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Abstract

AI-integrated robotics in Industry 5.0 demands advanced manufacturing systems capable
of autonomously interpreting complex geometries and dynamically adjusting machining
strategies in real time—particularly when dealing with aerospace components featur-
ing large-curvature surfaces. Large-curvature aerospace components present significant
challenges for precision drilling due to surface-normal deviations caused by curvature,
roughness, and thin-wall deformation. This study presents a robotic drilling system that
integrates adaptive PCA-based surface normal estimation with in-process pre-drilling
correction and post-drilling verification. This system integrates a 660 nm wavelength linear
laser projector and a 1.3-megapixel industrial camera arranged at a fixed 30◦ angle, which
project and capture structured-light fringes. Based on triangulation, high-resolution point
clouds are reconstructed for precise surface analysis. By adaptively selecting localized
point-cloud regions during machining, the proposed algorithm converts raw measurements
into precise normal vectors, thereby achieving an accurate solution of the normal direction
of the surface of large curvature parts. Experimental validation on a 400 mm-diameter
cylinder shows that using point clouds within a 100 mm radius yields deviations within an
acceptable range of theoretical normals, demonstrating both high precision and reliability.
Moreover, experiments on cylindrical aerospace-grade specimens demonstrate normal
direction accuracy ≤ 0.2◦ and hole position error ≤ 0.25 mm, maintained across varying
curvature radii and roughness levels. The research will make up for the shortcomings of
existing manual drilling methods, improve the accuracy of hole-making positions, and meet
the high fatigue service needs of aerospace and other industries. This system is significant
in promoting the development of industrial automation and improving the productivity of
enterprises by improving drilling precision and repeatability, enabling reliable assembly of
high-curvature aerospace structures within stringent tolerance requirements.

Keywords: AI-driven robot; automatic drilling system; aerospace machining; denoising
algorithm; point cloud data

1. Introduction
With the advent of Industry 5.0, the integration of artificial intelligence (AI) into

robotic systems has become essential for developing smart, human-centric, and adaptive
manufacturing solutions [1]. In aerospace manufacturing, this paradigm translates into
advanced robotic platforms capable of autonomously interpreting surface geometries,
adjusting tool orientations, and verifying hole quality to ensure high assembly precision.
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Robotic drilling, in particular, plays a critical role in the assembly of fuselage sections,
wings, and other components that require thousands of high-quality fastener holes.

In modern manufacturing systems, machine tools equipped with advanced in-process
sensing and data-driven control algorithms are critical for delivering the precision, reli-
ability, and automation required to produce complex, large-curvature components [2,3].
Aerospace manufacturing sits at the forefront of precision engineering, combining ad-
vanced materials science, high-tech production methods, and stringent quality control to
deliver machines for satellites, launch vehicles, and inertial navigation systems [4]. Every
hole, slot, and surface finish must meet micrometer-level tolerances to ensure structural
integrity, aerodynamic performance, and fatigue life under extreme service conditions [5].

The application of aerospace technology in military, economic, communication, and
other fields has significantly enhanced the comprehensive national strength of the coun-
try [6]. For example, technologies such as satellite reconnaissance and missile warning
provide strong guarantees for maintaining national security, while technologies such as
meteorological forecasting, resource exploration, and communication network construction
inject new vitality into economic development [7]. The development of the aerospace
industry is also related to the country’s economy and national defense security. Influenced
by the rapid changes of modern science and technology, aviation products have evolved
from singular to diverse, placing higher demands on production and assembly [8].

Traditional aviation assembly is mainly completed manually or with the help of
tools [9]. The general steps include marking, hole-making, expanding, reaming, trimming,
deburring, etc. Traditional aviation assembly faces multiple challenges: slow operation
speed, low efficiency, and high cost, making it particularly difficult to achieve batch opera-
tions when handling large components [10]. In addition, there are various safety hazards
hidden in the working environment of aviation assembly sites, which pose a threat to the
safety of operators [11]. Therefore, it is crucial to adopt advanced assembly processes to
transform from traditional manual assembly to automation and intelligence [12]. Among
them, the perpendicularity of the connecting hole has a significant effect on the maximum
tensile force of the connecting piece, which is an important indicator that needs to be
strictly controlled in the aerospace manufacturing process. If the axis of the hole is not
perpendicular to the surface of the workpiece, it will cause deformation of the connector,
thereby reducing its fatigue life and even endangering flight safety and service life [13].

Driven by new-generation information technology and various emerging technologies,
the aerospace manufacturing industry is gradually transitioning towards intelligence and
digitization, entering a new development stage in Industry 5.0. In response to the complex
resin distribution network in aviation composite materials, Szarski and Chauhan built
a 3D finite element resin flow model for dry carbon preforms based on reinforcement
learning. The model provided a good flow medium layout. The results showed that
this method reduced filling time by 32% while maintaining the same filling quality [14].
To improve accuracy and reliability in aerospace manufacturing processes, Ruiz et al.
built a Convolutional Neural Network (CNN) for detecting and measuring drill bits and
other fixed components in uncontrolled industrial manufacturing environments. Through
practical verification, the accuracy of this method was 99.7%, and the reduction rate of
worker intervention decreased from 13.3% to 0.6% [15].

Herzog et al. built a defect detection strategy on the ground of machine learning for
defects caused by the highly dynamic nature of laser technology in aerospace metal parts
manufacturing. Sensing technologies and their applications in the monitoring task of laser
metal additive manufacturing were compared [16]. In order to effectively suppress chatter
during the milling process of thin-walled parts in aerospace manufacturing, Zhou et al.
proposed a digital twin model, which used real-time stable blade plots with time-varying
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modal parameters as optimization criteria. The vibration, force, and sound signals from
multiple sensors were fused and analyzed to identify flutter. Experimental results showed
that this method effectively identified chatter during milling processes [17]. Zhu et al. built
a machine learning strategy for process state monitoring in order to reduce various defects
in aerospace metal-based additive manufacturing processes. By learning historical data, a
correlation model between the production process and product quality was established to
optimize parameter settings and improve product quality and production efficiency [18].

Machine vision positioning is widely used in the fields of automation and robotics,
which can achieve automated assembly, precision control, and real-time detection, thereby
improving the quality and efficiency of aircraft assembly and reducing human errors. In
order to improve the positioning accuracy in aerospace parts manufacturing, Lin et al. built
a visual interactive network topology model on the basis of real-time space flight features.
The reconstructed point cloud data was reconstructed into Poisson surfaces. New model
scene pages were quickly generated on the basis of the task characteristics, achieving 3D
reconstruction of non-cooperative targets [19].

Fan et al. proposed a pose measurement approach for large aerospace components
on the basis of binocular vision and prior data to achieve pose perception. The method
used deep learning and prior processing data to match the 3D reconstruction coordinates of
key feature centroids, which could calculate the spatial pose of aerospace components [20].
Simonov et al. proposed a cone beam X-ray computed tomography three-dimensional
image reconstruction algorithm to control the additive manufacturing defect rate of high-
reliability and expensive metal products in aerospace. By analyzing these scanned images,
the internal structure of the manufacturing layer of the product at any point within its
volume was determined [21].

