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Abstract

As the safety requirements of elevator systems continue to rise, the detection of loose bolts
and the high-precision segmentation of anti-loosening lines have become critical challenges
in elevator landing door inspection. Traditional manual inspection and conventional visual
detection often fail to meet the requirements of high precision and robustness under real-
world conditions such as oil contamination and low illumination. This paper proposes two
improved algorithms for detecting loose bolts and segmenting anti-loosening lines in elevator
landing doors. For small-bolt detection, we introduce the DS-EMA model, an enhanced
YOLOVS variant that integrates depthwise-separable convolutions and an Efficient Multi-scale
Attention (EMA) module. The DS-EMA model achieves a 2.8 percentage point improvement
in mAP over the YOLOv8n baseline on our self-collected dataset, while reducing parameters
from 3.0 M to 2.8 M and maintaining real-time throughput at 126 FPS. For anti-loosening-line
segmentation, we develop an improved DeepLabv3+ by adopting a MobileViT backbone,
incorporating a Global Attention Mechanism (GAM) and optimizing the ASPP dilation rate.
The revised model increases the mean IoU to 85.8% (a gain of 5.4 percentage points) while
reducing parameters from 57.6 M to 38.5 M. Comparative experiments against mainstream
lightweight models, including YOLOv5n, YOLOv6n, YOLOv7-tiny, and DeepLabv3, demon-
strate that the proposed methods achieve superior accuracy while balancing efficiency and
model complexity. Moreover, compared with recent lightweight variants such as YOLOv9-
tiny and YOLOv11n, DS-EMA achieves comparable mAP while delivering notably higher
recall, which is crucial for safety inspection. Overall, the enhanced YOLOvVS and DeepLabv3+
provide robust and efficient solutions for elevator landing door safety inspection, delivering
clear practical application value.

Keywords: elevator safety inspection; YOLOvVS; small-object detection; DeepLabv3+;
anti-loosening-line segmentation

1. Introduction

Elevators, as an indispensable mode of transportation in modern cities, are widely
used in residential, commercial, and public facilities, greatly facilitating people’s mobil-
ity. However, with the increasing number of elevators, elevator safety has become an
increasingly prominent issue of public concern. The landing door, being a part directly
in contact with passengers, plays a crucial role in the safe operation of the entire elevator
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system [1]. One of the main causes of landing door failures is missing or loose bolts on the
safety keeper, with traditional manual inspection methods being inefficient and prone to
omissions or false detections [2].

With the rapid development of sensor, signal processing, and machine vision technolo-
gies, researchers, both domestically and internationally, have proposed various methods
for detecting bolt loosening. For example, Pal et al. [3] utilized sensors to obtain frequency
data, employing position-determined fixed coefficients as variables and continuously up-
dating the model to determine the actual position and fixed coefficient of the bolts at
varying degrees of looseness. Sun et al. [4] embedded piezoelectric sensors at predeter-
mined positions on the bolt heads and developed a smart piezoelectric bolt to measure
the ultrasonic flight time of the bolt shaft. Such sensor-based detection methods enable
quantitative detection with excellent results; however, they are costly and require complex
installation and calibration. In comparison, vision-based detection methods have become a
hot research topic due to their lower cost, stronger environmental adaptability, and higher
detection efficiency [5,6]. Numerous studies have shown that vision-based detection meth-
ods have significant advantages in bolt loosening detection. For instance, Zhang et al. [7]
directly output the bolt tightening status using a region-based convolutional neural net-
work, achieving precise qualitative detection; Kong and Li [8] applied image registration
technology, incorporating the rotational angle differences caused by bolt loosening into
error evaluation, enhancing detection accuracy. Huynh et al. [9] combined the RCNN deep
learning algorithm with Hough line detection to achieve automatic bolt detection. Lyu [10],
on the other hand, utilized YOLOvV5 and error ellipse theory to identify the rotational
angle of bolts, achieving good detection results. In addition, Wang et al. [11] proposed a
detection algorithm for loose bolts on low-quality images of roofs of rail vehicles, using a
line-array camera to capture bolt images and applying brightly colored anti-loosening lines
on the bolts. By dividing the roof into multiple sub-regions and using the HALCON object
detection framework for bolt positioning, they calculated the angle of the anti-loosening
line on the bolts to determine if they were loose. This method successfully detects roof
bolt loosening by fitting the anti-loosening line as a straight line and comparing the angles,
demonstrating high accuracy.

However, detecting bolts on the elevator landing door safety keeper still faces nu-
merous challenges. The bolts on the safety keeper have multiple characteristics, such as
being covered by heavy oil stains, insufficient lighting, and being small in size [12]. These
factors make it difficult for traditional visual detection methods to achieve ideal results in
practical applications. As a result, traditional object detection techniques often fail to meet
the requirements for high precision and high reliability.

Recent years have witnessed remarkable progress in deep learning-based object de-
tection and semantic segmentation. For small-object and lightweight detection, numerous
studies have integrated attention modules such as SE [13], CBAM [14], and EMA (Efficient
Multi-scale Attention) into the YOLO framework, effectively enhancing feature represen-
tation and improving detection accuracy for tiny targets under resource constraints. In
addition to conventional detectors, oriented object detection methods have been proposed
to handle rotation-sensitive tasks. For instance, Yang et al. introduced R3Det [15], which
refines feature maps to better capture rotated objects, while Ming et al. proposed Gradient
Calibration Loss (GCL) [16], which optimizes rotated IoU loss via gradient analysis and cor-
rection, leading to faster convergence and more stable training in oriented object detection.
These approaches are closely related to bolt-loosening detection, where angle deviations
must be accurately measured.

In the field of semantic segmentation, lightweight architectures such as BiSeNet V2 [17]
and transformer-based models like SegFormer [18] have demonstrated high efficiency and
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robust performance in parsing fine-grained structures. Their ability to balance accuracy
and speed makes them particularly suitable for industrial inspection scenarios. Compared
with these works, our study further enhances YOLOvVS8 and DeepLabv3+ by incorporating
lightweight and attention mechanisms, specifically targeting the challenges of oil stains,
insufficient lighting, and small bolt sizes in elevator landing door inspection.

