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Abstract

The emergence of mass personalized production has increased the adaptability and intel-
ligence requirements of welding robots. To address the challenges associated with mass
personalized production, this paper proposes a novel knowledge-driven framework for
intelligent welding process planning in cloud robotics systems. This framework integrates
cloud-edge-end collaborative computing with ontology-based knowledge representation to
enable efficient welding process optimization. A hierarchical knowledge-based architecture
was developed using the SQLite 3.38.0, Redis 5.0.4, and HBase 2.1.0 tools. The ontol-
ogy models formally define the welding tasks, resources, processes, and results, thereby
enabling semantic interoperability across heterogeneous systems. A hybrid knowledge
evolution method that combines cloud-based welding simulation and transfer learning
is presented as a means of achieving inexpensive, efficient, and intelligent evolution of
welding process knowledge. Experiments demonstrated that, with respect to pure cloud-
based solutions, edge-based knowledge bases can reduce the average response time by
86%. The WeldNet-152 model achieved a welding parameter prediction accuracy of 95.1%,
while the knowledge evolution method exhibited a simulation-to-reality transfer accuracy
of 78%. The proposed method serves as a foundation for significant enhancements in the
adaptability of welding robots to Industry 5.0 manufacturing environments.

Keywords: knowledge-driven manufacturing; welding robots; welding process planning;
cloud-edge-end collaboration; Industry 5.0

1. Introduction

In recent years, significant emphasis has been placed on mass personalized pro-
duction [1], which allows customers to personalize multiple configurable attributes of
fabricated parts, which can include dimensions, material, appearance, and performance.
This production pattern requires machine tools and robots that are capable of managing
complex and variable production tasks. The escalating complexity of robotic task execution
presents significant challenges due to inherent computational and memory limitations
that are characteristic of embedded hardware architectures. As the implementation of
Industry 4.0 progresses, these limitations should be overcome. Industry 4.0 [2] represents
an integration of physical industrial assets with digital technologies [3], and it encompasses
many types of applications, such as digital twins (DTs) [4], artificial intelligence (AI), the
Internet of Things (IoT) [5], robotics, additive manufacturing (AM), and cloud computing.
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The rapid technological advancements that have occurred in emerging domains have
the potential to enhance the efficiency and performance capabilities of existing robotic
systems. Cloud robotics, which has emerged as a new paradigm, exhibit a great potential to
revolutionize the field of robotics [6,7]. The convergence of diverse computing paradigms
offers substantial advantages for cloud-connected robotic systems, particularly because
it leads to enhanced memory capacities with scalable data storage solutions and remote
processing capabilities [8].

In recent years, the significant advantages associated with cloud robotics have driven
the implementation and deployment of cloud robotic systems [9]. DAvinCi, a software
framework that was implemented around the Apache Hadoop framework, was proposed
by Arumugam et al. to provide the scalability and parallelism advantages of cloud com-
puting for service robots [10]. Rapyuta, which was the first commercial cloud robotics
platform, was developed by Mohanarajah et al. to support robots that needed to offload
heavy computational tasks by providing cloud computing environments [11]. These com-
puting environments also facilitate seamless robotic access to the RoboEarth knowledge
repository, which is a worldwide platform that was developed by Riazuelo et al. to help
robots to share and reuse knowledge and data [12]. A robot operating system (ROS)-based
framework for robot—cloud communication was proposed by Mello et al. to ease the inte-
gration of robotics and remote cloud platforms [13]. A deep reinforcement learning-based
framework was proposed by Chinchali et al. [14] to solve the problems associated with
robots offloading to the cloud.

Beyond its applications in the service-robotics field, cloud robotics has expanded
into industrial manufacturing domains, where it has revolutionized production processes
and operational efficiency. A cloud-based cyber-physical system (CPS) architecture was
presented by Zhang to solve the problems associated with the massive data processing
that is required by industrial robots [15]. The Open Platform Communications Unified
Architecture (OPC UA) communication protocol has been used for robot data integration. A
DT-based control framework was proposed by Xu et al. to enable fine sensing control in in-
dustrial cloud robotics applications [16]. A cloud-based system and methods of integrating
physical resources were developed by Wang et al. for manufacturing processes, and they
were evaluated for both machining and robotics applications [17]. Their evaluation results
showed that the system was an effective tool by which robots could achieve optimized
energy consumption.

The geographic distribution of robotic systems and cloud data centers typically re-
quires multiple network hops, which results in increased latency and significant data
transmission delays due to the extended communication pathways. Therefore, edge com-
puting [18], which decentralizes computational resources and uses cloudlets [19,20] and fog
computing nodes [21] to enable the deployment of infrastructure, platform, and software
services in closer proximity to the robots, has emerged as a crucial way to mitigate this
limitation. A cloud-edge-device collaborative framework for cloud manufacturing was
developed by Yang et al. to meet the computational and operational demands of deep
learning models that are implemented in smart robotic systems for mass personalized
production [22]. A solution was proposed by Stan et al. to increase the dependability of
information exchange and processing in systems with cloud-edge-device architectures [23].

