

1. Monomodal

ADE is the average Euclidean distance between the predicted trajectory and the true
trajectory at each time step and measures the average error of the model over the entire
prediction time range. This can be mathematically formulated as:

1T N
ADE = fztﬂ”yt — 7| (©)

FDE is the Euclidean distance between the final position of the predicted trajectory
and the final position of the true trajectory, focusing on the accuracy of the model at the
predicted endpoint. This can be mathematically formulated as:

FDE =||yr — 77| 4)

2. Multimoding

minADE is the ADE that selects the trajectory with the smallest error from the true
trajectory among the k predicted trajectories generated by the model, and measures the
average error of the best trajectory of the model in multimodal prediction. This can be

) )

minFDE is the FDE that selects the trajectory with the smallest error from the true

mathematically formulated as:
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trajectory from the k predicted trajectories generated by the model, focusing on the end-
point error of the best trajectory of the model in multimodal prediction. This can be
mathematically formulated as:

T :
T T e g T T ©

Miss Rate measures the proportion of k predicted trajectories generated by the model
that differ from the true trajectory by more than a certain threshold. This can be mathemati-
cally formulated as:

1
N

™=z

. (n) _ (im)
(_min, [ —of

> threshold> (7)

n=1

Overlap Rate measures the degree of overlap between multiple prediction trajectories
generated by the model and is used to assess the diversity of the model in multimodal
prediction. This can be mathematically formulated as:

1 ¢ o) )
k(kl)Z%;Iou(yz,yz) 8)
i=1j#i

3. Probability /uncertainty index

NLL measures how well the model-predicted trajectory distribution matches the true
trajectory, with a lower NLL indicating that the model-predicted distribution is closer to
the true distribution. This can be mathematically formulated as:

NLL = —logp(y|x) ©)
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The Brier Score measures the difference between the probability of the model predic-
tion and the true result, with a lower Brier Score indicating that the probability of the model
prediction is more accurate. This can be mathematically formulated as:

T
22 (plylo) — (i = 90))? (10)

t=1

ECE measures how well the model predicts probability, with lower ECE indicating
more reliable model predictions.

1 M
BCE= LY

NimzieBm(P(ﬂx) —(yt=11)) (11)

AURC measures the risk coverage ability of a model at different confidence thresh-
olds, with a higher AURC indicating that the model covers the true trajectory better at
high confidence.

1
AURC = / Risk(p)dp (12)
0

6. Challenges and Outlook
6.1. Challenges

1.  Complex Interactions Among Traffic Participants

Self-driving vehicles and other vehicles on the road will have behaviors such as
following, overtaking, lane change and merging, forming vehicle-vehicle interaction. In the
multi-vehicle interaction scene, the dynamic information such as relative position, velocity
and acceleration between vehicles changes constantly, and the interaction relationship
between vehicles is complex. For example, in the intersection, highway ramp junction and
other scenes, vehicles need to consider multiple directions at the same time, predicting
the intention and trajectory of other vehicles is difficult. The dynamic nature of traffic
environment makes the interaction between vehicles full of uncertainty. For example,
sudden lane changes, acceleration or deceleration are difficult to predict accurately in
advance. Pedestrians may cross the road without a clear signal, or change direction at
an intersection. These behaviors form vehicle-pedestrian interactions and increase the
difficulty of trajectory prediction.

2. Strong Reliance on Traffic Rules and High-Precision Maps

Traffic rules set clear boundaries and priorities for the trajectory planning of au-
tonomous vehicles, but traffic rules are not static, and the rule differences in different
regions and scenarios increase the complexity of trajectory prediction. Autonomous driv-
ing systems need to understand the semantics of traffic rules, which requires a combination
of computer vision technology and natural language processing technology to ensure that
rule information is accurately integrated into the trajectory prediction model.

High-precision maps provide detailed lane information, traffic location, road slope,
curvature and other data, which are crucial for accurate trajectory prediction. At the same
time, high-precision maps need to be updated in real time to reflect dynamic changes
such as road construction and accidents, so the fusion of high-precision maps and vehicle
perception systems is the key to trajectory prediction.

3. Cumulative Error and Behavioral Uncertainty in Long-Term Prediction

Automatic driving needs to predict the trajectories of surrounding vehicles and pedes-
trians in the future. Many prediction models are based on simplified traffic flow assump-
tions. In long-term prediction, deviations from these assumptions and actual situations
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will gradually accumulate. The intentions and interaction behaviors of traffic participants
have multimodal characteristics. Traditional deterministic prediction is difficult to cover
all possible scenarios and accurately capture future states, resulting in error accumula-
tion. At the same time, the uncertainty of driving behavior will be further amplified in
long-term prediction, resulting in deviation of prediction results. In complex traffic scenes,
the interaction behavior of vehicles is more complex, which increases the uncertainty
of behavior.