Takahashi et al. used computer tomography background schlieren technique to recon-
struct the three-dimensional flow field around a hypersonic aircraft model. The rotating
model was used to obtain a projection image dataset, and reconstruction methods such as
telecentric optical structure and filtered backprojection were employed. Combined with de-
noising calculations, a complex three-dimensional flow field was successfully reconstructed,
visualizing dynamic physical features such as oblique shock waves [22]. Zhao et al. pro-
posed a monocular depth estimation network that combined CNN and visual transformers
to calculate the relative position between non-cooperative spacecraft and spacecraft. This
network accurately estimated the global depth while preserving details [23].

Despite the progress in robotic drilling and vision-based positioning, a major techno-
logical gap remains in ensuring high-precision normal estimation on large single-curvature
or double-curvature aerospace components. While industrial robots offer flexibility, their
positioning accuracy (typically 0.1–0.3 mm) is inferior to that of dedicated Computer
Numerical Control (CNC) machines, which complicates precision hole-making under
demanding aerospace tolerances [24]. Similarly, the accuracy of industrial cameras and
optical scanners is influenced by factors such as resolution, lens distortion, and calibration
errors [25], which are seldom considered in integrated drilling systems. Most existing
studies [14,19,20] emphasize 3D vision or offline calibration but fail to address the real-
time normal deviation caused by surface roughness, curvature, and thin-wall deformation
during drilling. Accurate normal estimation is the central challenge, as any angular mis-
alignment between the drill axis and the surface normal generates additional bending stress
on the fasteners, leading to reduced possible structural failure [5].

This study differs from existing approaches by integrating line structured-light sensing,
adaptive Principal Component Analysis (PCA)-based normal fitting, and pre-/post-drilling
quality verification into a single robotic drilling system. While vision-guided robotic
drilling systems have been widely explored, most prior works focus on standard pose
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estimation, offline calibration, or fixed-radius PCA methods. These approaches do not
address real-time adaptation to curvature-induced deviations or verify drilling accuracy
in-process. The novelty of this work lies in combining adaptive PCA-based surface normal
estimation with integrated pre- and post-drilling verification, enabling sub-millimeter
positional accuracy and angular deviations within 0.2◦, even on challenging large-curvature
aerospace components.

Moreover, unlike conventional methods that rely solely on offline measurements or
manual adjustments, our method performs both normal adjustment before drilling and
dimensional quality checks after drilling, ensuring hole perpendicularity and position
accuracy within sub-millimeter tolerance even on complex curved surfaces. The robotic
hole-making system proposed in this study reflects this Industry 5.0 paradigm by combin-
ing machine vision, structured light sensing, and AI-driven normal estimation to ensure
precision drilling on complex surfaces.

Research Gaps, Aims, and Contributions

Robotic hole-making on aerospace components faces unique challenges due to the
thin-walled, single-curvature structures commonly used in fuselage panels and arc-shaped
frames. While machine vision has been applied for pose estimation and 3D reconstruc-
tion [18–20], the integration of surface normal estimation with drilling accuracy verification
remains underexplored. Additionally, the literature does not sufficiently address how
machining constraints such as cutting forces, surface roughness, and thin-wall deformation
affect hole quality [14,16,17]. For example, thin-walled aerospace parts tend to deform
under drilling loads, which leads to misalignment of holes and reduced structural integrity.
Moreover, there is limited research on real-time compensation for drilling-induced deflec-
tion in combination with vision-guided normal calculation. Moreover, this study aims to
achieve the following:

(1) Develop a vision-integrated robotic drilling system that combines line structured-
light sensing with PCA-based normal vector estimation, tailored for single-curvature
aerospace components.

(2) Investigate the impact of surface roughness and curvature radius on normal estimation
accuracy, which is often neglected in prior works.

(3) Propose a pre-drilling and post-drilling quality verification algorithm that ensures
the correct orientation of the drilling tool and checks hole dimensional accuracy
after drilling.

Based on the above discussion, the key contributions of this work are:

(1) A point-cloud-based normal estimation method with adaptive extraction and PCA
plane fitting that achieves normal direction accuracy ≤ 0.2◦ on surfaces with curvature
radii up to 50 mm and roughness ≤ Ra4.8.

(2) A robotic drilling platform that achieves sub-millimeter hole position accuracy
(0.08–0.25 mm), which meets the positional and angular requirements for aerospace
assembly.

(3) A dual-function algorithm for pre-adjusting the drilling normal and post-process
inspection, ensuring that deviations in hole position and verticality remain within the
target tolerance range.

(4) The study also quantifies the relative influence of surface roughness and curvature
radius on normal fitting error, demonstrating that curvature is the dominant factor
impacting drilling precision.
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2. Robot Automated Hole-Making Technology Driven by Artificial
Intelligence in Aerospace Manufacturing

The study first comprehensively introduces the overall scheme of the automatic
drilling system. Then, to ensure the accuracy and stability of the robot’s automatic hole-
making system, a series of calibration work is carried out. Finally, a high-precision normal
vector solving algorithm for large single-curvature surfaces is designed to provide support
for robot hole-making operations.

Due to the relatively low stiffness of aviation thin-walled components, local elastic
deformation is prone to occur during the hole-making process under the action of drilling
force, resulting in the actual hole axis direction deviating from the initial normal measure-
ment value. To ensure the verticality of the hole-making, six groups of adjustable support
units are arranged in the non-hole-making areas of the components.

The support reaction force is monitored in real time through force sensors to avoid
pre-deformation caused by over-restraint. Meanwhile, two sets of positioning reference
pins are set around the hole-making area. Combined with the laser displacement sensor,
the initial deformation of the component after clamping is detected in real time, which
serves as the basic data for the initial normal correction. The calculation formula for the

deformation offset δ is δ = Fz
Kz

+

√
F2

x+F2
y

Kr
, where Kz and Kr represent the axial and radial

stiffness coefficients respectively, and Fz, Fx and Fy are the external force loads in the three
directions. The robot corrects the hole-making posture in real time based on the offset δ to
ensure that the drill bit axis is always perpendicular to the actual surface normal direction.

2.1. Design of Robot Automatic Hole-Making System and Camera Calibration

Components in the aerospace field are usually bulky, with a large number of holes
and extremely high precision requirements for hole-making. In addition, the surface
curvature of these components is variable and often presents uneven characteristics due to
the used composite materials [19]. Furthermore, in aviation manufacturing, thin-walled
composite material skins and aluminum alloy arc-shaped frames are typical high-difficulty
components for the application of such technologies [26]. Among them, the thin-walled
composite skin is mostly used in the transition sections between the fuselage and the wing.
It adopts carbon fiber reinforced resin-based composite materials, with a complex curvature
feature on the surface and a curvature radius of 80 mm to 300 mm.