To effectively address these issues, deep learning models such as YOLOvVS [19] and
DeepLabv3+ [20] have been widely applied in object detection and semantic segmenta-
tion in recent years, with significant improvements made in lightweight design, accu-
racy enhancement, and small-target detection. YOLOv8 has made significant progress in
lightweight design and small-target detection. Zhu et al. [21] have enhanced the model’s
sensitivity and detection capability for small targets by introducing an attention mecha-
nism and multi-scale feature fusion. In particular, by optimizing the network structure
of YOLOVS, the researchers further reduced the computational complexity and improved
detection speed, enabling efficient operation even on resource-constrained devices. In the
field of semantic segmentation, DeepLabv3+ has also undergone significant improvements.
Gulzar [22] reduced the model’s parameter count and improved its inference speed by
adopting a lightweight backbone network, such as MobileNetv2. In the Atrous Spatial
Pyramid Pooling (ASPP) module, researchers introduced depthwise separable convolu-
tions [23], which not only reduced computational overhead but also enhanced the model’s
segmentation accuracy. At the same time, DeepLabv3+ incorporated an attention mecha-
nism and enhanced feature fusion strategies, further improving the model’s performance
in detail and small-target segmentation.

In summary, this paper proposes an intelligent detection algorithm for detecting
loose bolts on the elevator landing door safety keeper. The algorithm combines the im-
proved YOLOVS object detection network with the DeepLabv3+ semantic segmentation
network. The enhanced YOLOvVS8 algorithm allows for more accurate detection of all bolts
and determination of whether any are missing, while analyzing the anti-loosening line
features on the bolts inside the landing door track to detect whether the bolts are loose.
The system captures bolt images under various operating conditions and, combined with
multiple image processing techniques, performs looseness detection. While YOLOv8 and
DeepLabv3+ have achieved remarkable progress in lightweight design and small-object
detection, their performance still degrades under real-world challenges such as severe
illumination variation, oil contamination, and noisy backgrounds. In particular, thin anti-
loosening lines are difficult to segment robustly when occlusion and stains exist. To address
these limitations, our method integrates an attention-enhanced YOLOvVS8 with an optimized
DeepLabv3+, specifically designed for elevator landing door inspection. Experimental
evaluation of images captured under various environmental conditions showed that the
detection accuracy of the algorithm was significantly improved, maintaining high accuracy
even under challenging conditions such as oil stains and insufficient lighting. By adopt-
ing the lightweight improved YOLOvS and deep learning-based semantic segmentation
algorithm, this paper not only addresses the inefficiency and false omissions of traditional
manual detection but also significantly improves the detection accuracy of elevator landing
door bolts, offering a new solution for intelligent elevator maintenance. The successful
application of this algorithm not only optimizes the elevator maintenance workflow but
also provides more reliable technical support for elevator safety.

2. An Enhanced YOLOvVS for Small-Bolt Detection
2.1. Overview of YOLOvS8

YOLOVS is an important version in the YOLO series, offering significant performance
improvements [13]. It continues to use the scaling coefficient design from YOLOVS5, offering



Machines 2025, 13, 790

4 0f22

models in five different sizes: N, S, M, L, and X, which can be flexibly adjusted based
on hardware and computational resource requirements. In terms of structure, YOLOvV8's
backbone and neck modules reference the ELAN design from YOLOvV? [24], adopting the
new C2f structure, optimizing gradient flow, and enhancing feature extraction capabilities.
The head module of YOLOVS uses a Decoupled-Head structure, separating classification
and detection tasks, and shifts from an Anchor-Based approach to an Anchor-Free approach,
improving detection accuracy. The loss function of YOLOvS has also been optimized,
employing a Task-Aligned Assigner for positive and negative sample matching, addressing
the class imbalance issue. Additionally, Distribution Focal Loss (DFL) has been introduced,
further improving the detection of challenging targets.

Despite its excellent performance in many object detection tasks, YOLOVS still faces
certain challenges in detecting bolts on elevator landing door safety keepers. The landing
door bolts are relatively small and often affected by factors such as oil stains and insuffi-
cient lighting, which may limit YOLOVS8's detection ability for small targets and complex
backgrounds. Therefore, to meet the requirements of elevator bolt loosening detection,
this paper makes targeted improvements to YOLOVS, enhancing its detection accuracy for
small targets in complex environments and ensuring accurate bolt detection.

2.2. Establishment of the DSEW-YOLOuvS8 Network Structure

DSEW-YOLOVS is derived from the YOLOv8n network, improved by using depthwise
separable convolutions to optimize the EMA mechanism, forming the DS-EMA module,
which is applied to the backbone network to enhance small-target detection capabilities.
Additionally, the WloU (Weighted IoU) loss function replaces the original CloU loss func-
tion and is applied to the backbone, neck, and head networks, improving the model’s
detection accuracy in complex environments and ensuring the precision and robustness
of elevator safety-keeper bolt loosening detection. The improved DSEW-YOLO network
structure is shown in Figure 1.

Detect

Figure 1. Overall architecture of the proposed DSEW-YOLOvV8 detector, showing the integration of
DS-EMA attention for small-bolt detection.

2.2.1. DS-EMA Module

Because most safety-keeper bolts in elevator landing doors are small targets, predictions
with the original model often suffer from false positives and false negatives. Therefore, we
introduce the Efficient Multi-scale Attention (EMA) [25] mechanism into the YOLOVS feature-
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extraction stage. By coupling efficient cross-spatial feature learning with multi-scale information
fusion, EMA markedly enhances the model’s ability to capture small-object features.

EMA splits the input feature map into channel-wise groups, which are processed by
two parallel 1 x 1 convolutions and one 3 x 3 convolution. The 1 x 1 paths apply horizontal
and vertical global-average pooling to capture long-range spatial dependencies and then
produce attention weights via 1 x 1 convolution + sigmoid, while the 3 x 3 path gathers fine
local details. Outputs from all branches are fused with cross-spatial learning: global-average
pooling encodes each branch, a dot-product aggregates multi-scale information, and a final
sigmoid yields the spatial-attention map that highlights salient regions. Instead of reducing
channels, EMA reshapes part of the channel dimension into the batch dimension, keeping
rich information yet limiting parameters. Nevertheless, the Conv2d operations in EMA
still involve a large number of parameters, adding computational burden to the model.