4. Generalization Ability for Corner Cases

Although many autonomous driving trajectory prediction models have made some
progress in common scenarios, their generalization ability still faces many challenges in rare
scenarios. Rare scenarios are those that occur less frequently in real driving but may have a
significant impact on driving safety, such as road ponding in extreme weather conditions,
abnormal stops caused by sudden vehicle failures, and the appearance of non-standard
traffic signs or gestures.

Existing models tend to learn common patterns in training data and lack sufficient
capture power for rare scenarios. In order to improve the generalization ability of the model
in rare scenarios, the researchers collected a large amount of rich and diverse driving data
to enable the model to learn various possible scene features and patterns, thus improving
the adaptability to rare scenarios. However, collecting data covering all possible rare
scenarios is unrealistic because actual driving scenarios have extremely high complexity
and uncertainty. There is also the use of techniques such as GAN to generate rare scene
data, which helps the model learn the characteristics and distribution of rare scenes and
improve its prediction ability in these scenarios, but the quality and authenticity of the
generated data is still a problem to be solved.

5. Real-Time Requirements and Computational Efficiency

Real-time performance and computational efficiency are the key factors to ensure
vehicle safety and efficiency in automatic driving trajectory prediction. Real-time means
that the trajectory prediction model can complete the prediction of the future trajectory of
the surrounding traffic participants in a very short time, and computational efficiency refers
to the ability of the model to complete the calculation task quickly and efficiently under
the limited hardware resources. However, there is a contradiction between the real-time
requirement of trajectory prediction and the limitation of computational resources. On the
one hand, trajectory prediction must be completed in a very short time to ensure vehicle
safety and driving efficiency; on the other hand, there is a significant conflict between the
computational complexity of high-precision models and limited hardware resources.

6.2. Future Research Directions

The future research directions are proposed to directly address the core challenges
outlined in Section 6.1. The mapping between these challenges and directions is summa-
rized in Table 8, which provides a structured overview of the proposed solutions. Each
direction is then elaborated in detail below, with discussions on specific technical pathways
and current limitations.

Table 8. Mapping between Challenges and Future Research Directions.

Challenges

Future Research Directions Specific Techniques

Complex Interactions

Interactive Game Theory & Embodied Intelligence =~ Hierarchical frameworks, MARL, IRL

Reliance on HD Maps

Reduction & Dynamic Fusion of Maps BEV, V2X, crowdsourcing, VLM
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Table 8. Cont.

Challenges

Future Research Directions Specific Techniques

Long-term Error & Uncertainty

World models, neural-symbolic systems,

Closed-loop Error Correction . .
online re-planning

Generalization for Corner Cases  Causal Reasoning & Simulation Migration

Causal intervention, counterfactual
analysis, diffusion-based synthesis

Real-time Requirements

Model distillation, quantization,

Lightweight Architecture & Co-design dynamic inference

1.  Interactive Game Theory and Embodied Intelligence

Current interaction modeling mostly relies on data-driven implicit learning (such as
GNN), lacking explicit descriptions of game decisions. In the future, it is necessary to
combine multi-agent reinforcement learning (MARL) with cognitive theory to construct
interpretable interaction models. For example, a hierarchical game-theoretic framework
can be designed: the upper level utilizes inverse reinforcement learning (IRL) or Bayesian
inference to reason about the intentions and rewards of other vehicles; the lower level then
employs multi-agent reinforcement learning (MARL) or model predictive control (MPC) to
optimize collaborative and competitive strategies in real-time [143]. This creates a closed
loop of “perception-intention reasoning-decision-prediction”.

Additionally, embodied intelligence (Embodied Al) can be introduced, where the pre-
dictive model is not just a passive observer but is integrated with a vehicle dynamics model
and perception simulator. This allows the model to understand the physical constraints
and consequences of actions through interaction and simulation, leading to more physically
plausible and causal predictions.

The primary application of this direction is in the development of more transparent
and trustworthy autonomous vehicles (AVs), particularly in unstructured and complex
scenarios. This can significantly reduce ambiguous situations and improve traffic flow
efficiency and safety in urban environments.

2. Reduction and Dynamic Fusion of High-Precision Maps

To reduce reliance on static high-precision maps, real-time map construction technol-
ogy needs to be developed. By integrating vehicle sensors and Vehicle-to-Everything (V2X)
communication, the road topology can be dynamically updated. Vehicles and roadside
units (RSUs) can share their locally perceived BEV map snippets or detected objects with
each other [144]. By fusing these distributed perceptions, a vehicle can obtain a collec-
tive field view that extends far beyond its own sensor range. Crowdsourced mapping
can aggregate and update map changes detected by fleets of vehicles into a cloud-based
dynamic map service, enabling continuous, automated map updates. Furthermore, a no
map prediction paradigm should be further developed. Using the visual-language model
(VLM), the semantic of traffic rules can be parsed, and rule embedding vectors can be
generated to replace the traditional map input.