During processing, delamination and deformation are prone to occur. Aluminum
alloy arc-shaped frames are used at the docking parts of cabin sections. Their surfaces are
single-curvature arcs with a radius of curvature ranging from 100 mm to 500 mm. The
accuracy and verticality of the hole positions are subject to strict requirements.

The relevant manufacturing shall comply with Ref. [27] “Specification for Manufactur-
ing of Composite Components for Aerospace”, Ref. [28] “Aerospace Quality Management
System”, and Ref. [29] “Dimensional Tolerances of Stamping Parts”. Among them, Ref. [27]
requires that the normal deviation of the connection holes of composite material compo-
nents be controlled within ±0.5◦, and Ref. [29] requires that the positional accuracy and
verticality of the holes in aluminum alloy structures match the cumulative error of the
machine body assembly ≤ 0.3 mm.

Therefore, the normal vector calculation technology developed through research is
mainly aimed at aviation components with a curvature range of 0.002 mm−1 to 0.02 mm−1,
corresponding to a curvature radius of 50 mm to 500 mm. To address these challenges, a
design scheme for a robot hole-making system is proposed, as presented in Figure 1. The
system mainly has two parts: the robot body and the vision subsystem. The robot body is
equipped with specialized hole-making end effectors to ensure the stability and accuracy
of hole-making operations.
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Figure 1. Robotic hole-making system.

The robot vision subsystem, as the core of the system, integrates components such
as line-structured light sensors, hole-making actuators, and industrial computers. The
end effector for hole-making integrates a line-structured light sensor and an industrial
camera, allowing it to obtain real-time information on the surface of the component during
the hole-making process, providing accurate guidance for hole-making operations. The
image acquisition card is installed inside the industrial computer, which is responsible for
processing and transmitting image data, ensuring the accuracy and real-time performance
of the information.

The study first establishes a unified robot system coordinate system as the basic
reference framework for the entire system. Subsequently, the workpiece coordinate system
and tool coordinate system are accurately calibrated. Therefore, robots can accurately
control the position and posture of end effectors, ensuring the accuracy of hole-making
position, direction, and depth. During the reference hole positioning stage, the robot
accurately moves to the reference hole position on the workpiece. Then, high-performance
industrial cameras are used to obtain clear images of the reference hole. To obtain the
three-dimensional shape and position information of the workpiece, a line-structured light
sensor is applied to scan the workpiece. These point cloud data are registered with the 3D
CAD model point cloud to obtain the accurate pose of the workpiece in real space.

The image information obtained by industrial cameras is usually two-dimensional
pixel coordinates, which cannot directly reflect the true position and posture of the work-
piece in three-dimensional space [30]. In order to achieve effective conversion between
spatial information and image information, the camera imaging mechanism is modeled
through camera calibration. The scanning accuracy of the linear structured light sensor
is ≥0.01 mm, and the resolution of the industrial camera is ≥2560 × 2048, with a frame rate
of ≥138 fps, to adapt to the large size and complex curved surface characteristics of aviation
components. The target measurement uncertainty of the calculation normal direction is
set to ≤0.5◦. It involves precise measurement and calculation of internal parameters of the
camera (focal length, optical center position, lens distortion, etc.) and external parameters
(the position and orientation of the camera in the world coordinate system), as well as the
conversion and correlation of the camera coordinate system (X1, Y1, Z1), image plane coor-
dinate system (u, v), world coordinate system (X2, Y2, Z2), and image coordinate system
(x, y), as presented in Figure 2 [31]. These coordinate systems exert a meaningful role in
the camera calibration process, helping to describe and calculate the relationship between
image information and three-dimensional spatial information.
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Figure 2. Camera imaging model.

If the origin o of the image coordinate system is (u0, v0) in the image plane coordinate
system (u, v), in the camera imaging plane, the size of a single pixel in the x axis is dx
and the size in the y axis is dy. In this paper, the fundamental equations for 2D image
processing and 2D to 3D reconstruction (Equations (1)–(3)), the principle of internal and
external parameter conversion for camera calibration, and the distortion correction model
(Equations (5)–(7)) all refer to the classic machine vision theory and the mature methods
in the literature [32–36]. In view of the characteristics of large curvature components in
aviation, this paper combines the above classic theories with the specific requirements of
aviation manufacturing scenarios to form a hole-making accuracy control scheme suitable
for large curvature surfaces.

In view of the characteristics of large curvature components in aviation, this paper
combines the above classic theories with the specific requirements of aviation manufac-
turing scenarios to form a hole-making accuracy control scheme suitable for large single-
curvature surfaces.

To accurately convert the coordinates of pixels between the image coordinate system
and the image plane coordinate system, the conversion relationship between these two is
represented by Equation (1) [32].u

v
1

 =


1

dx 0 u0

0 1
dy v0

0 0 1


x

y
1

 (1)

The world coordinate system (X2, Y2, Z2) is applied for precise positioning of cam-
eras and other objects in three-dimensional space. Assuming that a point Pw in three-
dimensional space has coordinates (Xc, Yc, Zc) and (Xw, Yw, Zw) in coordinate systems
(X1, Y1, Z1) and (X2, Y2, Z2), the conversion relationship between the world coordinate
system and the camera coordinate system is presented in Equation (2) [33].

Xc

Yc

Zc

1

 =

[
R T
0r 1

]
Xw

Yw

Zw

1

 = M


Xw

Yw

Zw

1

 (2)

In Equation (2), R signifies the rotation matrix. T signifies the translation vector, and
0T = (0, 0, 0)T . M is the extrinsic matrix. It integrates the information of the rotation matrix
R and the translation vector S. Therefore, points in three-dimensional space can be accu-
rately converted between the camera coordinate system and the world coordinate system.
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The process of mapping coordinate points in the 3D to a 2D image plane by a camera is
described using a pinhole imaging model, as shown in Figure 3. Depending on the principle
of similar triangles, the relationship between point Pw in three-dimensional space and its
image point on the camera imaging plane is obtained, as displayed in Equation (3) [34].

Zc

x
y
z

 =

d 0 0 0
0 d 0 0
0 0 1 0




Xc

Yc

Zc

1

 (3)

Image coordinate 
system (x, y)

Camera coordinate 
system (X1, Y1, Z1)

X1

Y1

Z1

x
y

d

O
P

Pʹ 

P

Pʹ 

A

B

O

Similar triangle
X

Z

Xʹ 

d

Figure 3. Imaging model of the small hole.

In Equation (3), d signifies the focal length. By applying Equations (1) and (2) to
Equation (3), the transformation relationship between the image coordinate system and the
world coordinate system represented is presented in Equation (4).