To mitigate this complexity, we introduce depthwise separable convolutions into EMA,
constructing a lightweight DS-EMA attention mechanism that reduces both computation
and parameter count. Depthwise separable convolution, first proposed by Chollet in
MobileNet, effectively reduces the parameters and computation of convolutional neural
networks. Unlike standard convolution, depthwise separable convolution decomposes the
operation into two independent stages: depthwise convolution and pointwise convolution.
In the depthwise stage, each input channel is convolved separately in space; consequently,
the number of depthwise kernels equals the number of input channels.

Let the input feature map be of size D x Dr x M, the depthwise kernel be of
size Dy X Dy x 1, and the output feature map be of size D x Dr x M. The depthwise
convolution can then be expressed as Equation (1):

Dk Dk

Ge(xy) =YY F(x+i—Ly+j—1)-Ke(i, ) (1)
i=1j=1

F denotes the k-th channel of the input feature map; Ky is the k-th depthwise convolution
kernel; Gy is the k-th channel of the output feature map after depthwise convolution.

Pointwise convolution employs a 1 x 1 kernel to linearly combine the depthwise
features along the channel dimension, producing the final output feature map. Let the
input feature map for the pointwise convolution be of size Dr x Dr x M and the number
of output channels be N; the pointwise convolution can be expressed as Equation (2):

M
Gu(x,y) = Y G(x,y)-Pug 2)
=1

Gk (x,v) is the k-th channel of the feature map output by the depthwise convolution; P, x is
the weight of the n-th pointwise kernel corresponding to input channel k; G, (x, y) is the
n-th channel of the output feature map after pointwise convolution.

The structure of the depthwise separable convolution is illustrated in Figure 2.

BN BN

. RelLU RelLU
3x3 Depthwise Conv

Figure 2. Depthwise separable convolution structure. (This schematic was redrawn and simplified by
the authors for clarity).
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Compared with a standard convolution, if the input has M channels, the output has N
channels, and the kernel size is Dx x Dk, the parameter count of the standard convolution
is Dx X Dg x M x N. For a depthwise separable convolution, the parameter count equals
the sum of the depthwise and pointwise parts, which is Dg x Dx x M+ M x N.

It is evident that depthwise separable convolution dramatically reduces the number of
parameters relative to a standard convolution, thereby improving computational efficiency.
Consequently, in the EMA mechanism, we replace the 3 x 3 convolutions with depthwise
separable convolutions, which markedly lower computation and parameter counts while
retaining EMA’s original multi-scale, cross-spatial attention aggregation advantages. The
architecture of the improved DS-EMA module is shown in Figure 3.

Input @
Groups
Eee— } '
I X Avg Pool l I Y Avg Pool l IBX3DepthwiseConvI
)
’ Concat+Conv 1x1 l
) ¥
I Sigmoid l I Sigmoid l
]
—— Re-weight

GroupNorm Avg Pool

Avg Pool Softmax

it

Matmul

Sigmoid

II,%I!I

—| Re-weight
Qutput @

Figure 3. Architecture of the improved DS-EMA attention module.

2.2.2. WIoU Loss Function

YOLOvVS8 computes bounding-box regression loss with the Complete IoU (CloU) loss,
which jointly penalizes overlap, aspect ratio, and center-point distance. Although this
composite term accelerates convergence—especially for objects with complex shapes or
coordinates—ClIoU introduces many parameters, involves cumbersome calculations, and
increases computational load. Its aspect-ratio term can also be excessively severe: for small
objects, CloU focuses strongly on shape details and aspect-ratio variation, so performance
degrades when IoU is low, yet shape discrepancy is large. In addition, small errors may
receive large penalties, causing over-fitting and poor generalization.

Accordingly, we replace CloU with the Weighted IoU (WIoU) loss. WIoU adaptively
re-weights factors such as IoU, shape, and scale differences, mitigating the performance drop
that CloU suffers when box shapes vary greatly or overlaps are small. In our scenario—long
camera-to-bolt distance and tiny bounding boxes—WIoU localizes boundaries more precisely,
boosting detection accuracy under challenging conditions and preserving the precision and
robustness required for safety-keeper bolt-loosening detection. A schematic of WIoU is
shown in Figure 4, and its formulation is given below. In the following expressions, Lyyou
denotes the WIoU bounding-box regression loss, Ly is the standard IoU loss, and Ryyoy; is
the distance-attention term. As defined in Equations (3)—(6), (x, y) and (xt, y¢t) are the center
coordinates of the predicted and ground-truth boxes; W, and Hg are the width and height of
their minimum enclosing rectangle; they are detached from the computation graph to prevent
Rwou from producing convergence-hindering gradients, thereby removing this obstacle to
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training; 6 and « are hyper-parameters; 7 is a non-monotonic focusing factor; B represents the

outlier degree. L}, is the loss on the predicted IoU, and Lj,; is the dynamic IoU loss.

Lwiou = RwiouLiou 3)
(x = xg0)” + (v — yg)’
RWIoLI = exp( (inng ¥ Hg) 8t ) (4)
_ B
r= R, (5)
LTOU

IoU

Figure 4. Schematic of the WIoU loss.

By incorporating the DS-EMA attention mechanism and the WIoU loss, the YOLOv8
network is substantially improved, delivering superior detection performance on small tar-
gets in complex backgrounds and providing a reliable foundation for subsequent detection
of bolt anti-loosening lines.

3. An Upgraded DeepLabv3+ for High-Precision Segmentation of
Anti-Loosening Lines

3.1. Improvement of the DeepLabuv3+ Network

DeepLabv3+ is an advanced semantic-segmentation model that has been widely adopted
and delivers outstanding accuracy. Compared with classical semantic segmentation models
such as U-Net or PSPNet, DeepLabv3+ achieves a better trade-off between accuracy and
efficiency, especially in small-object scenarios. Moreover, it is more practical for integration
with YOLO-based detection frameworks than heavier instance segmentation approaches such
as Mask R-CNN, which usually incur higher computational cost. In our task—segmenting
anti-loosening lines on elevator-door safety-keeper bolts—the targets are extremely small with
simple features on a uniform background. The original Xception backbone is overly complex,
and its depthwise-separable convolutions transmit limited cross-channel information, leading
to sub-optimal performance on tiny targets. Moreover, the Atrous Spatial Pyramid Pooling
(ASPP) module uses large dilation rates (6, 12, 18), which markedly reduce sensitivity to small
objects and fail to meet real-time, high-precision demands.

