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Abstract

Industrial environments frequently rely on analog control instruments due to their relia-
bility and robustness; however, automating the interpretation of these controls remains
challenging due to variability in design, lighting conditions, and scale precision require-
ments. This research investigates the effectiveness of Vision-Language Models (VLMs)
for automated interpretation of industrial controls through analysis of three distinct ap-
proaches: general-purpose VLMs, fine-tuned specialized models, and lightweight models
optimized for edge computing. Each approach was evaluated using two prompting strate-
gies, Holistic-Thought Protocol (HTP) and sequential Chain-of-Thought (CoT), across a
representative dataset of continuous and discrete industrial controls. The results demon-
strate that the fine-tuned Generative Pre-trained Transformer 4 omni (GPT-40) significantly
outperformed other approaches, achieving low Mean Absolute Error (MAE) for continuous
controls and the highest accuracy and Matthews Correlation Coefficient (MCC) for discrete
controls. Fine-tuned models demonstrated less sensitivity to prompt variations, enhancing
their reliability. In contrast, although general-purpose VLMs showed acceptable zero-shot
performance, edge-optimized models exhibited severe limitations. This work highlights the
capability of fine-tuned VLMs for practical deployment in industrial scenarios, balancing
precision, computational efficiency, and data annotation requirements.

Keywords: Vision-Language Models; industrial control interpretation; fine-tuning; prompt
engineering

1. Introduction

Industrial control systems form the backbone of modern manufacturing and automa-
tion, where precise interpretation of analog controls is essential to ensure operational
integrity and safety. Industrial environments employ diverse instrumentation, ranging
from basic pressure gauges to sophisticated multi-parameter monitoring systems [1]. De-
spite the proliferation of digital instrumentation and Industry 4.0 initiatives, analog controls
are prevalent in industrial settings due to their inherent reliability, mechanical robustness,
and cost-effectiveness [2]. The persistence of these analog instruments, however, presents
significant challenges for automation initiatives, as their manual interpretation remains
labor-intensive, susceptible to human error, and poses considerable obstacles to integra-
tion with current automated monitoring systems and industrial Internet of Things (IIoT)
frameworks [3].
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Automated interpretation of analog controls encompasses a complex set of technical
challenges that span multiple domains of Computer Vision (CV) and Machine Learning
(ML). These challenges include non-uniform illumination, specular reflections that obscure
readings, heterogeneous control designs with varying scales and units, and the need for
high-precision measurements [4]. Traditional CV methodologies, including techniques
such as Hough transforms for circle and gradient-based edge detection, have demonstrated
significant limitations in addressing these variations [5]. These approaches particularly
struggle with legacy equipment featuring non-standardized designs, varying scales, and
degraded visual elements, common in industrial settings with equipment spanning multi-
ple decades of deployment [6]. Even specific Deep Learning (DL) implementations, like
Convolutional Neural Networks (CNNs), that have exhibited remarkable capabilities in
complex image recognition and interpretation tasks [7], face significant challenges: they
often demand high computational resources, struggle with cross-domain generalization
across diverse control types, exhibit performance degradation under varying environmental
conditions, and necessitate extensive gauge-specific training datasets [8,9]. Beyond techni-
cal performance metrics, integrating these solutions into existing industrial infrastructure
presents further challenges encompassing system reliability, maintenance requirements,
and compatibility with existing industrial communication protocols and control systems,
particularly in brownfield installations where legacy systems predominate [10]. A research
gap thus persists in developing inclusive solutions for industrial control interpretation that
successfully balance robustness, efficiency, and adaptability.

Recent work by Bommasani et al. [11] on foundation models has presented novel
opportunities for addressing these challenges in industrial control interpretation, since
they can transfer knowledge across different applications without extensive retraining.
Pre-trained on diverse domains, Vision-Language Models (VLMs) demonstrate promising
capabilities in zero-shot and few-shot learning scenarios that could circumvent the need for
control-specific training data [12]. These models exhibit remarkable semantic understand-
ing capabilities, facilitating more robust interpretation across varying control designs and
environmental conditions; however, the computational demands of such models present
significant implementation challenges in resource-limited industrial environments [13]. The
emergence of specialized edge-computing VLMs offers a compelling direction for practical
deployment scenarios. Recent advances in model quantization, neural architecture search,
and hardware-aware model design have enabled the development of compact yet powerful
VLMs suitable for edge deployment [14]. Furthermore, Matryoshka representation enable
the extraction of multiple model variants from a single trained model, allowing adap-
tive computational allocation based on real-time resource constraints without sacrificing
performance [15].