Welding robots fulfill important functions in industrial production and are widely used
in the manufacture of large equipment, such as ships, automobiles, engineering machinery,
and agricultural machinery, among others [24]. Therefore, research regarding information
technology-driven welding robots and welding manufacturing has gradually attracted
significant attention. An intelligent welding manufacturing system combined with an IoT
technique was proposed by Liu et al. for feature extraction during welding processes and
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welding quality predictions [25]. Romero-Hdz et al. implemented a reinforcement learning
framework in which empirical welding expertise is combined with algorithmic exploration
mechanisms to enhance the optimization efficiency of robotic welding sequences [26].

Knowledge engineering has great potential to improve the intelligence levels and
capabilities of robots. A knowledge-based framework for object searching was proposed
by Liu et al. to improve the searching efficiency and rationality of home service robots [27].
Multi-domain knowledge was built into a multi-layered and interconnected knowledge
structure in which properties are described according to the ontology in the framework.
A general information—theoretic framework was developed by Krzysiak et al. to control
multiple autonomous robots during search and rescue missions [28]. In this framework,
prior human knowledge about location was modeled as an initial target distribution so that
the target location and dynamics could be captured.

Knowledge representation, reasoning, storage, management, sharing, and interop-
erability are key problems that must be solved when knowledge engineering is applied.
An approach in which knowledge is stored and represented in a cognitive architecture
was proposed by Russo et al. to improve human-machine and machine-machine interac-
tions [29]. They used an unsupervised machine learning technique to distinguish semantic
clusters from visual features provided by robots. A blockchain-based knowledge inference
framework for edge-assisted multi-robot systems was presented by Li et al. to support
trusted edge collaborative inference in the presence of malicious nodes [30]. A knowl-
edge management framework was proposed by Liau et al. to manage the human-robot
collaboration knowledge in a mold assembly domain [31].

Although notable achievements have been reported in cloud robotics, robotic welding,
and knowledge-based research, there remains a lack of research regarding the efficient man-
agement of heterogeneous welding knowledge, the low-latency response requirements of
welding process planning, and the sustainable evolution of welding knowledge. Therefore,
the primary objective of this paper is to propose a cloud-based solution that can achieve
intelligent process planning for robotic welding.

This paper is organized into six principal sections, beginning with this introductory
section (Section 1). Section 2 delineates the architectural framework of the cloud-based
welding process planning system. The methodological implementation of the proposed
knowledge-driven welding process planning approach is elaborated upon in Section 3.
Section 4 presents the experimental results associated with the performance evaluation of
the cloud-edge-end collaborative welding process knowledge base, as well as those that
concern the evolutionary optimization of the welding process parameters. A comprehensive
discussion of the proposed method is provided in Section 5. Finally, Section 6 concludes
the paper.

2. Framework of the Cloud-Based Welding Process Planning System
2.1. Requirements Analysis

As shown in Figure 1, enterprise resource planning (ERP) systems, product data
management (PDM) systems, and manufacturing execution systems (MESs) retrieve infor-
mation from the cloud-based welding process planning system. This information includes
the welding robot resource status, the operational status, and the welding results. Con-
versely, the cloud-based welding process planning system acquires the welding tasks,
production data, and welding process knowledge from the MES and the PDM system,
as well as from other robotic systems. Automatically triggered events occur within the
cloud-based welding process planning system; these include welding task parsing, welding
knowledge acquisition, welding parameter planning, and welding sequence planning.
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Figure 1. Operational process of the cloud-based welding process planning system.

The operational process of the cloud-based welding process planning system is briefly
described next.

First, the ERP system retrieves the product bill of materials (BOM), which is based on
customer orders, from the PDM system. The ERP then issues production plans and work
orders to the MES. Subsequently, the MES assigns welding tasks to the welding robots
using production data obtained from the PDM system.

Next, the cloud-based welding process planning system performs knowledge-driven
welding process planning, which includes welding parameter planning and welding
sequence planning. This planning procedure relies on three key processes: welding resource
information parsing, welding task information parsing, and welding knowledge acquisition.
The welding knowledge acquisition process is dependent upon welding process knowledge
parsing and welding knowledge evolution. Furthermore, welding knowledge evolution is
supported by welding process simulations as well as by machine learning algorithms.

Finally, the welding robot system completes the welding process planning, performs
the actual product welding, and returns the welding results to the MES.