Zc

x
y
z

 = K
[

R T
]

X̃ = PX̃ (4)

In Equation (4), R = R(a, b, c) is an orthogonal rotation matrix. Among them, a, b,
and c signify the angles at which the camera coordinate system rotates around the x-axis,
y-axis, and z-axis. T =

(
tx, ty, tz

)
signifies a translation vector. The positional relationship

between the camera coordinate system and the Earth coordinate system is the extrinsic
matrix of the camera. K signifies the internal parameter matrix of the camera. The internal
parameters of the camera are fixed after leaving the factory and will not change during
use. The internal parameters are fx, fy, u0, and v0. fx = f

dx
and fy = f

dy
represent the

proportional coefficients of the u-axis and v-axis in the image coordinate system. During the
camera imaging process, distortion may occur due to factors such as the lens, so distortion
correction is required to obtain the true position of objects in the image. Distortion can
usually be modeled through distortion models, as shown in Equation (5) [35].{

xd = x + λx(x, y)
yd = y + λy(x, y)

(5)

In Equation (5), (xd, yd) signifies the coordinate of the real point on the camera imaging
plane. (x, y) signifies the coordinate of the image obtained in full pinhole imaging mode.
λx and λy signify nonlinear distortions in the x and y axes. During the camera imaging
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process, distortion may occur due to factors such as the lens, so distortion correction is
required to obtain the true position of objects in the image. Distortion usually refers to
radial distortion and tangential distortion. The former is caused by the non-ideal shape of
the lens. The latter is influenced by the non-parallelism between the lens and the image
plane, and its functional form is displayed in Equation (6).

λxr(x, y) = x(m1r2 + m2r4 + m3r6 + · · · )
λyr(x, y) = y(km1r2 + m2r4 + m3r6 + · · · )
λxt(x, y) = 2s1xy + p2

(
r2 + 2x2)

λyt(x, y) = s1
(
r2 + 2y2)+ 2s2xy

(6)

In Equation (6), r2 = x2 + y2 signifies the distance from the pixel point of the image
to the center point. m1, m2, and m3 signify radial distortion parameters. s1 and s2 signify
tangential distortion parameters. (x, y) is the normalized image coordinate for ideal distor-
tion free. The camera distortion correction model can be characterized by five distortion
parameters, which can be represented by Equation (7) [36].{

xd = x + λxr + λxt = x(1 + m1r2 + m2r4 + m3r6) + 2s1xy + s2(r2 + 2x2)

yd = y + λyr + λyt = y(1 + m1r2 + m2r4 + m3r6) + s1(r2 + 2y2) + 2s2xy
(7)

These parameters are obtained through the camera calibration process, which typically
uses a set of known spatial coordinates of points and corresponding image coordinate
points. After calibration, these distortion coefficients can be used to correct the position of
points in the image, making it more accurately mapped to the spatial coordinate system.

2.2. Point Cloud Data Processing and 3D Reconstruction

After the camera calibration is completed, the point cloud data is obtained for the
spatial workpiece. The study uses a line structured light sensor to collect three-dimensional
point cloud data, minimizing the interference caused by external lighting and other factors
on the three-dimensional point cloud collection. The line structured light sensor uses a laser
beam to irradiate the surface of an object. The height information of the object surface is
calculated by measuring the angle change of the laser beam reflected on the object surface,
thereby obtaining the three-dimensional shape of the object, as shown in Figure 4.

Laser

Camera coordinate 
system (X1, Y1, Z1)

World coordinate 
system (X2, Y2, Z2)

O1

O2

X2

Z2

Y2

X1

Y1

Z1

Figure 4. Mathematical model of linear structured light sensor.

The linear structured light sensor adopted in the research is a composite sensing system
that integrates laser projection and image acquisition. Its core components include a 660 nm
wavelength linear laser projector and a 1.3-megapixel industrial camera, which are installed
at a fixed 30◦ angle with the laser projector on the end effector. As shown in Figure 4, the
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laser projector projects linear laser fringes onto the surface of the aviation component. Due
to the change in surface height, the fringes deform. The industrial camera synchronously
collects the images of the deformed fringes. Based on the principle of triangulation, the
three-dimensional coordinates of the surface points are calculated. Finally, the complete
local point cloud data is formed by splicing the robot’s motion trajectory.

The core reason for choosing this sensing configuration lies in its active laser illu-
mination, which can reduce the interference of external ambient light on the point cloud
collection of rough and large curvature surfaces, and it is easier to obtain stable data
compared with passive vision [37]. Meanwhile, this configuration achieves high-precision
depth measurement through sub-pixel-level laser fringe detection, and the line scanning
speed is superior to point laser scanning, which can improve data acquisition efficiency
while ensuring accuracy.

In addition, its compact size can be integrated with the hole-making actuator at the
end of the robot, reducing the coordinate conversion error caused by the layout of multiple
sensors and simplifying the system calibration process. However, the effective scanning
width of a single laser stripe is limited. For large curvature components with a diameter
exceeding 100 mm, multiple scans and splicing are required, which may introduce splicing
errors. When facing highly reflective surfaces such as aluminum alloys, it is easy for the
stripes to be overexposed due to laser reflection, and a polarizer needs to be added. At this
time, the measurement accuracy will be affected [38]. Meanwhile, during the measurement
process, abnormal points that are far from the main point cloud may also occur, which
seriously affects the accuracy of the point cloud [21].

However, due to limitations in the accuracy of measuring equipment, operator ex-
perience, environmental factors such as wind and vibration, and changes in the surface
properties of the object being measured, point cloud data often contains noise points [39].
The complex working environment, measurement errors, equipment accuracy, and other
factors involved in the assembly and hole-making of aviation structural components can
also lead to abnormal points far from the main point cloud, thereby seriously affecting the
point cloud accuracy.

A data processing approach on the basis of statistical filters is designed to handle the
outlier removal in point cloud data. This method assumes that the distance among points
in a point cloud follows a Gaussian distribution. First, the nearest neighbor point K is
found on the point cloud surface, and then the nearest neighbor sequence K is statistically
analyzed. The quantity of points in the point cloud is n. K-nearest neighbor search is
performed on point Pi(Xi, Yi, Zi)(i ⩽ n) and the average distance di between Pi and its
neighboring points is calculated. The average value µ and standard deviation σ of the
distance set {d1, d2, d3 · · · dn} are calculated as shown in Equation (8).