This work presents several contributions to the domain of industrial control inter-
pretation. This study advances the field through a global comparative analysis across
three distinct methodological approaches: (1) general-purpose VLMs in their base config-
uration, evaluating their capabilities and limitations in control interpretation tasks; (2) a
domain-specialized fine-tuned variant of these models, optimized for industrial control
interpretation; and (3) edge-computing solutions. Moreover, this research encompasses
two critical dimensions of prompt engineering: Holistic-Thought Protocol (HTP) versus
sequential Chain-of-Thought (CoT) approaches, providing insights into optimal interaction
strategies. This in-depth analysis yields detailed insights into each approach’s operational
characteristics and limitations, concluding in a decision-making methodology for selecting
better interpretation strategies based on specific industrial requirements.
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2. Related Work

Automating analog gauge reading has evolved from classical CV methods to sophisti-
cated DL-based frameworks. Early approaches relied on hand-crafted feature extraction,
e.g., detecting gauge outlines and needles via Hough transforms or edge detection, com-
bined with geometric reasoning to infer readings [16,17]. However, such methods proved
fragile under real-world glare, variable lighting, and diverse dial designs [18]. To over-
come these limitations, recent works have turned to data-driven DL models. For example,
Sun et al. introduced a multi-stage CNN-based framework for robust pointer meter read-
ing under challenging conditions [19]. Their system uses an object detector (YOLOv4)
to localize the gauge, then applies semantic segmentation to isolate the pointer, Optical
Character Recognition (OCR) to read scale markings, and a custom CNN to regress the
needle angle, ultimately calculating the meter value. This approach achieved high accu-
racy and robustness in industrial scenarios by decomposing the problem into subtasks
handled by specialized DL models, outperforming earlier single-stage methods. Similarly,
Laroca et al. developed an Automatic Meter Reading (AMR) system that utilizes CNNs
to recognize discrete meter displays (e.g., digital or dial counters) with high accuracy [20].
They designed a two-stage pipeline: a Fast-YOLO detector first identifies the meter region,
and then a CNN reads the meter digits. A notable contribution of Laroca’s work was the
introduction of the UFPR-AMR dataset with 2000 annotated meter images along with data
augmentation techniques to expand training examples. This dataset and synthetic augmen-
tation enabled the training of robust models. They demonstrated that state-of-the-art results
could be achieved with as few as 200 real training images, mitigating the longstanding
issue of limited public data. Data scarcity remains a challenge; as Alcazar et al. observe,
analog gauge datasets are still relatively small and costly to annotate compared to standard
vision benchmarks [4]. To address this, the authors proposed generating synthetic training
data for gauges. They created a realistic synthetic dataset of analog gauge images with
ground-truth annotations. They used it to train a two-stage CNN pipeline that detects
key gauge components and predicts the needle angle. When evaluated on a real-world
dataset of 4813 industrial gauge images, their method significantly outperformed prior
methods, reducing average reading error by 4.55° (a 52% relative improvement). This result
underlines how simulation-to-real transfer and domain augmentation can overcome data
annotation bottlenecks. Other recent efforts emphasize the interpretability and reliability of
the reading process. Reitsma et al. developed an interpretable gauge-reading framework
for robotics that splits the task into distinct learned steps (gauge detection, scale recognition,
needle segmentation, and others) [21]. This modular design allows verification at each step,
improving reliability for real-world deployment. Principally, their system does not require
prior knowledge of the gauge type or scale range, enabling broad applicability across many
instruments. They report a relative reading error under 2% in diverse real-world conditions,
demonstrating that a careful combination of DL and geometric reasoning can yield both ac-
curacy and robustness. Despite these advances in CNN-based solutions, challenges remain
in generalizing across different gauge styles and reducing the effort of dataset collection
and annotation for each new instrument type. These challenges motivate the exploration of
more generalizable vision models and few-shot/zero-shot learning approaches.