The requirements for the cloud-based welding process planning system were ana-
lyzed. The results are shown in Figure 2. The system requirements consist of three key
components: input requirements, welding process planning requirements, and output
requirements. The input requirements include the welding resources, welding tasks, and
domain knowledge. The welding process planning requirements encompass the knowl-
edge base, knowledge acquisition, and welding process specifications. The knowledge base
requirements are focused on the storage capacity and the access speed. The knowledge
acquisition requirements involve knowledge verification and knowledge sharing. The
output requirements consist of the welding results and the welding robot status.
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Figure 2. Requirements for the cloud-based welding process planning system.

2.2. Overall Structure

Based on the requirements analysis of the cloud-based welding process planning
system, the results of which are presented in Section 2.1, a cloud-edge-end collaborative
framework for the intelligent welding process planning system was constructed. This
framework is illustrated in Figure 3. The cloud-edge-end collaborative intelligent welding

process planning system primarily consists of a cloud system, an edge system, and an
end system.

Knowledge evolution

Cloud Process planning

Computing resource Knowledge verification
J

Sead
_____
.

J Internet ! ™

Knowledge
base

) Knowledge

sharing

Process

Edge ~ planning

network network

= =

o Reading welding tasks - o
Process planning -

P T . j D Y

End '—_ * | Outputting welding results and status '—_ :
Local knowledge base
Welding robot Welding robot

Figure 3. Cloud-edge-end collaborative framework for the intelligent welding process planning system.

The sub-functional modules of the cloud system include a cloud knowledge base
module, a knowledge evolution module that is based on elastic computing resources, a
knowledge verification module, and a process planning module. These modules ful-
fill the “REQ1.2 Welding tasks,” “REQ1.3 Domain knowledge,” “REQ2.1 Storage ca-
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pacity,” “REQ2.3 Knowledge verification,” and “REQ2.5 Welding process specifications”
system requirements.

The sub-functional modules of the edge system include an edge knowledge base
module, a knowledge sharing module, and a process planning module. These modules
fulfill the “REQ2.2 Access speed,” “REQ2.4 Knowledge sharing,” and “REQ2.5 Welding
process specifications” system requirements.

The sub-functional modules of the end system include a reading welding tasks module,
a process planning module, a local knowledge base module, and welding result output
and status modules. These modules address the “REQ1.1 Welding resources,” “REQ1.2
Welding tasks,” “REQ2.2 Access speed,” “REQ3.1 Welding results,” and “REQ3.2 Welding
robot status” system requirements.

To ensure the reliability of this collaborative system, the cloud and edge systems,
which connect to the end system, are not fixed; rather, they are dynamically selected and
linked according to the availability and load capacity of the network, computing, storage,
and service resources. This elastic connectivity enhances the resilience and reliability of the
cloud-edge-end collaborative intelligent welding process planning system. For instance,
when specific cloud or edge systems experience excessive network latency or connectivity
disruptions, the end system can flexibly switch to alternative cloud or edge systems. This
function can be implemented by determining network latency or network connection status
of the end system. As the dynamic configuration of computing resources is not the primary
focus of the present work, it has not been subjected to case verification.

3. Materials and Methods

According to the cloud-edge-end collaborative framework for the intelligent weld-
ing process planning system, as described in Section 2, a method of implementing the
knowledge-driven welding process planning procedure was developed. This method
is presented in the sub-sections of the current section (Section 3). Section 3.1 proposes
a method of representing the welding process knowledge. Subsequently, Section 3.2 in-
troduces the method that was used to construct the cloud knowledge base. Section 3.3
elaborates upon the welding process knowledge evolution method. Finally, Section 3.4
presents the knowledge-driven welding process planning methodology.

3.1. Representation of the Welding Process Knowledge

The method by which the welding process knowledge is represented directly influ-
ences the approach that is used to construct both the welding knowledge bases and the
knowledge utilization efficiency. A welding process case knowledge model can represent
the symbolic, formalized, or modeled abstraction of welding tasks, welding resources,
welding processes, and welding results.

Common knowledge representation methods include logical representation, produc-
tion rule representation, frame representation, semantic network representation, object-
oriented representation, concept map-based representation, rough set-based representation,
and ontology representation. Of these, ontology representation enables the understanding,
sharing, and reuse of knowledge by both humans and machines. It does this by abstracting
domain concepts and establishing hierarchical systems to express the semantic relationships
between concepts. Therefore, ontology representation was used to represent the welding
process knowledge during this study.

Welding process knowledge is represented by definitions of the welding tasks, welding
resources, welding processes, and welding results. Specifically, the welding tasks encom-
pass the weld features, base materials, and welding requirements for the workpiece. The
welding resources include the welding equipment and their performance characteristics.
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The welding processes consist of the welding methods, process parameters, and welding
sequences. The welding results include the weld quality and the workpiece deformation.