To address these issues, we make three structural modifications: (i) replace the Xception
backbone with the lightweight MobileViT network, which efficiently captures global semantics;
(ii) insert an efficient Global Attention Mechanism (GAM) into both shallow and output layers
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of MobileViT to strengthen small-object representations; and (iii) reduce dilation rates in the
ASPP module to 1, 2, 3, better adapting the network to tiny-target segmentation.

3.1.1. MobileViT Backbone Design

MobileViT is a lightweight yet powerful feature extractor that fuses MobileNet convo-
lutions with a vision Transformer, reducing parameters while still capturing global context.
As illustrated in Figure 5, the architecture comprises three parts: an initial convolutional
stem, a core MobileViT-Block stack, and a final output head. The stem reduces spatial reso-
lution and increases channel depth by standard convolution and down-sampling, enabling
subsequent blocks to extract features more efficiently.

Input
[—» MobileViT Block ﬂ
Output
ﬂ—{ Global Average Pooling ]d—{ Conv ]4— MobileViT Block <—m<— MobileViT Block

Figure 5. Overall MobileViT backbone architecture.

The MobileViT Block—shown in Figure 6—first applies a 3 x 3 convolution to extract
local features, followed by a 1 x 1 convolution for channel expansion. A Transformer
self-attention layer then captures global semantics and fuses spatial information. Finally,
an inverse reshaping restores spatial size, a 1 X 1 convolution adjusts channels, and a
residual connection is added. This interplay of local and global cues enhances fine-feature
representation while keeping the parameter budget low, making MobileViT ideal for our
tiny-target segmentation task.

MobileViT Block

~
Upscaling N =
[ Conv 3x3 ]~—[ Conv 1x1 ]1—>W—> =
Data Blocking \
N N ~
S
Lo | —
MLAAISEER tures

Input Featurcs 00 [

Figure 6. Internal structure of a MobileViT block.

Transformer

In addition, MobileViT employs an MV2 inverted-residual block: a 1 x 1 expansion,
a depthwise-separable convolution for high-dimensional processing, and a 1 x 1 pro-
jection that fuses features and forms a residual link to the input (Figure 7). This design
increases non-linear capacity while lowering computation, satisfying both lightweight and
performance requirements.

S e () R R I

!

Figure 7. Structure of the MV2 inverted residual block, which is employed as a component within
the MobileViT backbone.
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3.1.2. Introduction and Enhancement of the Global Attention Mechanism (GAM)

To further boost sensitivity to small targets, we inject the Global Attention Mechanism
(GAM) [26] into both shallow and output layers of MobileViT. The GAM comprises a
channel-attention module and a spatial-attention module.

Channel attention. The input tensor is reshaped to 3-D form (C x H x W) to preserve
cross-dimensional cues. A multilayer perceptron (MLP) models dependencies across
channel, height, and width, produces a non-linear attention map, and multiplies it element-
wise with the input to yield channel-enhanced features.

Spatial attention. Taking the channel-enhanced tensor as input, the original GAM uses
two 7 x 7 convolutions for spatial fusion. Given mobile-platform constraints, we replace
them with two 3 x 3 dilated convolutions. This substitution preserves the receptive field
while cutting parameters and FLOPs, thus improving real-time efficiency.

The modified GAM architecture is shown in Figure 8. Its inclusion markedly increases
MobileViT’s focus on anti-loosening-line features and, despite fewer parameters, further
raises segmentation accuracy.

[ |l aveaw |

Input Feature Map F1 Input Feature Map F2 Output Feature Map

Figure 8. Modified GAM attention architecture integrated into MobileViT, highlighting the global
attention mechanism’s role in enhancing segmentation accuracy.

3.1.3. Parameter Optimization of the ASPP Module

A hallmark of DeepLabv3+ is its Atrous Spatial Pyramid Pooling (ASPP) module,
which employs multiple atrous convolutions with different dilation rates to capture multi-
scale context and greatly enhance segmentation. The conventional ASPP uses large dilation
rates (typically 6, 12, 18); Given an input feature x, an output y, kernel size k x k, and
dilation 7, the atrous convolution at position i is:

ylil= Y x[m] wln] @)

m+n-r=i

where w(n] is the kernel weight, m indexes the input, and n indexes the kernel position.
Increasing r enlarges the receptive field but also widens pixel spacing, giving a sparse
sampling pattern suited to large objects or semantically rich regions.

Our anti-loosening lines are tiny, with plain features and backgrounds. Large dilation
rates (6, 12, 18) make the kernel cover excessive area, drowning small-object cues in
background and diminishing sensitivity. To remedy this, we lower the dilation rates to 1, 2,
3, yielding the following revised ASPP formulation:

ylil= Y x[m]-wlnlre{1,2,3} ®)

m+n-r=i

For 3 x 3 kernels: r = 1 yields a 3 x 3 receptive field (spacing 1); ¥ = 2 expands it to
5 x 5 (spacing 2); r = 3 extends it to 7 x 7 (spacing 3).

These smaller rates shrink the receptive field and sample more densely, allowing the
network to focus on local structures and avoid losing fine details.
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The revised DeepLabv3+ architecture (Figure 9) cuts parameters and computation
while markedly improving small-object feature extraction, making it well-suited for seg-
menting safety-keeper bolts.

Encoder Decoder

Slnllo\\ Features

L
MOblleVlT Block

Output

[ Conv ]4-1 Global Average Pooling ]4{ Conv ]4— MobileViT Block 4— MobileViT Block

Deep Features

Figure 9. Revised DeepLabv3+ architecture incorporating the MobileViT backbone, GAM attention,
and optimized ASPP for small-object segmentation.