In parallel with CNN progress, transformer-based architectures and multimodal
models have begun to redefine visual recognition tasks, including those in industrial
domains. The Vision Transformer (ViT) introduced a self-attention-based network for
image classification, dispensing convolution and demonstrating that sufficiently large
transformer models can achieve parity with CNNs on vision tasks [22]. Subsequent
variants like the Swin Transformer (Swin-ViT) adopted hierarchical feature maps and
shifted window attention to improve efficiency and locality, achieving state-of-the-art
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performance on image benchmarks while reducing computation [23]. The ability of
transformers to capture long-range dependencies and global context is especially rel-
evant for complex scenes like control panels, where a model might need to relate the
needle position with distant scale markings on a gauge. Gao et al. investigated the appli-
cation of Large Language Models (LLMs) to spoken language learning, revealing that
while LLMs excel at extracting conceptual knowledge, application tasks requiring com-
plex reasoning remain challenging [24]. Their comprehensive evaluation using various
prompting strategies (zero-shot, few-shot, and CoT) across 20 distinct models showed
that domain-specific fine-tuning significantly improved performance, achieving notable
improvements in accuracy when models were fine-tuned with in-domain examples.
Wang and Shen evaluated causal reasoning capabilities of LLMs across multiple scenar-
ios, finding that most models encounter challenges in causal cognition despite various
prompting schemes [25]. These findings suggest that enhancing cognitive reasoning ca-
pabilities remains crucial for complex industrial interpretation tasks. Beyond vision-only
architectures, VLMs have emerged that jointly learn from images and text in the shape
of captions or labels. Seminal works such as Contrastive Language-Image Pre-training
(CLIP) by Radford et al. [26] and by Jia et al. [27] demonstrated that models trained
with natural language supervision can learn highly transferable visual representations,
enabling zero-shot recognition of new image categories via textual prompts. In CLIP, for
instance, an image of a gauge can be associated with text descriptions (e.g., “a pressure
gauge reading 50 PSI”), and the model can predict which description matches the image
without explicit retraining on gauge data. Such capabilities suggest that pre-trained
VLMs might interpret industrial gauges or indicators using their visual knowledge, even
if they have never seen those devices during training. Recent contributions reinforce
this trend from different angles. Punnaivanam and Velvizhy show that contextual fine-
tuning combined with a classifier layer improves reliability in generative tasks [28], a
principle that can be extended to industrial VLMs where safety and domain consistency
are essential. Trad and Chehab compare prompt engineering against fine-tuning for
phishing detection, finding that task-specific fine-tuned LLMs consistently outperform
base LLMs [29], suggesting that their results parallel the trade-off between prompt-
based strategies and domain-specialized VLMs in other contexts. Yang et al. propose
Conditional Cross-Modal Learning (CoCM), a framework that adaptively fuses visual
and textual caches, achieving improved accuracy and cross-domain generalization [30],
thus aligning with the need for VLMs capable of handling the variability of industrial
environments. Bommasani et al. discuss the potential and pitfalls of these foundation
models, noting their promise for domains like industrial control where domain-specific
data are scarce [11]. The large-scale pre-training imbues them with a general visual
understanding that, in principle, could be specialized to gauge reading with minimal
additional data. Indeed, recent multimodal models are surprisingly capable: Generative
Pre-trained Transformer 4 omni (GPT-40) and Google’s PaLl can perform image under-
standing tasks such as reading clock faces, deciphering handwritten notes, or describing
the content of diagrams in a zero-shot manner [31]. These models combine an LLM
with visual inputs, allowing complex reasoning about images. For example, GPT-40
can answer questions like “What value does this analog gauge show?” by parsing the
image and harnessing world knowledge about gauge semantics. Such reasoning was
previously rare in traditional vision models. However, applying these models to indus-
trial control interpretation is not straightforward. One challenge is prompt engineering,
that is, how to effectively query or instruct the model. A naive prompt might yield
an incorrect or overly general answer. In comparison, a carefully crafted prompt that
guides the model (e.g., asking it to identify the scale, and then, the needle position) can
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significantly improve accuracy. There is active research into multimodal CoT reasoning,
where a VLM is prompted to generate step-by-step “explanations” when answering
visual questions. This approach can help the model break down complex tasks into
intermediate steps, improving the reliability of the final answer [32]. Another challenge
is that the knowledge of these models may not perfectly cover specialized industrial
visuals; for instance, an unusual gauge might confuse a model that has mostly seen
common objects. Fine-tuning the model on a few examples of the new instrument can
help, but fine-tuning large transformers is resource-intensive and risks overfitting if
data are minimal. In summary, transformers and VLMs bring powerful new capabilities,
such as global context, zero-shot recognition, and visual reasoning, so that they could
complement or even replace traditional CNN pipelines for control reading, but careful
adaptation is required to handle industrial applications” specificity and precision needs.