3.1.1. Ontology Model for the Welding Tasks

The ontology model for the welding tasks is depicted in Figure 4. In this model, a
Unified Modeling Language (UML) class diagram is used to define the classes, attributes,
and ontological relationships. The connecting lines that contain solid diamond shapes
represent composition relationships. The connecting lines with arrows represent association
relationships. The connecting lines containing triangles represent generalization relation-
ships. The attributes of the welding tasks include the management information, welding
features, and component information. Specifically, the component-information attributes
include the material properties and geometric data. The welding-feature attributes consist
of the joint characteristics, weld details, and welding requirements. The joint attributes
include the groove specifications and geometric parameters. The welding requirements
consist of the weld quality standards, defect criteria, and tolerance specifications.

Welding task

- Management information
- Welding feature

- Component information

’—H—W

Welding feature Component information
- Joint - Material
- Weld - Geometric information

- Welding requirement

'

Joint Welding requirement
- Groove - Welding quality
- Geometric information - Welding defect
- Tolerance

Figure 4. Ontology model for the welding tasks.

3.1.2. Ontology Model for the Welding Resources

The welding resource model characterizes the performance of the welding equipment
in order to ensure that the welding processes are properly executed and the desired welding
results are achieved. In the welding resource ontology model, which is shown in Figure 5,
the subtypes of the welding resources include the welding machine, robots, positioners,
and auxiliary equipment. The detailed attribute specifications are discussed next.

The welding-machine attributes encompass the weld type (e.g., MIG, TIG, SAW),
current range, voltage range, and power capacity. The robot attributes consist of the number
of axes, working envelope dimensions, and positioning accuracy. The positioner attributes
include the type, degrees of freedom, positioning accuracy, and maximum workpiece
dimensions. Finally, the subtypes of the auxiliary equipment include the shielding-gas
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system (gas type and maximum flow rate) and the wire-feeder (wire specifications and
feed-speed range).

Welding resource 1

Welding machine —=> Positioner
- Type - Welding machine - Type
- Current B} ROb.O.t - Degrees of freedom
- Voltage - Pomflf)ner . - Positioning accuracy
- Power ) Aux111aryAequ1p ment - Maximum dimensions
| I

Robot Auxiliary equipment = <3— Wire feeder
- Axis number - Shielding gas - Wire
- Working range - Wire feeder - Wire feed speed
- Positioning accuracy Z%

Shielding gas
- Type

- Maximum flow

Figure 5. Ontology model for the welding resources.

3.1.3. Ontology Model for the Welding Process

The ontology model for the welding process is illustrated in Figure 6. This model
comprehensively describes the pre-weld treatment, post-weld treatment, welding process
parameters, and welding sequences.

Welding process

Pretreatment - Prefreatment Post treatment
- Preheat Temperature - Post treafment - Heat treatment
- Displacement - Welding sequence - Weld grinding
constraint - Welding parameter

! | |
Displacement constraint Welding parameter Welding sequence
- Location - Power parameters - Welding feature
- Direction - Welding torch speed
- Protective gas
Power parameters
Location - Current

) - Voltage
- Coordinate system

- Coordinate

Figure 6. Ontology model for the welding process.
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Specifically, the pre-weld treatment attributes include the pre-heat temperature and
the displacement constraints (which define the degree-of-freedom restrictions imposed by
fixtures or positioners on the workpiece). The displacement constraints are characterized
by the constraint locations (which are defined by the reference coordinate system and
coordinates) and the constraint directions. The post-weld treatment attributes consist of
the heat treatment and the weld-seam grinding. The subtypes of the welding process
parameters include the welding-machine power parameters (current and voltage), torch
travel speed, and shielding-gas parameters. The welding sequences are defined by the
welding features.

3.1.4. Ontology Model for the Welding Results

As indicated by the welding results ontology model depicted in Figure 7, the subtypes
of the welding results include both the joint quality and the workpiece deformation after the
welding process is complete. The subtypes of joint quality include quality standards, joint
defect classification, weld bead size, and joint performance (which includes the mechanical
strength and the fatigue life). The welding-induced deformation is specified through
the deformation type (longitudinal shrinkage, transverse shrinkage, angular distortion,
misalignment, buckling distortion, bending deformation, or helical distortion) and the
deformation degree.

Welding result <+ Deformation
- Quality of joint - Type
- Deformation - Deformation degree

7

Quality of joint <+— Joint performance

- Standard - Strength

- Joint defect class - Fatigue life
- Weld size

- Joint performance

Figure 7. Ontology model for the welding results.

3.2. Construction of the Cloud-Edge-End Collaborative Knowledge Base

The knowledge-driven welding process planning system has two primary require-
ments for the knowledge base:

(1) Storage capacity. The data types stored in the knowledge base include welding
knowledge instances, 3D models of welded components, and various raw-data documents.
As the amount of stored welding knowledge increases, the amount of available local storage
may become insufficient to meet the demands of the welding knowledge base.