3.2. Looseness Determination Method

The study involves two types of fasteners, denoted bolt 1 and bolt 2. Bolt 1 is a single
screw that mates with a pre-tapped hole in the landing door structure, whereas bolt 2 is
more complex and consists of a bolt, a square nut, a spring washer, and a plain washer.
Because the nut and washers serve only auxiliary anti-loosening functions, looseness is
judged solely by the relative motion between the bolt body and the square nut. In practice,
two anti-loosening lines are painted—one on the bolt head and one on the fastened surface
of the landing door—to indicate the tightening state. Under normal conditions, the two
lines remain parallel; when the joint loosens, the lines deviate by a measurable angle, as
shown in Figure 10.

Bolt Surface

Fastened Surface\

Anti-Loosening-Line

Figure 10. Schematic of the anti-loosening lines on the bolt head.

However, hand-painted lines are irregular and lie on rough surfaces, so direct paral-
lelism assessment is unreliable. The segmentation results of the anti-loosening lines for
bolt 1 and bolt 2 are shown in Figure 11a,b, respectively. To address this issue, the line
regions are first extracted by semantic segmentation. A convex-hull algorithm then yields
the minimum convex polygon enclosing all pixels, after which a rotating-caliper method
fits the minimum bounding rectangle, providing a standardized representation of each
anti-loosening line.
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(b)

Figure 11. Examples of anti-loosening-line segmentation: (a) bolt 1; (b) bolt 2.

As illustrated in Figure 12, once the minimum bounding rectangle has been obtained,
the image-pixel coordinate system—with its origin at the upper-left corner and positive x
and y axes pointing rightward and downward, respectively—is adopted as the reference.
Using the rectangle’s four vertices (wy, hy), (wa, ha), (w3, h3), (wa, he), the lengths of the
two adjacent sides, L1 and L, are calculated as follows:

L1 =4/ Aw% + Al’l%, Awy = Wy, — Wh o7 Ahy = hy,,, — hhmin 9)
Ly = \/Aw + A3, Awy = Wy — Wp_, Ay = hegpy — hp (10)

-
0 D 91 Aw1 : w
S 1
~ |
. 1
\\ L 1
. 1 ! Ahl
N
\ 1
_____ \.\:)_ E— :
\_angel I
N :
~ 1
\\ |
s L1V Ah
0.
H S N N

' ij

Figure 12. Minimum-bounding-rectangle geometry and angel definitions for looseness evaluation.

Based on the above principle, looseness for the two bolt types is determined following
the procedure shown in Figure 13. The thresholds Ay, and 0y, are set to 0.03/0.06 and 15°
for bolt 1 and bolt 2, respectively; the rectangle-selection rule is configured at run time.

To avoid redundancy, the detailed visual demonstration and experimental validation
of each step in the workflow are presented later in Section 5.3.3.
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Segmentation result

Morphological opening

Count connected
components N

| Failure path | | Compute area A | | Fit minimum-bounding rectangles
Select rectangles:
= bolt 1 — largest 2
* bolt 2 — max & min
Yes No i
“ & | Compute angle difference A8 |

I Not loose l [ Loose |
No

Yes

| Loose | | Loose |

Figure 13. Looseness determination workflow, including preprocessing, component counting, area
thresholding, and angular deviation analysis.

4. Experimental Platform and Dataset Construction
4.1. Experimental Platform Setup

Acquiring images of in-service landing door safety keepers requires taking the elevator
out of service and accessing the car roof under the supervision of safety personnel; more-
over, loosened or dropped bolts are rare in the field. To obtain sufficient data—including
diverse conditions (normal, loosened, and missing bolts)—we therefore built a simulated
elevator landing door inspection platform that reproduces the safety keeper location and
the anticipated installation/operating configuration of the system, as shown in Figure 14a.
A representative image of the real landing door and its safety keeper captured inside the
shaft is provided in Figure 14b. During both the simulated and in situ inspections, the
camera and lens were mounted at a fixed distance of approximately 1 m from the safety
keeper. This distance was selected to ensure a clear field of view and stable imaging condi-
tions. The safety-keeper bolts used in both the simulated and in situ platforms are standard
elevator fasteners with a head diameter of approximately 10-12 mm. Due to their small
size, sufficient resolution and an appropriate working distance are required to ensure clear
image acquisition. The bolts to be detected are standard elevator safety-keeper bolts, with
their positions and shapes clearly illustrated in Figure 15.

(b)

Figure 14. Data acquisition scenes: (a) Simulated landing door inspection platform; (b) In-shaft
landing door image with safety keeper.
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Figure 15. Examples of bounding-box annotations: (a) bolt 1; (b) missing bolt and bolt 2.

To satisfy application requirements, the attributes and parameters of the experimental
components are listed in Table 1.

Table 1. List of experimental platform components, including camera, lens, illumination, and
industrial PC, with their key specifications.

Component Model Key Specifications Live Picture
20 MP color CMOS area camera; ) i
Camera MV-C5200-10GC . Resolution 5472 x 3648; s
(HIKROBOT, Hangzhou, China) .
Exposure time 46 u-2.5 s
Focal length 12 mm; F2.4 — F16;
Lens (HIKROI\];[(\)/:['C?—IZQ)I?_lz%GoC China) Image circle ®19.3 mm (1.2”);
! gzhot, Resolution 25 MP
Ilumination MV-C5200-10GC Béllg}ét&‘)e;_s7é%%0£<;
(HIKROBOT, Hangzhou, China) Power 3.4 W
Industrial PC MV-CS200-10GC Intel Core i3-6100; 8 GB
(HIKROBOT, Hangzhou, China) RAM/512 GB SSD

4.2. Dataset Construction and Annotation

By inspecting elevator shafts in dozens of residential buildings, shopping malls, and
schools across Dalian, we collected 440 in situ images of the bolt 1 class (Figure 15a). An
additional 200 bolt 2 images were captured on the simulated platform (Figure 15b). To improve
model generalization, a Mosaic augmentation strategy was applied, expanding the dataset to
1344 images. The data were split into training, validation, and test sets at a 7:2:1 ratio, yielding
1137, 224, and 112 images, respectively. With Labellmg, 648 fasteners were annotated and
assigned to two categories. Semantic segmentation masks were produced with Labelme.