Real-time performance and deployability are critical in industrial monitoring scenarios.
In many cases, models for gauge reading must run on the edge, like embedded systems
or smart cameras on the factory floor, due to latency, bandwidth, or data privacy con-
straints. There is a growing convergence of edge-computing and Artificial Intelligence (Al),
often termed “edge intelligence,” which aims to push complex models closer to the data
source. Deng et al. discuss this trend, emphasizing local visual data processing to reduce
dependence on cloud infrastructure and improve response times [33]. Edge deployment
imposes stringent resource limits: models may need to run on devices with low-power
CPUs or small GPUs/TPUs, handle limited memory, and possibly run multiple tasks simul-
taneously. Stadnicka et al. survey industrial IoT applications and similarly conclude that
efficient algorithms are needed to operate within the resource constraints of edge devices.
This has driven research into model compression and efficiency optimization for vision
tasks. Techniques such as quantization, pruning, and knowledge distillation are frequently
applied to reduce the model size and inference time while preserving accuracy [34,35].
For instance, Lu et al. explore quantization-aware neural architecture search to design
compact DL models tailored for edge deployment [14]. Such approaches can produce a
smaller CNN or transformer that still performs well on gauge reading but can run at higher
frame rates on the device. Another strategy is to use efficient backbone architectures, like
MobileNet [36] or EfficientNet [37], for the vision model in an edge setting. These archi-
tectures are optimized for speed and can transfer effectively to various tasks. Ultimately,
achieving inference efficiency is a balancing act with accuracy. In safety-critical industrial
systems, it may be unacceptable to sacrifice too much accuracy for speed. Therefore, current
research also looks at adaptive techniques, like running a lightweight model on the edge
for continuous monitoring and falling back to a heavier model on the cloud for verification
on uncertain cases. The need for reliability also means edge models must be robust to
operating conditions (e.g., temperature, vibration) and require minimal maintenance. Ef-
forts are underway to validate models under these realistic conditions and ensure real-time
performance does not come at the cost of stability. Overall, edge-computing considerations
now allow the design of industrial Al solutions, ensuring that even advanced models like
VLMs are optimized for deployment without compromising accuracy beyond acceptable
limits [38].

Adapting general-purpose models to the specific domain of industrial controls is
an active area of research. Fine-tuning a pre-trained model on a smaller target dataset
is a common approach to boost performance on domain-specific tasks. Kornblith et al.
showed that models with better ImageNet performance tend to transfer more effectively to
downstream tasks, implying that using a strong backbone, such as a transformer, is a good
starting point for fine-tuning on gauge images [39]. However, fine-tuning still requires
some labeled data from the target domain. To minimize this requirement, researchers
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have explored alternative adaptation methods. Jia et al. proposed visual prompt tuning,
which adjusts a pre-trained vision model to new tasks by modifying its inputs rather than
updating the model’s weights [40]. This technique can align a model to the industrial
domain with minimal training, essentially “teaching” it to pay attention to gauge-relevant
features via crafted input patterns. In cases where even a few real images are hard to
obtain, synthesizing data or leveraging simulation is valuable, as discussed with Alcazar’s
synthetic data approach [4]. Recently, Zeng et al. introduced a framework combining gen-
erative modeling and domain adaptation to tackle few-shot industrial meter reading [41].
They employed a diffusion model to generate varied meter images and a simulation-to-real
adaptation pipeline to fine-tune an object detector for meter dials using only a handful
of real samples. This approach achieved significant performance gains despite minimal
ground-truth data, underlining the power of modern generative Al to fill the data gap in
industrial applications. On the multimodal front, multimodal CoT prompting is another
emerging technique to adapt LLMs for complex visual tasks [31,42]. By guiding a model
like GPT-4o0 to reason stepwise (e.g., first identify what type of control is in the image, then
parse its scale, then determine the reading), one can adapt a general model to the particular
task of gauge reading without any weight updates, as the adaptation happens in the form
of a dialog or reasoning process.