The practical value of significantly reducing reliance on expensive and hard-to-
maintain high-definition maps is huge. AVs could operate seamlessly in suburban, rural,
or newly constructed areas where HD maps are unavailable. The real-time map building
and V2X fusion allow AVs to adapt immediately without waiting for map updates, thus
enhancing the robustness and geographical scalability of autonomous driving services.

3. Closed-Loop Error Correction for Long-Term Prediction

To address the issue of error accumulation, a neural-symbolic hybrid system can be
constructed in conjunction with the World Models to simulate the dynamic evolution of
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traffic scenarios. For example, The NEST model [145] combines Small-world Networks
with Hypergraphs and introduces neuromodulators, aiming to efficiently and accurately
capture the intricate relationships among traffic participants, and is particularly suitable
for high-density urban environments. Moreover, a closed-loop prediction framework can
be established, where the prediction results are fed back to the planning module, and the
trajectory deviations are corrected through online re-planning.

This capability is crucial for high-speed planning and safety assurance on highways
and in complex urban corridors. By continuously correcting predictions against a simulated
reality, the vehicle can anticipate and avoid potential “edge cases” before they become
critical. For example, when a predicted trajectory of a nearby vehicle increasingly conflicts
with the ego vehicle’s plan over a 5 s horizon, the system can proactively initiate a smooth
and early lane change or deceleration, moving from reactive collision avoidance to proactive
risk mitigation, thereby greatly enhancing passenger comfort and safety.

4. Causal Reasoning and Simulation Migration

To enhance the generalization ability in long-tail scenarios, causal intervention models
can be employed. Beyond correlation, we need to model the causal effect of scene changes
on agent behavior. Techniques such as counterfactual analysis and causal generative models
can be used to generate ‘what-if” trajectory samples This helps the model learn the true
causal mechanisms behind behaviors rather than just statistical associations.

Furthermore, advanced generative models (such as Diffusion Models) can be utilized
to synthesize high-fidelity, diverse rare scene data. The key is to achieve unsupervised
domain adaptation or sim-to-real transfer. This can be performed by training the generative
model on a mixture of real and simulated data, using techniques like domain adversarial
training to minimize the distribution gap between synthetic and real-world data. This
creates a virtuous cycle where the model improves by learning from its own generated
challenging scenarios.

The most direct application is in drastically improving the performance and safety of
AVs in rare but critical “corner cases”. By training on causally generated synthetic data, the
AV system can obtain more robust and generalized performance. This reduces the need for
driving billions of miles to collect rare events naturally, accelerating the validation process
and bringing safer autonomous vehicles to market faster.

5. Lightweight Architecture and Hardware Co-Design

The contradiction between real-time requirements and computational complexity
necessitates a system-level approach. Algorithmic innovations are crucial and mainly
includes the following three aspects.

Model Compression & Quantization: Techniques like knowledge distillation can
be used to train small, efficient ‘student’ models from large, accurate ‘teacher” models.
Post-training quantization can reduce the precision of network weights and activations,
reduce memory footprint and accelerate inference on supported hardware. Dynamic
Inference: A hierarchical prediction system can be implemented where simple scenarios
trigger efficient physical models or tiny neural networks, while complex scenarios switch
to more computationally intensive deep learning models. Hardware Co-design: Designing
dedicated Al accelerators is key. This involves software-hardware co-optimization, where
the neural network architecture is designed in tandem with the hardware architecture. For
example, optimizing the memory access patterns and computational parallelism of the
self-attention mechanism to fit the specific computed fabric of an FPGA can yield significant
latency and power efficiency gains.

This direction is fundamental to making advanced Al models feasible for mass produc-
tion vehicles, where cost, power consumption, and computational resources are severely
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constrained. Deploying a lightweight prediction model on an efficient FPGA enables real-
time decision-making on low-power, automotive-grade hardware. This translates directly
to more affordable and energy-efficient autonomous driving systems for consumer vehicles.

7. Conclusions

This comprehensive review has systematically analyzed the evolution of trajectory
prediction methods for autonomous driving, spanning from conventional physics-based
models to cutting-edge deep learning architectures. We established a novel multidimen-
sional classification framework integrating sensing paradigms, interaction modeling, and
output characteristics, while critically evaluating performance across benchmark datasets
using standardized metrics. The in-depth examination of five core challenges—including
interaction complexity under dense scenarios, HD map dependency, and long-term uncer-
tainty propagation—reveals fundamental limitations in current methods. By proposing
cross-disciplinary solutions such as embodied cognition-enhanced prediction and V2X-
coordinated frameworks, this survey not only consolidates the state-of-the-art but also
provides a structured roadmap for developing robust, safety-compliant prediction systems
essential for L4/L5 autonomy:.
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