µ =
1
n

n
∑

i=1
di

σ =

√
1

n − 1

n
∑

i=1
(di − µ)2

(8)

According to the Gaussian distribution, Equation (9) is used to calculate the distance
threshold. {

dmin = µ − std · σ

dmax = µ + std · σ
(9)

In Equation (9), std is a multiple of the standard deviation. The threshold is determined
by the std. In practical applications, it should be appropriately selected based on the
distribution of discrete points in the point cloud. By determining the relationship between
the mean and threshold of each point in its K neighbors, if the mean deviates from this
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interval, it will be removed. Point cloud reconstruction on the basis of point cloud data can
restore the surface morphology of the measured object, facilitating subsequent detection
and visualization. The study first fits a certain part of the fitting domain. The fitting
function f (x) is obtained, as displayed in Equation (10).

f (x) =
m

∑
i=1

ai(x)pi(x) = pT(x)α(x) (10)

In Equation (10), α(x) = [α1(x), α2(x), · · · αm(x)]T signifies the coefficient to be calcu-
lated and is a function of the coordinate x. m signifies the quantity of items in the basis
function. P(x) = [p1(x), p2(x), · · · pm(x)]T is a K-class complete polynomial, also known
as a basis function. The weight function is the core of the sliding least squares algorithm,
which means that within the influence range of x (also known as the support domain of
the weight function), its weight functions are all greater than 0. If it exceeds its scope of
influence, it is 0. Usually, a circular area is selected as the support area, and its radius is
represented by q. According to the compactness of the weight function, it can be known
that only the points on this circular region have an impact on the x. The weighting func-
tion has a non-negative monotonic decay and a high degree of smoothness, as shown in
Equation (11).

g(p) =


2
3 − 4p2 + 4p3 p ⩽ 1

2
4
3 − 4p + 4p2 − 4

3 p3 1
2 ⩽ p ⩽ 1

0 p > 1
(11)

In Equation (11), p = Qi
δq . Qi = x − xi2 signifies the of the support region for the

weight function of the i-th node. δ is the influencing factor, usually between 1.25 and
2.5. Although there have been studies using linear laser line scanning methods to obtain
three-dimensional point clouds of large and complex curved parts, further research is
necessary on how to obtain high-precision surface normals. Figure 5 shows the proposed
normal calculation model for large curvature surfaces. Firstly, a hole shape on the surface
of a large curvature part is selected as the center of the circle. Based on this center, a circular
area with a diameter of d is established and point cloud data within this area is collected.
The collected point cloud data is subjected to plane fitting using PCA, and the normals on
the surface are replaced with the normals processed into hole points [40]. The selected point
cloud is evenly distributed in the selected circular domain. When selecting the appropriate
diameter d value, its region is very close to the plane. Using the plane fitting method to
calculate the normal vector can achieve good accuracy.

Line laser scans 
area point clouds

Fitting a point cloud 
in a legal direction

Fitting direction

Work piece

Position of making holes 
on the work piece surface

Figure 5. Normal calculation method for large curvature surface.

Normal calculation is carried out before drilling. Firstly, during the clamping stage,
three reference holes are identified. The coordinates are collected by an industrial camera to
complete the registration of the point cloud with the CAD model and eliminate clamping
offset. Select a local point cloud around the theoretical hole-making point, calculate the
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actual normal using the PCA algorithm, and at the same time ensure that the positioning
error matches the normal error through local point cloud constraints. Pre-drill and verify
the key parts. When the deviation exceeds the limit, recalibrate to ensure that the theoretical
normal is accurately applied to the actual hole-making points.

The algorithm for normal estimation has the following components:

Inputs: Raw point cloud data from the structured-light sensor, surface curvature radius,
and predefined point-cloud selection diameter.
Outputs: The estimated surface normal vector at the selected point, the calculated angular
deviation from the theoretical normal, and the filtered point cloud after denoising.
Decision Criteria: The point cloud neighborhood is adaptively expanded until the true
proportion PPP of valid points exceeds the confidence threshold (60%), ensuring that PCA
fitting error remains ≤0.2◦.

The surface fitting calculation method adopts PCA, which utilizes multidimensional
orthogonal linear transformation to make it linearly correlated in various dimensions. It
can effectively extract important features of data, which is usually used for dimensionality
reduction in high-dimensional data. Using m pieces of raw point cloud data as samples,
where pi(xi, yi, zi)

T signifies one of the data, a set of 3 × m matrices X is obtained by fitting
it. The covariance matrix is obtained using Equation (12):

C =
1
m

XXT =



1
m

m
∑

i=1
x2

i
1
m

m
∑

i=1
xiyi

1
m

m
∑

i=1
xizi

1
m

m
∑

i=1
xiyi

1
m

m
∑

i=1
y2

i
1
m

m
∑

i=1
yizi

1
m

m
∑

i=1
xizi

1
m

m
∑

i=1
yizi

1
m

m
∑

i=1
z2

i

 (12)

The covariance matrix and its corresponding eigenvalues C = UΣVT are obtained.
Σ signifies a diagonal matrix. U signifies a three-level feature matrix, which has three sets
of eigenvectors of C. The two eigenvectors in U are used as the base vectors on the point
cloud plane according to their respective eigenvalues, and the eigenvector corresponding
to the smallest eigenvalue is the normal vector of the surface.

To ensure the accuracy of normal fitting, the appropriate point cloud data is selected
to perform normal fitting on the large curvature surface during the normal solution pro-
cess [41]. However, due to the many irregular protrusions on the surface of the tested
object, point cloud holes may appear after removing the protrusion characteristic point
cloud. From Figure 6, when selecting a small radius, the proportion of voids in this range
is too large, which will affect the accuracy of forward calculation. However, the larger the
radius, the smaller the impact of the hole on the model. Using other point cloud fitting
methods within this range can also ensure the accuracy of the model.

Figure 6. Cloud holes at points.
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To address the impact of cavities on the accuracy of normal fitting, a method based
on the proportion of point clouds in the selected circular domain is proposed. The true
proportion σ of the point cloud is defined in Equation (13).

σ =
n

ρ · u
× 100% (13)

In Equation (13), ρ is the density of the point cloud before eliminating the protrusion
characteristic. u is the area of the circular region. n is the current number of point clouds
in the selected range. When σ < 60%, the diameter of the annular region should be
appropriately increased. The reasons for setting the confidence threshold to 60% are
as follows:

• By verifying the surface point cloud data of aviation components with different
curvatures, it was found that when σ < 60%, the local point cloud caused the PCA
plane fitting error to exceed the target measurement uncertainty due to the excessively
high proportion of voids.

• When σ ≥ 60%, the uniformity of point cloud distribution can meet the requirements
of normal fitting accuracy.

Considering the large curvature and numerous irregular protrusions on the surface of
the object being measured, a detailed calculation process for this method is presented in
Figure 7.

Initiate

Scan point cloud in local area 
of input workpiece surface

Statistical filtering removes 
outliers

Pass through filtering reduces 
the area range

The point cloud selection 
range is determined according 

to the curvature of the hole 
position

Select the point cloud data in 
the circular area

Calculate the actual percentage 
σ of the point cloud in the 

circular region

60%σ <

Reselect the point 
cloud data in the 

circular area

Expand point cloud 
selection

The selected point cloud is 
fitted by PCA algorithm

Get the surface normal

Finish

Y

N

Figure 7. Normal solution flow chart.