5. Experimental Results and Analysis
5.1. Evaluation Metrics

The experiments were run on an NVIDIA GeForce RTX 4090 GPU (24 GB RAM) and an
Intel Core i9-13900KF CPU @ 2.50 GHz. The software environment comprised Python 3.11.9,
PyTorch 2.2.1, and CUDA 12.4. Training employed the modified DSEW-YOLOv8n.yaml
configuration with a batch size of 32, 300 epochs, and an input resolution of 640 x 640.
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Label smoothing was set to 0.1 to mitigate over-fitting, the learning rate to 0.001, and weight
decay to 5 x 107%.

For bolt detection, six metrics were used: Precision (P), Recall (R), mean Average
Precision at IoU = 0.5 (mAP@0.5), number of parameters, computational cost (GFLOPs),
and frames per second (FPS). Precision is the proportion of correct predictions among all
predictions, whereas Recall is the proportion of correct predictions among all ground-truth

positives; these are computed as:
T,
p

P = (11)
Tp+F
T,
R = P 12
T+ Fy (12)

where T}, is the number of true positives, F, the number of false positives, and Fy the
number of false negatives.
mAP@0.5 is the mean of the Average Precision (AP) for all classes at an IoU threshold
of 0.5, calculated as:
N
mAP = % Y AP; x 100% (13)
i=1
where N is the total number of classes; AP is the area under the precision-recall curve; and
mAP is the mean of all AP values.
For anti-loosening-line extraction, four metrics were adopted: mean IoU (mloU), mean
Pixel Accuracy (mPA), mean Precision (mP), and FPS. The first three measure accuracy,
whereas FPS reflects deployability. The specific calculation formulas are given below:

e

JoUj = — L
YT TP T FP 1+ FN;

(14)

N

1
mloU = =Y " loU; (15)

N
where TP; denotes the number of correctly predicted pixels of class i, FP; the missed pixels
of class i, FN; the misclassified pixels of class i, and N the total number of classes.

mPA evaluates the model at the pixel level and is defined as the mean pixel accuracy
over all classes, where PA; is the pixel accuracy of class i.

TP,
PAj= —— 16
'~ TP+ FP (16)
A=y N pg 17
mPA = 53 ", PA; (17)

mPrecision measures predictive precision; it is obtained by calculating class-wise
precision values and averaging them.

TP;
Precisioni - m (18)
.. 1N - 1
mPrecision = ﬁZizl Precision; (19)

FPS gauges runtime efficiency: a higher FPS indicates faster image processing, where
T denotes the time required to process a single image.

1
FPS = T (20)
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5.2. YOLOuS Experiments for Small-Bolt Detection

To assess the DS-EMA module under different configurations, several comparative
experiments were designed. First, the EMA module was inserted either after the C2f block
in the neck or after the C2f block in the backbone, and its impact on detection—especially
small-object detection—was evaluated. Second, we compared three variants—plain C2f, C2f
+ EMA, and DS-EMA with depthwise-separable convolutions—focusing on improvements
in small-object accuracy.

5.2.1. Effect of EMA Placement

The EMA module was placed either in the neck or in the backbone after the corre-
sponding C2f block; results are summarized in Table 2.

Table 2. Detection results of YOLOv8n with EMA placed at different locations (neck vs. backbone).

Model P (%) R (%) mAP (%) Params/M  FPS/ms FLOPs/G
YOLOv8n 92.2 85.4 90.7 3.0 151 8.1
EMA-neck 91.3 87.2 91.8 2.9 141 8.4

EMA-backbone 93.2 87.1 91.5 3.1 128 8.4

Results show that placing EMA in the backbone slightly reduced Recall and mAP@0.5
compared with placing it in the neck, but Precision rose by 1.9%. Therefore, EMA was fixed
after the backbone C2f block, which offers a better trade-off for tiny-object detection.

5.2.2. Ablation on the Improved EMA Module

To confirm that EMA enhances small-object recognition and that depthwise-separable
convolutions reduce parameters, we compared the plain C2f block, C2f + EMA, and the
DS-EMA variant. Numerical results are listed in Table 3.

Table 3. Ablation results of EMA improvements for bolt detection.

Model P (%) R (%) mAP (%) Params/M  FPS/ms FLOPs/G
YOLOv8n 92.2 85.4 90.7 3.0 151 8.1
EMA-neck 93.2 87.1 91.5 3.2 128 8.4

EMA-backbone 93.4 89.5 92.2 2.8 126 8.5

As shown in Table 3, the baseline C2f achieved an mAP of 90.7%. Adding EMA raised
mAP to 91.5%, and the DS-EMA variant reached 92.2% while further reducing parameter
count under identical compute resources. By integrating depthwise-separable convolution,
DS-EMA not only improves accuracy but also lowers computational complexity, confirming
its effectiveness and practicality for small-object detection.

5.2.3. Bolt-Detection Ablation Study

To verify the effectiveness of our improvements, we compared three variants by sequen-
tially adding the DS-EMA module and the WIoU loss. Results are summarized in Table 4.

Table 4. Ablation study of DSEW-YOLOVS, showing the effect of DS-EMA and WIoU modules on
detection metrics.

Model P (%) R (%) mAP (%) Params/M FPS/ms FLOPs/G
YOLOv8n 92.2 85.4 90.7 3.0 151 8.1
YOLOv8n+DS-EMA 93.4 89.5 92.2 2.8 126 8.5

YOLOv8n+DS-EMA+WIoU 94.8 89.2 93.5 2.8 135 8.5
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As shown in Table 4, inserting DS-EMA into the backbone raised Precision, Recall,
and mAP@0.5 by 1.2%, 4.1%, and 1.5%, respectively, while reducing parameters by 0.2 M.
Replacing the loss with WloU further improved Precision, Recall, and mAP@0.5 by 2.6%,
3.8%, and 2.8% over the previous YOLOv8n baseline. The final model achieved 94.8%
Precision, 89.2% Recall, and 93.5% mAP@0.5, demonstrating reliable performance for
tiny-bolt detection on landing door safety keepers.

To provide a clearer comparison, Figure 16 displays the precision-and-recall curves
before and after the network modifications. The improved network shows a noticeably
steeper initial slope, indicating a higher effective learning rate and a stronger ability to
capture target features than the original model.
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Figure 16. Training curves (baseline vs. ours) for precision, recall, mAP@0.5, and mAP@0.5:0.95.