(2) Low-latency access and high reliability. Welding robots that access the cloud
knowledge base must rely on stable network connectivity and remote servers. To achieve
personalized mass production, the welding robots must rapidly plan welding processes and
execute welding tasks; thus, efficient access to relevant welding knowledge is necessary.

To meet these requirements, a cloud-edge-end collaborative welding process knowl-
edge base was constructed according to the welding process knowledge ontology model.
This knowledge base enables the representation, storage, sharing, and evolution of the
welding process knowledge, as shown in Figure 8.
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Figure 8. Cloud-edge-end collaborative welding process knowledge base.

The cloud-based knowledge base stores welding process knowledge, which is com-
posed of welding tasks, welding resources, welding processes, and welding results. The
model base maintains welding quality prediction models and welding sequence planning
models. The cloud platform functions include welding knowledge retrieval, knowledge
updating, knowledge sharing, and process model training.

The edge system functions include personalized adaptation of the welding process
models, welding process planning, and knowledge updating. Personalized adaptation of
welding process models involves the retraining of generic process models according to the
welding knowledge so that the models would be better suited to individualized welding
tasks. The key distinction between the edge-based welding knowledge base and the cloud-
based welding knowledge base lies in the focus of each: the edge-based welding knowledge
base prioritizes low-latency responses to end devices, while the cloud-based welding
knowledge base emphasizes the management of large amounts of welding knowledge.

The end-based welding knowledge base primarily stores welding knowledge that is
downloaded from both the edge-based and cloud-based welding knowledge bases. When it
receives a welding task, a welding robot first queries its locally cached welding knowledge.
If no matching knowledge is found, it sends a request to either the edge system or the
cloud systems. Through edge-end collaboration, cloud-end collaboration, and cloud-edge
collaboration, the system can achieve low-latency, high-reliability access to a massive
storage capacity, as well as privacy security for welding knowledge.

3.3. Evolution of the Welding Process Knowledge

The accumulation of welding process knowledge is heavily reliant upon extensive
welding experiments, which require significant human, material, and time resources.
Rapidly increasing the amount of process knowledge in welding knowledge bases remains
a critical challenge for intelligent welding process planning. To address this issue, a cloud-
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edge-end collaborative welding process knowledge evolution method was developed.
Unlike the time-consuming and resource-intensive physical welding experiments, welding
simulations can substantially reduce both the temporal and economic costs of acquiring
welding knowledge. By integrating deep learning-based welding parameter generation
and reinforcement learning-based welding sequence generation, this approach enables
inexpensive, efficient, and intelligent evolution of welding process knowledge.

As shown in Figure 9, the welding process knowledge evolution method consisted of
three primary processes: cloud-based welding simulation, deep learning-based welding
parameter generation, and reinforcement learning-based welding sequence generation. The
details of these processes are provided in the following list.

Cloud-based welding process
simulation

!

Welding parameters - Welding sequences
Welding process

knowledge base

I
¢ Welding knowledge i
Generation of welding process Welding sequences generation based
parameters based on deep learning on reinforcement learning
Cloud-based Cloud-based
model training reinforcement learning

v v
Transfer learning at the edge s
Training an agent

v

Welding Generate welding sequence
parameter based on the agent
Deep learning .
Input Output Welding sequence

network
| [

Figure 9. Welding process knowledge evolution method.

(1) Cloud-based welding simulation. By leveraging the advantages of cloud com-
puting, this approach enables the parallel computation of welding tasks by means of
cloud-based simulation. It can be used to rapidly acquire welding simulation results, which
provide new welding process knowledge for the welding knowledge base.

(2) Deep learning-based welding parameter generation. Using existing welding pro-
cess knowledge from the knowledge base, a deep neural network is trained in the cloud.
Then, transfer learning of the personalized network is performed in the edge system.
Finally, the personalized network generates optimized welding parameters.

(3) Reinforcement learning-based welding sequence generation. Utilizing existing
welding sequence knowledge, an agent for welding sequence generation is trained in the
cloud. This agent can generate the required welding sequences by employing a Q-value
table or a deep neural network. After it is trained, the agent is deployed to the edge system,
where it generates new welding process sequences.
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3.4. Utilization of the Welding Process Knowledge

As shown in Figure 10, the welding knowledge matching process includes four pri-

mary steps:
Start
v
Input
Welding tasks Welding resource
~ Cloud
knowledge —
base
- Welding knowledge
~ Edge
knowledge > —» Calculating similarity <
base
~ _End_
Does it meet N Is the retrieval
knowledge — . —>
b requirements? complete?
ase
R ¢Y
. Y
Welding process
adaptation
End <

Figure 10. Welding knowledge matching process.