As highlighted in Table 1, a variety of techniques are being explored to adapt foun-
dation models to industrial control understanding, including fine-tuning, prompting,
feature adaptation, and synthetic data augmentation. Each of these strategies poses a
different trade-off between the amount of required domain data, computational cost, and
attainable performance. The comparative view shows that while classical CV and CNN-
based solutions advanced accuracy in specific contexts, they often lacked generalization
power. In contrast, transformer-based and multimodal approaches introduced zero-shot
reasoning and broader adaptability, but at the cost of high computational demand and
prompt sensitivity. The convergence of these research streams now sets the stage for
integrated solutions. Yet, studies comparing these approaches in a unified industrial con-
text remain scarce. Addressing this gap, the present work examines vision-based gauge
reading, foundation model integration, edge computing, and fine-tuning within a single
comparative framework.

Table 1. Summary of current approaches for analog and digital control interpretation.

Work Advantages Disadvantages Notes
Classical CV methods
[16,17] Simple CV with Hough/edges, low Fragile to glar?, ll.g.htmg, design Farly baselines
compute cost variability
[18] Geometric fitting improves detection Still limited under Emphasis on geometric reasoning

robustness

real-world variability

CNN-based and modular DL approaches

Multi-stage CNN, high accuracy in

Requires multiple models, training

[19] industry data Strong industrial deployment
CNN for AMR, public dataset Needs annotated data, limited gauge . o

[20] (UFPR-AMR) types Dataset + augmentation contribution

[4] Synthetic dataset, sim-to-real transfer Domain gap remains 52% error reduction vs. prior methods

Modular interpretable pipeline,

211 stepwise reliability

Multi-step complexity, still
CNN-dependent

Reliable, error < 2%
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Table 1. Cont.

Work Advantages

Disadvantages

Notes

Transformers, VLMs, and adaptation

[22,23] ViT/Swin capture global context

Resource-intensive, needs pre-training

Basis for transformers in vision

CLIP-style VLMs,

[26,27] zero-shot recognition Limited industrial coverage Strong transfer, prompt-sensitive
[24] Promfetisflor:i:;r;r;i ;:25 roves Application tasks remain difficult Evidence Of:e (:22;2 adaptation
[25] Systematic evalugtlon of causal Models still weak in causal cognition Highlights reasoning limits
reasoning
[28] Corl;toe;;lsarlefllir;f)-ﬁ?tr;ng Extra training needed Safety-critical relevance
Fine-tuning vs. Parallel with VLM adaptation
[29] prompting comparison Prompt-only underperforms trade-offs
[30] CoCM adaptive fus1qn improves Complexity in implementation Better handl{ng. (?f industrial
cross-domain variability
[31,32] GPT-40, PaLl mu} timodal CoT Prompt sensitivity, high compute First multimodal reasoning examples
reasoning
[41] Diffusion + sim-to-real few-shot Compute-heavy, synthetic data Shows generative adaptation potential

quality

3. Methodology

This section presents the systematic approach to evaluating VLMs for industrial control

interpretation across diverse implementation scenarios. The following methodology em-

ploys a comparative framework examining three distinct approaches: (1) general-purpose

VLMs in their base configuration to assess inherent reasoning capabilities, (2) a fine-tuned

variant trained on industrial control images, and (3) IoT models designed for resource-

limited environments. Moreover, two prompting strategies are evaluated for each approach:

a single prompt with a Holistic-Thought Protocol (HTP) approach, and a sequential CoT

strategy. The following subsections detail the experimental setup, implementation specifics,

and the evaluation framework used to quantify performance across these dimensions.