5.2.4. Comparison with Other Detectors

To demonstrate the superiority of the proposed detector, we compared it with models
of similar size—YOLOv5n, YOLOv6n, YOLOv7-tiny, and YOLOv8n—under identical
datasets and settings.

Table 5 demonstrates that the proposed DSEW-YOLOVS achieves the best overall balance
among all lightweight counterparts. Compared with YOLOv8n, our method improves preci-
sion, recall, and mAP by 1.2, 4.1, and 1.5 percentage points, respectively, indicating markedly
stronger capability in identifying and recalling tiny bolts under challenging conditions. Al-
though FLOPs increase slightly (from 8.1 G to 8.5 G), the parameter count is reduced from
3.0 M to 2.8 M, and the detector still maintains a practical real-time speed of 126 FPS.

When compared with earlier lightweight baselines such as YOLOv5n, YOLOv6n,
and YOLOv7-tiny, our model surpasses them by 7.0%, 6.5%, and 3.0% mADP, respectively,
while only moderately increasing computational cost. Furthermore, even against the
most recent lightweight variants—YOLOv9-tiny and YOLOv11ln—our method remains
competitive: DSEW-YOLOVS achieves a comparable mAP (92.2%), only marginally lower
than that of YOLOv11n (92.3%), while providing a substantially higher recall (1.6 percentage
points higher than YOLOv11n and 0.6 percentage points higher than YOLOv9-tiny). This
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highlights its robustness in minimizing missed detections, which is especially critical for
safety inspection.

Opverall, these results demonstrate that DSEW-YOLOVS achieves an excellent trade-off
between accuracy and efficiency, and is particularly advantageous for real-world inspection
of small targets, especially elevator landing door safety-keeper bolts.

Table 5. Comparison of DSEW-YOLOvV8 with YOLOv5n, YOLOv6n, YOLOv7-tiny, YOLOv8n,
YOLOV9Y-tiny, and YOLOv11n in terms of precision, recall, mAP, parameters, FPS, and FLOPs.

Model P(%) R((%) mAP (%) Params/M FPS/ms FLOPs/G
Yolovbn 86.3 84.4 85.2 2.9 148 7.8
Yolovén 86.5 84.9 85.7 3.3 150 8.0

YOLOV7-tiny 90.1 88.7 89.2 3.1 147 8.2
Yolov8n 92.2 85.4 90.7 3.0 151 8.1
YOLOVY-tiny 93.1 88.9 91.1 3.6 149 8.3
YOLOv1ln 93.5 87.9 92.3 2.6 154 6.5
DSEW-YOLOvVS8 93.4 89.5 92.2 2.8 126 8.5

5.2.5. Visual Comparative Analysis of Bolt-Detection

To visually compare detection performance, we carried out a qualitative analysis
on the curated dataset using both DSEW-YOLOvV8 and YOLOvVS8n, and the results were
visualized (Figure 17). Asillustrated, the proposed model detects more critical bolts than the
baseline and yields no false positives. The visual evidence confirms that DSEW-YOLOv8s
provides stronger bolt-detection capability, avoiding missed detections and delivering a
clear performance advantage.

boltl 0.8

s
G bolt] 0.8 SRS
N — -

| ——

Missed detection |

(@) (b)

Figure 17. Visual comparison of bolt detection: (a) baseline YOLOVS8n; (b) DSEW-YOLOVS, demon-
strating the improved detection of small bolts and reduced missed detections by our method.

5.3. DeepLabv3+ Experiments for Anti-Loosening-Line Segmentation
5.3.1. Ablation Study on Anti-Loosening-Line Segmentation

To validate the proposed DeepLabv3+ improvements for anti-loosening-line segmenta-
tion, we successively evaluated three measures—the MobileViT backbone, GAM attention,
and ASPP dilation optimization. The ablation results are listed in Table 6.

Replacing Xception with MobileViT increased mloU from 80.4% to 82.1%, cut parameters
from 57.6 M to 36.9 M, and boosted FPS from 26.5 to 56.2, confirming that MobileViT improves
both accuracy and efficiency. Adding GAM attention enhanced small-target sensitivity, raising
mloU to 84.6% and mPrecision to 89.3%; parameters increased slightly to 38.5 M and FPS
decreased marginally to 53.9. Finally, optimizing ASPP dilation pushed mloU to 85.8%,
mPrecision to 92.9%, and mPA to 90.5%, with negligible changes in parameters and FPS.
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Table 6. Ablation study of improved DeepLabv3+ network for anti-loosening-line segmentation,
showing the effect of MobileViT, GAM, and improved ASPP optimization.

Model mloU (%) mPA (%) Params/M mP FPS/ms
DeepLabv3+ 80.4 85.5 57.6 80.1 26.5
DeepLabv3+&MobileViT 82.1 87.4 36.9 85.5 56.2
DeepLabv3+&MobileViT&GAM 84.6 88.3 38.5 89.3 53.9
DeepLabv3+&Mobile ViT&GAM&I-ASPP 85.8 90.5 38.5 92.9 53.7

5.3.2. Visual Comparative Analysis of Anti-Loosening-Line Detection

To visually compare segmentation performance, the baseline DeepLabv3+ and the im-
proved model were applied to the same dataset, and the results are visualized in Figure 18.
The baseline output exhibits two typical failures—Missing edge, where the tip of the anti-
loosening line is lost, and Distractors, where stains or scratches are falsely segmented
as lines. In contrast, the proposed model produces continuous, complete anti-loosening
lines and effectively suppresses background noise. These visual findings confirm that the
improved network is more robust and precise, substantially reducing both false negatives

and false positives in anti-loosening-line segmentation.

Distractors

Figure 18. Visual comparison of anti-loosening-line segmentation: (a) baseline DeepLabv3+; (b) im-
proved model.

5.3.3. Looseness Determination Results

Based on the workflow described in Section 3.2, we conducted experiments to verify
the effectiveness of the proposed looseness determination method. The preprocessing
and analysis pipeline, including binarization, morphological opening, and connected-
component extraction, is illustrated in Figure 19. These results demonstrate how the
workflow is applied in practice and how looseness of different bolt types is determined
under real inspection conditions.