(1) Input of the welding-task and welding-resource instances. The welding-resource
instance describes the welding-related resource information.

(2) Local knowledge matching. When it receives the welding-task instance, the weld-
ing robot retrieves relevant welding process case knowledge (which includes parameter
matching and sequence matching) from the end-based knowledge base according to the
task and resource instances. Then, the similarity between the retrieved knowledge and the
input requirements is calculated.

(3) Hierarchical knowledge search. If no suitable welding knowledge is found in
the end-based knowledge base, the edge-based and cloud-based knowledge bases are
searched sequentially.

(4) Welding process adaptation and output. If welding process knowledge is success-
fully retrieved, then welding process adaptation is performed. Finally, an appropriate
welding process plan is output.

4. Results

As described in Section 3, welding process parameters and welding sequences are
both welding process. Both joint quality and workpiece deformation are welding results. In
our previous work [32], we developed a knowledge-driven approach for welding sequence
planning and analyzed its impact on workpiece deformation. This method was evaluated
through a case study on bracket welding, which validated its effectiveness in sequencing
laser-welding tasks for such structures.
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The primary objective of this study is to validate the efficacy of the proposed method
in the planning of welding process parameters. Welding process parameters include the
welding-machine power parameters, welding speed, and shielding-gas parameters.

In laser welding, the primary parameters influencing the welding results are power
and welding speed. For welding medium-thickness metal plates, high power is generally
preferred to maximize efficiency, after which the appropriate welding speed is determined
through commissioning. Conversely, for thin-thickness metal plates, the welding process
parameter planning typically involves first fixing the welding speed and then gradually
increasing the power from low to high until a sufficient penetration depth and a sound
weld bead are achieved. This study was exclusively conducted on medium-thickness
plates. With the objective of achieving a target weld bead area and profile, the welding
power was held constant, while the corresponding welding speed was predicted using the
developed model.

Both weld bead size and joint performance are subsets of joint quality. Among these,
weld bead size is a more commonly used and is intuitive indicator of joint quality. Therefore,
in this study, weld bead size was selected as the metric for evaluating welding results.

4.1. Cloud-Edge-End Collaborative Knowledge Base
4.1.1. Knowledge-Base Composition

The proposed cloud-edge-end collaborative welding process knowledge base has a
three-tier architecture that consists of end-based, edge-based, and cloud-based knowledge
bases. These knowledge bases synergistically provide intelligent welding process planning
by means of coordinated storage and computational capabilities.

Frequently accessed welding process knowledge was stored in the end-based knowl-
edge base, which was built using the SQLite 3.38.0 database engine. Meanwhile, the
edge-based knowledge base, which was implemented using Redis 5.0.4 software, provided
low-latency caching for frequently matched welding process knowledge. In contrast, the
cloud-based knowledge base, which leveraged HBase 2.1.0 software for scalable storage,
served as the central repository for comprehensive welding process knowledge.

The welding process knowledge base includes three key technical features. First,
it possesses a hierarchical storage architecture that utilizes SQLite 3.38.0 (lightweight
end-based storage), Redis 5.0.4 (high-performance edge-based caching), and HBase 2.1.0
(distributed cloud storage). Second, network connectivity is achieved by the utilization of
LANss (for end-edge communication) and public networks (for edge-cloud communication).
Third, cross-tier computing coordination enables the retrieval of distributed knowledge
across all the architectural layers.

4.1.2. Performance Testing

The geographic locations of the knowledge bases are provided in Table 1. The nodes
of the cloud-based knowledge base are located in Beijing (Alibaba Cloud, Beijing, China),
London (Alibaba Cloud, London, UK), and Silicon Valley (Alibaba Cloud, San Francisco,
CA, USA). Both the edge-based and end-based knowledge bases are located in Jinan city.

Table 1. Geographic locations of the knowledge bases.

Knowledge Base Geographic Location Distance from the End System (km)
End-based knowledge base Jinan (China) 0
Edge-based knowledge base Jinan (China) 0.1
Cloud-1: Beijing (China) 363
Cloud-based knowledge base Cloud-2: London (UK) 8471

Cloud-3: Silicon Valley (USA) 9786
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The knowledge-matching efficiency of the end-based, edge-based, and cloud-based
knowledge bases was tested with a workflow. In this test, the end system sent a welding
task, then the knowledge base received the task, performed knowledge matching, and
returned the results. Finally, the end system received the results. The average matching
latency was obtained after 10 tests of the workflow. As shown in Figure 11, the average
matching latency was very small for both the end-based and edge-based knowledge bases,
which was 0.041 s and 0.2183 s. This result demonstrates their suitability for real-time
operations. The cloud-based knowledge base had significantly longer matching times
of 1.5066 s, 2.6194 s, and 3.5453 s due to the network and computational overhead. The
average response time of the edge-based knowledge base was reduced from that of pure
cloud-based solutions by 86%, (1.5066 — 0.2183) = 1.5066 ~ 0.86.