Firstly, the scanning point cloud of the local area on the surface of the workpiece is
input, and the input point cloud data is denoised to eliminate measurement errors and
noise points caused by the external environment. Then, the curvature changes on the
surface of the workpiece are analyzed, especially the curvature of the hole-making position.
Based on the curvature size, a suitable circular area diameter is determined, which should
be large enough to contain necessary surface information but not too large to contain too
much irrelevant data. Based on the diameter and position of the circular area determined in
the previous step, the point cloud data located within the circular area is selected from the
preprocessed point cloud data. If σ < 60%, the selected range diameter of the point cloud
is expanded. Finally, the PCA algorithm is used to perform plane fitting on the selected
point cloud to achieve the normal direction of the curved surface.

The robot automatic hole-making system constructed in the research simultaneously
processes positional errors and normal errors to ensure the integrity of hole-making accu-
racy. For normal errors, the system adopts an offline verification and correction mechanism.
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The specific process is as follows: Firstly, a comprehensive scan of the workpiece surface
is conducted through a line-structured light sensor to complete surface digitization and
obtain high-precision point cloud data.

Subsequently, based on the preprocessed point cloud data, the normal vector of the
position of the hole to be fabricated is calculated using the PCA algorithm and compared
with the theoretical normal. If the normal error exceeds the allowable range (set as 0.5◦

in this study), iterative compensation is carried out by adjusting the local point cloud
extraction range (dynamically optimizing the diameter of the circular area according to the
process in Figure 7) and the PCA parameters, and the normal vector is recalculated until
the error meets the requirements. Ultimately, the corrected normal parameters are input
into the robot control system to guide the hole-making operation.

3. Performance Verification of Robot Automatic Hole-Making
The study compares the denoising effect of point cloud preprocessing algorithms

before and after optimization. By measuring large curvature surfaces in practice, the
difference between the calculated normal and theoretical values is compared to assess
the accuracy of the calculation method. As for the development environment and tools,
Visual Studio 2019 and Qt5.14.2 are chosen as the development platforms for the normal
measurement software. By comparing experimental data with theoretical expectations, the
accuracy and stability of the measurement system are validated.

3.1. Preprocessing Effect of Point Cloud Data

Considering the strict requirements for clamping force during robot hole machining,
the R-2000iC/165F industrial robot from FANUC and the SP-5000C-CPX4 high-speed
camera from JAI are selected. Among them, FANUC robots have excellent load capacity and
high-precision positioning performance. High-speed cameras from JAI have high definition
and fast image capture capabilities, providing high-quality image data for measurement
systems. Table 1 presents relevant parameters.

Table 1. Parameter details.

Industrial Robot Parameters Industrial Camera Parameters

Maximum load (kg) 150 Chip type CMOS
Maximum arm span (mm) 2550 Chip size Overall situation

Degree of freedom 6 Pixel size 1 inch
Repeated positioning accuracy (mm) ±0.3 Resolution 5 µm

Hole processing range (mm) 2–12 Frame rate 2560 × 2048
Spindle speed (n/rpm) 2200 Lens interface 138 fps

Feed stroke (mm) 180 Focal length (mm) 55

Composite flat plates and aluminum alloy arc parts are widely used in industrial
manufacturing, which can validate their universality and applicability. The study aims
to quickly obtain 3D information of the surfaces of composite flat plates and aluminum
alloy circular arc parts through line laser scanning. To ensure the stability and accuracy of
the scanning, the line scanning speed is set to 1 mm/s, and the scanning-collected point
cloud data is preprocessed, as presented in Figure 8. The preprocessed point cloud data
was more streamlined, with effective removal of noise and redundancy. At the same time,
the accuracy and reliability of the data were greatly improved.
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Figure 8. Preprocessing effect of point cloud data for (a) Composite plate point and (b) Aluminum alloy.

Due to the fact that not all calibration values can meet the accuracy requirements, it is
necessary to verify the calibration results to ensure that the error is small and the accuracy
satisfies the requirements. According to the calibration data, the position and orientation
parameters, sensor measurement values, and corresponding standard surfaces of each
laser displacement sensor are calibrated. The calibration deviation values are shown in
Figure 9. From the figure, the calibration deviation of 16 points corresponding to 8 sets of
data remained within 0.04 mm, which met the accuracy requirements.

Figure 9. Schematic diagram of calibration deviation values for (a) Point number 1–8 and (b) Point
numbers 9–16.

The influence of part stiffness on hole-making accuracy is controlled in the proposed
system through a combination of adaptive support fixtures and real-time force monitoring.
For thin-walled parts that are prone to deformation, vacuum suction cups and rigid fixtures
are employed to reduce local deflection caused by drilling forces. The axial drilling force is
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continuously monitored via force sensors, and the feed rate is adaptively adjusted whenever
the force exceeds a defined threshold. These measures ensure that the deformation of thin-
walled parts remains within ≤0.05 mm during drilling.

3.2. Error Analysis

Super depth microscope is used to observe hole-making workpieces. Through the
high-resolution imaging system of the microscope, the actual hole position is accurately
measured. In order to quantify errors and provide a unified reference benchmark for error
analysis, a two-dimensional coordinate system is defined in the study. Among them, the Y
signifies the direction from the center of the hole to the right edge of the workpiece, and the
X signifies the direction from the center of the hole to the bottom edge of the workpiece.

The error data of the drilled workpiece is displayed in Table 2. For position errors,
the system establishes an accurate coordinate transformation relationship through camera
calibration and compares the actual hole position with the theoretical hole position by
combining point cloud registration technology, as shown in Table 2. Among them, x and
y, respectively, represent the deviation values of the actual coordinates and theoretical
coordinates of the hole-making position in the two-dimensional coordinate system. This
coordinate system takes the theoretical center of the hole-making position as the origin,
with the X-axis representing the direction from the center of the hole to the bottom edge of
the workpiece and the Y-axis representing the direction from the center of the hole to the
right edge of the workpiece.

Table 2. Machining error of hole-making.

Finished
Hole

Measured
Value (mm)

Theoretical
Position (mm) Error Root Mean

Square Error
(mm)

Mean (mm) Standard
Deviation (mm)

x y x y x y

1 45.08 15.12 45 15 0.08 0.12 0.144

0.015 for x
−0.012 for y

0.0163 for x
0.013 for y

2 44.75 15.03 45 15 −0.25 0.03 0.252

3 45.15 14.95 45 15 0.15 −0.05 0.158

4 44.88 14.80 45 15 −0.12 −0.20 0.233

5 45.09 15.13 45 15 0.09 0.13 0.158

6 45.14 14.90 45 15 0.14 −0.10 0.172

The maximum error in the X direction of the machined hole was 0.25 mm, the max-
imum error in the Y-axis was 0.20 mm, and the maximum root mean square error was
0.252 mm. Across six measurement points, the mean position error was 0.11 ± 0.14 mm
(X-axis) and 0.07 ± 0.11 mm (Y-axis), based on n = 6 trials. The small mean values relative
to the process tolerance (±0.3 mm) and low standard deviations indicate high repeatability
and minimal systematic bias in hole placement. The error data shows that the error of
all measurement points is less than 0.3 mm, which satisfies the process requirements and
verifies its reliability. It also provides strong support for subsequent process optimization
and quality control.