(a) (c)

Figure 19. Preprocessing steps: (a) binarization; (b) erosion; (c) dilation. These steps correspond to
the initial stages illustrated in Figure 13.

The segmentation mask is first converted to grayscale and binarized with an empirical
threshold of 20, suppressing background noise while preserving the line features. A single
morphological opening (erosion 20 x 20 followed by dilation 15 x 15) is then applied to
the binary image to eliminate residual artifacts, as shown in Figure 19.
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If no connected component remains after opening (N = 0), the anti-loosening line is
considered occluded or absent, and the image is routed to the failure path. For images with
N # 0, all contours are extracted via connected-component analysis (cv2.findContours),
and two cases are distinguished.

(1) N =1—single-line case

Let A be the number of line pixels and At the total number of pixels; the pixel ratio is

defined as
A

" Aot
The decision threshold depends on the fastener type: ry,, = 0.03 for bolt 1 and 0.06 for

r (21)

bolt 2. If r > ry,,, the joint is classified as not loose; otherwise, it is loose. This rule handles
both complete-loop and partially occluded cases.
(2) N > 2—multi-line case

Each component is fitted with a minimum-bounding rectangle using cv2.minAreaRect,
and the angle 6 between its long edge and the W-axis is computed. For bolt 1, the two
rectangles with the largest areas are selected and their angle difference is calculated as

A8 = |0, — 6y (22)

Figure 20 visualizes this step: the two anti-loosening lines are tightly enclosed, their
long-edge orientations being 30.77° and 90.00°, i.e., AB =59.23°. A value of Af >15° is
interpreted as loose; otherwise, the joint is not loose.

Angle: 90.00 degrees

Angle: 30.77 deqreea

Figure 20. Multi-line case (N > 2): min-area rectangles and angle difference.

For bolt 2, the rectangles with the smallest and largest W-coordinates—corresponding
to the bolt head and the fastened surface—are retained, and Af is computed in the same
manner. Figure 21 illustrates the multi-rectangle selection: green boxes denote candidates,
whereas blue and red boxes mark the rectangles at Wi, and Wiax. The resulting Af =9.01°
is below the threshold; hence, the joint is classified as not loose.

Figure 21. Bolt-2 multi-rectangle selection and angle calculation.
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5.3.4. Overall Experimental Results

Looseness was assessed on the entire dataset using four binary-classification metrics:
mean Intersection-over-Union (Mj,;), mean classification accuracy (Mc4), mean precision
(Mp), and mean recall (MR). These metrics are widely adopted [14] and provide a comprehen-
sive assessment of model performance. Their formulations are given in Equations (23)—(26).

1 nrp nTN
My = = + 23
ol =3 ( nrp +npy +1npp  MTN + NEp + NEN @)
1 nrp nTN
Mca = = + 24
AT 2\ npp+npy | onrN + ”FP> @)
1 nrp nrN
P + 25
P 2 urp+npp | nrn +nEN @)
1 nrp nTN (26)

K7 2 npptnpn | non +npp

In these equations, ntp, nrp, npN, nN are the entries of the 2 x 2 confusion matrix:

true positives (correctly predicted “not loose”), false positives (incorrectly predicted “not

loose”), false negatives (incorrectly predicted “loose”), and true negatives (correctly pre-

dicted “loose”), respectively. The confusion matrix aggregated over both fastener types is
summarized in Table 7. The resulting metrics are listed in Table 8.

Table 7. Quantitative results of looseness determination for bolt 1 and bolt 2.

Decision Outcomes nrp nrp NEN nTN
Bolt 1 98 21 435 4
Bolt 2 57 12 273 2

Table 8. Evaluation metrics for bolt-loosening determination of two fastener types (bolt 1 and bolt 2).

Evaluation Metrics Miou Mca Mp Mg
Bolt 1 0.926 0.913 0.954 0.937
Bolt 2 0.917 0.965 0.958 0.963

As reported in Table 8, the model achieves outstanding detection accuracy for both
bolt 1 and bolt 2. For bolt 1, the model yields an My, of 0.926, an Mc4 of 0.913, an
Mp of 0.954, and an My > of 0.937, indicating high accuracy and stability in looseness
recognition. For bolt 2, the corresponding scores are 0.917 (Mjo7), 0.965 (Mc4), 0.958 (Mp),
and 0.963 (Mp), demonstrating the model’s robustness when dealing with more complex
assemblies involving nuts and washers.

6. Conclusions

Two dedicated algorithms are proposed for elevator landing door maintenance: an
enhanced YOLOVS for small-bolt detection and an upgraded DeepLabv3+ for high-precision
segmentation of anti-loosening lines. Targeted architectural and algorithmic optimizations
yield significant gains in detection accuracy, segmentation quality, and computational efficiency.

For tiny-bolt detection, YOLOVS8 was refined into the DS-EMA model by introducing
depthwise-separable convolutions and an Efficient Multi-scale Attention (EMA) module.
The EMA block markedly improves small-object precision—achieving about a 2.8% increase
on bolt heads and painted lines—while preserving high inference speed and low com-
putational cost. In comparative experiments, DS-EMA also surpasses recent lightweight
detectors such as YOLOv9-tiny and YOLOv11n, delivering notably higher recall, which is
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especially critical for safety inspection. Consequently, YOLOVS attains superior accuracy
and real-time performance in landing door bolt inspection.

For anti-loosening-line segmentation, an improved DeepLabv3+ was developed by
adopting a MobileViT backbone and integrating a Global Attention Mechanism (GAM).
Experiments demonstrate significant improvements in Mj,1;, Mc 4, Mp and Mg, confirming
the superiority of the modified DeepLabv3+; computational efficiency is likewise enhanced,
enabling accurate and fast extraction of anti-loosening lines on elevator landing doors.

Comparative studies against mainstream lightweight detectors and segmenters show
that the enhanced YOLOv8 and DeepLabv3+ achieve state-of-the-art accuracy while main-
taining an excellent balance between speed and model size.

In summary, the improved YOLOv8 and DeepLabv3+ perform robustly on landing
door bolt detection and line segmentation, providing practical value for real-world elevator
safety inspection. Future work will focus on improving robustness in more complex
industrial scenarios, including adaptation to diverse elevator models and resistance to
noise, stains, and occlusion.
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