4.0
3.51
3.0

325

220

Els] 1.5066
1.0
0.51
0.0

3.5453

2.6194

0.2183
o0 02

End Edge Cloud-1Cloud-2Cloud-3
Knowledge base

Figure 11. Knowledge-matching efficiencies of the knowledge bases.

A comparative latency analysis revealed distinct performance characteristics across
the architectural tiers. The low-latency response of the edge layer confirms the critical role
of this layer in time-sensitive welding process planning. The cloud-based knowledge base
leverages its multi-node architecture to store vast amounts of welding knowledge. The
cloud-edge-end collaboration combines the advantages of high matching efficiencies and
strong storage capacities.

4.2. Evolution of the Welding Process Parameters

The welding process parameters are optimized by utilizing deep learning and transfer
learning. First, a cloud-based welding simulation method is used to generate a dataset of
welding process cases. A deep learning model is then pre-trained using a public dataset,
after which it is fine-tuned with the generated dataset to achieve personalized adaptation.
Finally, a deep learning model that is capable of generating welding process parameters is
obtained. The results of this process are described in detail below.

(1) Figure 12 presents the results of a laser-welding temperature simulation after
Gaussian filtering and edge detection were performed. The resulting edge detection profiles
for welds produced at different welding speeds are depicted in these plots. The simulated
temperature field from the laser-welding process was processed using a Gaussian filter
to reduce high-frequency noise. Subsequently, as illustrated in Figure 12, edge detection
techniques were applied to accurately identify the distinct thermal regions, namely the
weld zone and the other zone. The final obtained weld profile represented the weld shape
of the welding task.

ANSYS 19.0 was used to numerically simulate the laser-welding process. Two medium-
thickness plates that were made of 06Cr19Ni10 steel were joined by using a fillet weld. Each
plate had a thickness of 5 mm. 06Cr19Nil0 steel contains chromium (Cr) at 18.0-20.0%,
nickel (Ni) at 8.0-10.5%, carbon (C) < 0.08%, manganese (Mn) < 2.0%, silicon (5i) < 1.0%,
phosphorus (P) < 0.045%, sulfur (S) < 0.03%, and the rest is iron (Fe).
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Figure 12. Laser-welding simulation results for various welding speeds.

The initial condition for the laser-welding simulation was set such that the plates
temperature was equal to the room temperature of 20 °C. To simplify the calculation, the
heat exchange between the plates and the surrounding environment was uniformly treated
as convective heat transfer and represented by an overall heat transfer coefficient with a
value of 25 W/(m?-°C). The element type used in the simulation model was SOLID 70. The
minimum mesh size was 0.5 mm.

The welding simulation was conducted with a power of 2800 W and a laser incidence
angle of 30°, while the welding speed consisted of 100 unique randomized values generated
within the range of 10 to 30 mm/s. Using a cloud-based welding simulation approach,
a dataset of 100 welding process cases was then generated. Of these, 70 cases were used
to train the deep neural network, while the remaining 30 cases served as test data for an
evaluation of the network performance.

(2) The ResNet deep neural network model was initially pre-trained using the public
ImageNet dataset [33]. All the ResNet parameters were frozen except for those in the output
layer. The number of variables in the output layer of the network was then modified, and
the loss function was replaced with a mean squared error loss. This adapted model was
designated as WeldNet.

(3) The WeldNet model was fine-tuned using the dataset of welding process cases, after
which its accuracy was tested by performing welding-speed predictions and comparing
the results with those in the test set. As shown in Figure 13, the training process exhibited
progressive convergence. The WeldNet models with varying numbers of hidden layers (18,
34, 50, 101, and 152) successfully converged within 15 epochs and consistently maintained
a stable prediction accuracy for welding speed.
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Figure 13. WeldNet model training process.

The input of the WeldNet models was the area and shape of the weld bead as depicted
in Figure 12. The WeldNet models predicted the welding speed required to achieve the
target weld bead profile. Welding-speed prediction accuracy is defined as follows:

n
Accuracy =1 — 12 <|pl_tl|)
=N
where 1 (n = 30) denotes the number of cases in the test dataset, p; represents the predicted
welding speed, and ¢; corresponds to the true welding speed.

The test results, as presented in Table 2, revealed that the welding-speed prediction
accuracy improved with an increase in the number of hidden layers in the WeldNet. The
WeldNet-152 model with 152 hidden layers achieved the highest welding-speed prediction
accuracy of 95.10%.

Table 2. Prediction accuracies of various WeldNet models.