The equipment used for measurement is a super-depth-of-field microscope (Keyence
VHX-7000 (manufactured by Keyence Corporation, Osaka, Japan)), which can precisely
identify the edge coordinates of the hole through a high-resolution imaging system to
calculate the deviation. The errors in the table are all individual measurement errors, that is,
the differences between the actual center coordinates and the theoretical center coordinates
of each hole.
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The root mean square error is the root mean square value of the position errors of the
six measurement holes, and the measurement sequence is the single measurement result of
the six machined holes. As can be seen from the table, the maximum error of the X-axis is
−0.25 mm, the maximum error of the Y-axis is −0.20 mm, and the maximum root mean
square error is 0.252 mm, which conforms to the actual precision range of robot processing
of large aviation parts and is all less than the 0.3 mm error threshold allowed by the process.

Due to the significant curvature of the fuselage wall panels in aerospace components
in one direction, while they are relatively straight in another direction, they can be approx-
imated as a cylindrical surface with a fixed radius in practical analysis and processing.
This approximation helps simplify the calculation and analysis process, as the geometric
properties of cylindrical surfaces are relatively simple and easy to handle. In response
to the curvature characteristics of aerospace components, the study first selects several
representative typical values and then generates corresponding cylindrical point cloud
data. The law of error variation with the selection range of point cloud is further analyzed,
as displayed in Figure 10.
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Figure 10. Changes in point cloud range, angle measurement methods, and fitting errors for cylinder
diameters of (a) 50 mm (b) 100 mm (c) 200 mm and (d) 400 mm.

In Figure 10b, when the diameter of the cylinder was 100 mm and the selection range
of the point cloud was 20 mm, the measurement error of 4.5◦ was 0.019◦ larger than that
of 1.5◦. When the selection range of the point cloud was 40 mm, the measurement error
of 4.5◦ was 0.127◦ larger than that of 2◦. From Figure 10a,c,d, with fixed curvature and
measurement angle, the larger the selection range of the point cloud, the greater the normal
fitting error, and it shows a nonlinear growth trend. When the point cloud range is small,
the curvature has a relatively small impact on the normal fitting error due to the relatively
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simple distribution of point cloud data. Once the selection range of point clouds increases
to a certain extent, the influence of curvature becomes particularly significant, leading to a
significant increase in the deviation between the fitted normal and the actual normal.

The study investigates the relationship between normal fitting error and curvature
while maintaining a constant measurement angle and a fixed range of point cloud selection.
Taking the point cloud range diameter of 30 mm as an example, the corresponding normal
fitting error data is shown in Figure 11. From Figure 11, there was an inverse relationship
between curvature and normal fitting error. This is because when the curvature is small, the
area where the point cloud data is located is closer to the plane, which makes the process of
fitting the normal direction simpler and more accurate.
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Figure 11. Influence of curvature on normal fitting error for Measuring angles of (a) 1.5 ◦, (b) 3.0◦,
and (c) 4.5◦.

For a cylinder with a diameter of 400 mm, point cloud selection within 100 mm had
high normal fitting accuracy. However, when selecting the range of point cloud data, the
measurement line width limitation of the line laser sensor and the impact of point cloud
data processing time should be considered. If the selected range is too large, it may cause
the sensor to be unable to measure accurately or the processing time to be too long, affecting
work efficiency.

Aluminum alloy is selected as the experimental material for the study, and a cylindrical
test specimen with a diameter of 50 mm is prepared through precision machining. To
achieve accurate data on the surface of the test piece, a line laser sensor is used as the
data acquisition tool for validation through point cloud data from four different diameter
(d = 6 mm,10 mm,14 mm,18 mm) regions. The selection of point clouds is shown in
Figure 12. This multi-angle and multi-scale verification method can comprehensively
assess the performance and ensure accurate results under various conditions.
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Figure 12. Point cloud selection in the circular area for (a) different angles and (b) same angle.

The proposed algorithm is used to process and calculate the normal fitting error, as
presented in Table 3. Whether it was measured data or simulated data, the normal fitting
error showed a similar trend with the change in point cloud selection range diameter,
demonstrating a high degree of accuracy in capturing and predicting the normal fitting
error with the change in point cloud range. For each measuring angle, four point cloud
selection ranges were tested (n = 4 per angle). The mean ± standard deviation of normal
fitting errors were 0.151 ± 0.054◦ (1.5◦), 0.215 ± 0.096◦ (3.0◦), and 0.269 ± 0.118◦ (4.5◦).
This low variability across different selection ranges at the same angle indicates consistent
estimation performance and supports the method’s repeatability.

Table 3. Normal fitting errors.

Measuring
Angle (◦)

Point Cloud Selection
Range Diameter (mm)

Simulation
Result (◦)

Test Result
(◦)

Mean
(◦)

Standard Deviation
(◦)

No. of
Trials

1.5

6 0.030 0.079

0.151 0.054 4
10 0.054 0.143

14 0.093 0.186

18 0.161 0.197

3.0

6 0.041 0.111

0.215 0.096 4
10 0.089 0.184

14 0.171 0.225

18 0.282 0.341

4.5

6 0.066 0.147

0.269 0.118 4
10 0.130 0.222

14 0.252 0.283

18 0.387 0.425

The normal fitting error in actual measurement processes is due to various factors,
including the complexity of the measurement environment, differences in the test speci-
mens themselves, limitations of measurement equipment, issues with data processing and
algorithm implementation, and simplification of simulation models. However, by carefully
selecting and processing point cloud data, this error can be effectively controlled to ensure
its accuracy meets the strict requirements of the aerospace manufacturing industry for
hole verticality. This discovery not only validates the feasibility and effectiveness of the
proposed algorithm in practical applications but also provides a new and reliable method
for controlling normal fitting errors in the aerospace manufacturing industry.
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The proposed algorithm is applied in two stages: (1) pre-drilling adjustment, where
the normal direction of the drill is corrected by comparing the calculated surface normal
with the theoretical CAD normal, and the robot end effector is reoriented to minimize
angular deviation; and (2) post-drilling quality verification, where the point cloud around
the drilled hole is re-scanned to measure the hole diameter, verticality, and deviation. If
the dimensional tolerance exceeds process requirements, a secondary corrective drilling
operation is triggered.

A simulated baseline was generated using a fixed point cloud range diameter of
30 mm, representing a standard fixed-parameter alignment approach. The simulation
results for measuring angles of 1.5◦, 3.0◦, and 4.5◦ produced normal fitting errors of 0.52◦,
0.78◦, and 1.12◦, respectively, as shown in Table 4 and illustrated in Figure 11. By contrast,
the adaptive PCA method reduced these errors to 0.079◦, 0.111◦, and 0.147◦, corresponding
to improvements of 84.8%, 85.8%, and 86.9%. This simulation demonstrates that dynamic
neighborhood selection can significantly outperform fixed-parameter methods in scenarios
with varying curvature.