3.1. Experimental Setup

A mixed dataset comprising continuous and discrete control types collected from

publicly available internet sources [43] facilitates a thorough evaluation of VLM capabilities

in industrial control interpretation. Table 2 summarizes the dataset composition and

annotation scheme that underpin the evaluation. The dataset consists of 122 continuous

controls, such as pressure gauges and thermometers, and 127 discrete controls, switches

with distinct operational states, totaling 249 industrial control samples. Images vary in

resolution, quality, lighting conditions, and viewing angles, accurately representing the

variability encountered in real-world industrial monitoring scenarios. Continuous controls

span diverse measurement ranges, from micro-scale [0-0.1] to industrial-scale [0-800]

units, and represent various physical quantities, including pressure, temperature, and

flow indicators. Conversely, discrete controls encompass binary, such as ON/OFF, and

multi-position selectors. This heterogeneity in image characteristics provides a challenging

testbed that reflects actual deployment conditions, where standardized image acquisition is

rarely possible, and models must interpret controls across varied visual presentations and

environmental conditions. As illustrated in Figure 1, possible industrial controls include

both continuous measurement devices (i.e., gauges and dials) and discrete state indicators

(i-e., switches and selectors).
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Table 2. Summary of dataset composition and annotation scheme.

Control Type Samples Measurement Range/States Annotation Fields
(a) Micro-scale [0-0.1] units (a) annotated_value
Continuous 122 (b) Industrial-scale [0-800] units (b) range_min
(c) Pressure, temperature, flow (c) range_max
) (a) Binary (ON/OFF) (a) annotated_state
Discrete 127 (b) Multi-position selectors (b) available_states

H' v‘::__ezs s s8-8 E

"
iy
Wil

Figure 1. Representative samples from the industrial control dataset showing an analog pressure
gauge pointing at value 32, a temperature dial indicating 20 °C, a toggle switch in OFF position, and
a pressure gauge at position 0 (from top to bottom, left to right).

A JSON-based methodology to capture each control type’s characteristics has been
implemented for annotation and ground truth establishment. Continuous controls were
annotated with three key parameters: the precise numerical reading (“annotated_value”)
and the scale’s minimum and maximum values (“range_min” and “range_max”) to provide
contextual boundaries for measurement interpretation and later evaluation. For example, a
pressure gauge reading 0.22 MPa with a scale ranging from 0 to 1 MPa would be annotated
accordingly to enable normalized error calculations during evaluation. Discrete controls
were annotated with their current state (“annotated_state”) and a list of all possible states
(“available_states”), enabling assessment of state classification performance. For instance,
a toggle switch would include annotation of its current position (e.g., “OFF”) along with all
valid states (e.g., [“OFF”, “ON”"]). This annotation structure directly informed the evaluation
metrics, enabling quantification of interpretation performance across control types.

To address the variability in industrial control interpretation and enhance model eval-
uation robustness, image augmentation using the Albumentations Python library [44] has
been integrated. The augmentation pipeline was designed to simulate real-world conditions
encountered in industrial environments where lighting, viewing angles, and image quality
vary considerably. The implementation included multiple transformation categories: noise
variants to simulate camera sensor limitations and poor lighting conditions, blur effects to
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mimic focus issues and camera movement, lighting variations to represent diverse illumi-
nation scenarios, and small rotations for different viewing perspectives. This augmentation
strategy was essential for increasing the statistical significance of the performance metrics
and ensuring that model comparisons reflect real-world deployment conditions where
image quality and environmental factors significantly impact interpretation accuracies,
such as variable lighting conditions or camera resolution. Figure 2 demonstrates the ap-
plication of these transformations to a sample control image, simulating common visual
challenges encountered in industrial environments, such as poor lighting, camera move-
ment, and sensor noise. Industrial settings present changing conditions. This research
evaluates model robustness against temporal lighting changes, equipment vibration, and
sensor degradation.