Model Prediction Accuracy of Welding Speed
WeldNet-18 91.45%
WeldNet-34 94.14%
WeldNet-50 94.41%
WeldNet-101 94.70%
WeldNet-152 95.10%

4.3. Experimental Results

Figure 14 illustrates the weld profile requirements for the welding task of
two 06Cr19Nil0 plates that have a thickness of 5 mm. Figure 14 was used as the in-
put for the WeldNet-152 model, and the output parameter of the WeldNet-152 model was
149 mm/s.
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Figure 14. Weld profile requirements for the welding task of two 06Cr19Ni10 plates.

A welding simulation (ANSYS 19.0) and a welding experiment were conducted with a
power of 2800 W, a laser incidence angle of 30°, and a welding speed of 14.9 mm/s. Figure 15
depicts the cross-sections of the welds obtained from the experiment and the simulation.

(@) | (b)

Figure 15. Weld cross-sections: (a) experimental results and (b) simulation results.

Table 3 presents the weld-size results obtained from the experiment and the simula-
tion. These results include the deep-penetration weld thickness, s, and the nominal weld
thickness, a. The maximum error of the weld-size results was 22%. In other words, the
simulation-to-reality transfer accuracy was 78% for parameter-optimization tasks. The
observed relative error aligns with well-established benchmarks for welding prediction
using simulation [34,35], accounting for imperfect boundary conditions and acceptable

computational time.

Table 3. Weld-size results from the experiment and the simulation.

Weld-Size Parameter Experimental Result (mm)  Simulation Result (mm) Error
Deep-penetration weld thickness, s 2.95 2.29 22%
Nominal weld thickness, a 1.23 1.14 7%

Table 4 presents the requirements for the welding task and the weld-size results ob-
tained from the experiment. The maximum error of the deep-penetration weld thickness (s)
was 21%. The maximum error of the nominal weld thickness (a) was 11%. The experimental
results demonstrated that the method proposed in this study and the developed model
were feasible for the laser-welding process planning of plates with medium thickness.



Machines 2025, 13, 798 18 of 20
Table 4. Experimental results and requirements for the welding task.
. Requirements for the .
Weld-Size Parameter Welding Task (mm) Experimental Result (mm) Error
Deep-penetration weld thickness, s 2.44 2.95 21%
Nominal weld thickness, a 1.11 1.23 11%

5. Discussion

The proposed cloud-edge-end collaborative framework partially addresses three criti-
cal challenges associated with intelligent welding process planning for mass personalized
production: (1) efficient management of heterogeneous welding knowledge across dis-
tributed systems, (2) low-latency response requirements for welding process planning, and
(3) the sustainable evolution of welding process knowledge. An ontological model was
established to enable automated knowledge sharing between heterogeneous systems and
welding robots. A hierarchical framework achieved a lower knowledge query latency than
conventional cloud-only systems. A simulation-driven learning approach exhibited a 78%
prediction accuracy when used for evolution of the welding process knowledge.

The study results revealed multiple important insights. First, the hierarchical
knowledge-based architecture utilized during this study achieved a balance between
the storage capacity and access efficiency. Specifically, the average response time of the
edge-based knowledge base was reduced from that of pure cloud-based solutions by 86%.
Second, the knowledge evolution method demonstrated a simulation-to-reality transfer
accuracy of 78% during parameter-optimization tasks. Notably, the transfer learning ap-
proach achieved a prediction accuracy of 95.1% with only 70 training samples; thus, it
demonstrated effective knowledge transfer from general computer-vision tasks to welding
parameter optimization.

6. Conclusions

This paper presents a novel knowledge-driven framework for intelligent welding
process planning in cloud robotics environments. The main contributions of this study can
be summarized into three points:

(1) Ontology-based welding knowledge representation. An ontological model that
unifies welding tasks, resources, processes, and outcomes is established. This formalized
representation enables automated knowledge sharing between heterogeneous systems and
welding robots.

(2) Cloud-edge-end collaborative architecture for intelligent welding process planning
systems. A hierarchical framework that integrates cloud computing, edge processing, and
end execution is developed. It achieved a lower knowledge query latency than conventional
cloud-only systems.

(3) Hybrid welding knowledge evolution method. A simulation-driven learning
approach that combined cloud-based thermal-structural analysis with transfer learning
exhibited a 78% prediction accuracy when used for parameter optimization; thus, it can
reduce the experimental costs from those of physical trial-and-error methods.

To advance the proposed intelligent welding framework, future research will be
conducted in these directions: knowledge-driven welding process parameter planning
for thin-plate welding, high-precision simulation of solid-liquid thermal coupling for
multi-layer welding processes, and the integration of multi-modal sensor data for real-
time knowledge-base updating. The proposed framework serves as a foundation for next-
generation intelligent welding systems that can adapt to evolving Industry 5.0 requirements
while maintaining production efficiency in mass customization environments.
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