Table 4. Simulated baseline fixed-parameter method (30 mm range) vs. adaptive PCA.

Measuring Angle (◦) Baseline Fixed-Range Error (◦) Adaptive PCA Error (◦) Improvement (%)

1.5 0.52 0.079 84.8%
3.0 0.78 0.111 85.8%
4.5 1.12 0.147 86.9%

3.3. Influence of Surface Roughness and Curvature on Normal Estimation

To further validate the proposed normal calculation algorithm, the influence of surface
roughness and curvature radius on normal fitting accuracy was analyzed through com-
parative experiments. Four typical surface roughness levels and four curvature radii were
selected for the experiment. The normal fitting errors were tested within the range of point
cloud extraction (diameter 30 mm), and the results are shown in Table 5.

Table 5. Comparative analysis of the influence of surface roughness and radius of curvature on
normal estimation.

Radius of Curvature (mm)
Surface Roughness (◦)

Ra1.6 Ra3.2 Ra4.8 Ra6.3

50 0.18 0.22 0.27 0.32
100 0.12 0.15 0.19 0.23
200 0.08 0.1 0.13 0.16
400 0.05 0.07 0.09 0.11

The industrial camera adopted in this study can distinguish the peak and valley
characteristics corresponding to Ra6.3 roughness. Through the spectral analysis of the
point cloud data on the Ra6.3 surface, the point cloud collected by the camera retains over
90% of the roughness features at the scale of 0.01–0.1 mm. It can be seen from the table that
under the same radius of curvature, the normal error increases linearly with the increase in
roughness (when Ra1.6 to Ra6.3, the error increase is approximately 40–78%). Under the
same roughness, the normal error increases nonlinearly as the radius of curvature decreases
(curvature increases) (the error at a radius of 50 mm is approximately 3 to 4 times that at
400 mm).

It can be seen from this that the influence of the radius of curvature on the normal
error is significantly greater than that on the surface roughness, and it is a factor that
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needs to be controlled first. Moreover, a rough surface can cause high-frequency fluc-
tuations in local point clouds, introducing deviations into the PCA plane fitting. From
the above experiments, it can be known that when the roughness is ≤Ra4.8, the point
cloud after preprocessing can meet the requirement of a normal error of ≤0.2◦. When
the roughness is greater than Ra4.8, the error needs to be compensated by optimizing the
neighborhood parameters or increasing the point cloud extraction range to ensure that the
target measurement uncertainty (≤0.5◦) is met.

The results demonstrate that while the proposed normal estimation algorithm achieves
high accuracy (≤0.2◦), the overall hole quality is still influenced by drilling forces and the
rigidity of thin-walled components. High cutting forces can introduce minor deviations
due to elastic deflection, particularly when the local stiffness is insufficient. Our approach
mitigates these effects through the use of adaptive vacuum fixtures and real-time force mon-
itoring, but further integration of force modeling and tool wear prediction—as suggested
by [4,16]—could improve stability under extreme drilling conditions.

This study prioritizes the selection of aluminum alloy as the specimen for the following
reasons: (1) Aluminum alloy is the core material of aviation structures, accounting for 60%
to 80% of the fuselage weight, and its processing characteristics have a significant impact
on the hole-making accuracy; (2) Compared with carbon fiber composite materials, the
surface properties of aluminum alloys are more stable, and there is no uneven reflection
caused by the fiber direction. The basic validity of the normal fitting algorithm can be
proved a priori.

4. Conclusions
In response to the measurement challenges of high curvature and surface roughness

in aerospace components, a set of normal calculation methods suitable for high curvature
aerospace components was designed by combining point cloud data preprocessing and 3D
reconstruction results. The experimental results showed that after the preprocessing steps,
the point cloud data was significantly simplified and the data quality was greatly improved.
The preprocessed point cloud data was more streamlined, with effective removal of noise
and redundancy.

The maximum error in the X-axis of the machining hole was 0.191 mm, the maximum
error in the Y-axis was 0.174 mm, and the maximum root mean square error was 0.197 mm.
The error data showed that the error of all measurement points was less than 0.3 mm, which
met the process requirements. When the cylindrical surface was 100 mm and the selection
range of the point cloud was 10 mm, the measurement error of 4.5◦ was 0.020◦ larger than
that of 1.5◦. When the selection range of the point cloud was 30 mm, the error increased to
0.127 mm.

For cylindrical surfaces with a diameter not exceeding 400 mm, as long as the selected
point cloud range did not exceed 100 mm, the normal error was controlled within a very
small range. The above results indicate that by reasonably selecting the range of point
cloud data and improving the accuracy of normal fitting, the quality and reliability of
aerospace components can be improved, and rework and scrap caused by non-compliance
with verticality requirements can be reduced, thereby lowering production costs. This
study mainly focuses on aerospace components with significant large curvature in a single
direction. By clarifying the variation law of normal fitting error under different curvature
conditions, the accuracy of the robot hole-making system has been improved. However, for
complex components that exhibit significant curvature in multiple directions, the precise
calculation of surface normal is a challenging problem. In the future, higher-order surface
models such as quadratic and cubic surfaces can be considered to replace simple plane
fitting in order to better adapt to the surface shapes of complex components.
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Furthermore, the study verified the effectiveness of the composite 3D sensing system,
which integrates structured-light projection and a linear laser with an industrial camera.
By reconstructing high-resolution point clouds through triangulation, the proposed PCA-
based adaptive normal estimation algorithm achieved robust performance, maintaining
normal accuracy ≤ 0.2◦ even under varying surface roughness and curvature conditions.
The current system performance was validated under controlled laboratory conditions; in
field environments, factors such as high surface reflectivity, excessive roughness (Ra > 6.3),
and vibration may impact measurement accuracy. While a polarizing filter mitigates
laser overexposure on reflective alloys, it can slightly reduce precision. Additionally, the
structured-light sensor’s effective scanning width limits point cloud coverage for compo-
nents exceeding 100 mm curvature diameter, requiring multiple passes and increasing
processing time.

Although the algorithm effectively compensates for normal errors, the overall hole
quality remains influenced by drilling forces and thin-wall rigidity. The use of adaptive
fixtures and real-time force monitoring in this study successfully limited deformation
to ≤0.05 mm, but future work will integrate cutting force modeling and tool wear predic-
tion to further enhance stability and hole precision.
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Abbreviations

AI Artificial Intelligence
CAD Computer-Aided Design
CNC Computer Numerical Control
CNN Convolutional Neural Network
FPS Frames per Second
PCA Principal Component Analysis
RMS Root Mean Square
SL Structured Light
3D Three-Dimensional
2D Two-Dimensional
Ra Roughness Average
RGB Red–Green–Blue
SLAM Simultaneous Localization and Mapping
CCD Charge-Coupled Device
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