A systematic process is necessary for comparing models and prompting strategies
consistently. This research follows a clear pipeline: data preparation, model selection,
prompting strategy implementation, and performance evaluation. Figure 3 illustrates this
complete methodological framework. The diagram outlines the key components, from the
dataset preparation pipeline to the final evaluation that allows for systematic comparison. It
shows the three model categories under review, the two implemented prompting strategies,
and the framework for analysis.

For domain-specific optimization, fine-tuning on the gpt-40-2024-08-06 model using a
subset of 50 industrial control images was conducted, balanced between 25 continuous and
25 discrete control types, ensuring no overlap with the evaluation dataset. This fine-tuning
dataset was deliberately constrained in size to reflect practical limitations in industrial
environments, where collecting and annotating large volumes of domain-specific data
is often resource-intensive or impractical. Furthermore, according to OpenAl’s official
documentation, a dataset comprising 50 images is considered more than adequate for
successful fine-tuning outcomes.

. =
'/////ll TR

Figure 2. Output example of an augmented image after applying Gaussian noise, motion blur,
changes in hue and saturation, and changes in brightness and contrast (from top to bottom, left
to right).
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Industrial Control Dataset
249 images

Data preparation

Annotation + Augmentation

Fine-tuning subset

50 images

Evaluation dataset

199 images [7 Fine-tuned 6PT-40 J

l J
I

[ Model evaluation ]

- Fine-Tuned

Three model categories
- General-Purpose VLMs
- Edge-Optimized VLMs

Two prompting strategies

- HTP
- CoT

- Continuous: MAE, RMSE, PFSE
- Discrete: Accuracy, MCC

Performance metrics }

Comparative analysis and
recommendations

Figure 3. System architecture and methodological pipeline with key components of the experimental
setup: dataset preparation, model categories, prompting strategies, and evaluation framework.
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The models were chosen to capture current VLM capabilities for industrial control
interpretation. General-purpose models provide a benchmark for zero-shot reasoning and
broad visual understanding. At the same time, the domain-specialized fine-tuned GPT-40
underscores how minimal but targeted training can substantially enhance performance in
specific industrial tasks. On the other hand, including edge-optimized models highlights
the practical challenges and constraints associated with deploying these systems in these
specific environments. This selection ensures that the evaluation measures peak interpreta-
tive accuracy and addresses real-world considerations such as computational efficiency,
scalability, and robustness under variable industrial conditions.

3.2. Implementation Details

This study’s implementation framework encompasses three distinct model cate-
gories, each representing different deployment scenarios for industrial control interpre-
tation. The first category consists of general-purpose VLMs in their base configuration,
including GPT-40, Claude 3.7 Sonnet, and others, accessed through their provider Ap-
plication Programming Interfaces (APIs). These models represent the “off-the-shelf”
approach requiring no domain adaptation. The second category comprises a domain-
specialized fine-tuned variant of the gpt-40-2024-08-06 model, adapted to industrial
control interpretation. The third category features IoT models designed for restricted
environments, usually deployed on devices such as Raspberry Pi. Standardized in-
put/output processing protocols have been implemented for each model category to
ensure consistent handling of visual inputs and response parsing. This implementation
approach enables an overall evaluation across the spectrum from high-capability models
to efficient edge deployments, reflecting the diverse computational constraints encoun-
tered in real-world industrial monitoring scenarios. All implementations used a uniform
Python 3.13.7-based evaluation framework with standardized testing procedures to
ensure reproducibility and fair comparison.

For the evaluation of base VLMs, GPT-40 [45], GPT-40 mini, Claude 3.7 Sonnet [46],
Molmo 7B [47], and LLaVA v1.6 Vicuna 13B were analyzed [48] as representative general-
purpose VLMs. All models were configured with a temperature setting of 0.1 to minimize
non-deterministic response variability. The implementation framework established a stan-
dardized communication protocol for all API interactions, consisting of specific message
formats with text prompts accompanied by base64-encoded image data. GPT-40 and GPT-
40 mini models were accessed via the OpenAl client library, while the remaining were
accessed through the Replicate APL

A fine-tuned model using the OpenAlI API fine-tuning endpoint with the gpt-4o-
2024-08-06 base model was created for domain-specialized model development. This
approach needs the data to be prepared in JSONL format. Each training example was
outlined as a conversation sequence with three components: a system message defining
the task scope (e.g., “You are an assistant that identifies industrial control panel values
from images, either regression (continuous values) or classification (discrete classes)”), a
user message containing the control image encoded as a base64 string or hosted URL
with appropriate detail parameters, and an assistant message containing the expected
reading (e.g., “off” for a discrete control or “—36.5” for a continuous measurement).
The fine-tuning procedure employed supervised learning following OpenAl’s recom-
mended best practices for automatic hyperparameter selection. OpenAl’s fine-tuning
API automatically determines optimal hyperparameters based on dataset characteristics,
including learning rate multiplier, batch size, and epoch count, without exposing these
values to users. This approach ensures that training parameters are optimized for the
specific dataset size and complexity rather than using arbitrary fixed values. The training
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process utilized the default supervised method with automatic hyperparameter selection
for the 50-sample dataset.

Fine-tuning process utilized a dataset of 50 industrial control images balanced evenly
between continuous and discrete types. The fine-tuning optimization follows a supervised
learning approach that minimizes the negative log-likelihood loss function across the
training dataset (1):

1 N
Lfineftune = _N Zlogp(yi|xi/ L, Gft) 1)
i=1

where N represents the total number of training samples (50 in this implementation), x;
denotes the textual prompt for sample i, [; represents the corresponding industrial control
image, y; is the expected interpretation output, and 6; represents the fine-tuned model
parameters. The probability P(y;|x;, I;, 0f;) captures the model’s likelihood of generating
the correct interpretation given the multimodal input. The optimization process updates
the pre-trained parameters 60y, to 0, through gradient descent (2):

Gft = Opase — UVGLfineftune 2)

where # represents the learning rate multiplier provided by OpenAl’s default hyperparam-
eter configuration.

The fine-tuning resulted in a specialized model (identifier: ft:gpt-40-2024-08-06:personal::
B4uGYpNL) optimized for industrial control interpretation tasks.

For edge-optimized model evaluation, several VLMs were examined, including Moon-
dream? [49], SmolVLM-Instruct [50], PaliGemma 3B [51], and Bunny-Phi-2-SigLIP [52]. These
models represent different approaches for the efficiency/accuracy trade-off inherent in IoT
deployment scenarios. Moondream?2 and SmolVLM-Instruct are architected explicitly for
IoT applications with minimal computational footprints, while PaliGemma 3B represents
Google’s approach to efficient multimodal reasoning with a 3 billion parameter architecture
and 224 x 224 pixel input resolution. Bunny-Phi-2-SigLIP offers another efficiency-oriented
configuration combining the lightweight Phi-2 language model with the SigLIP vision encoder.

For prompting strategy implementation, two distinct approaches to industrial control
interpretation have been applied, as depicted in Figure 4. The HTP strategy implements
a single-interaction methodology through an XML-based prompt containing multiple
interrelated components: task definition, visual analysis guidelines, step-by-step instruc-
tions, format requirements, and examples. This prompting approach explicitly addresses
the inherent variability in free-form model responses by enforcing consistency through
clearly defined XML tags (e.g., <control_type>, <category>, <reason>, <confidence>, and
<result>). Without this framework, extracting consistent and accurate information from
model outputs would be challenging due to the inherent unpredictability and variability
of unstructured responses. Consequently, the XML-based format facilitates reliable result
extraction using regex pattern matching. In contrast, the CoT strategy implements a sequen-
tial three-step reasoning process through independent prompts that progressively build
contextual understanding. The first prompt focuses on control identification (e.g., “Look at
the attached image and identify what control is shown...”), followed by a second prompt
for classification determination (e.g., “Determine whether this control is continuous or dis-
crete...”), and ends with a third prompt requesting the specific reading value, based on the
previous results. Each CoT step includes XML tag instructions (<result> and <reason>) to
standardize response formatting. This sequential implementation simulates a step-by-step
reasoning process, allowing explicit intermediate verification while enhancing interpre-
tation accuracy through decomposed problem-solving. This sequential implementation
simulates a step-by-step reasoning process, allowing explicit intermediate verification while
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enhancing interpretation accuracy through decomposed problem-solving. The mathemati-
cal formulation of these prompting strategies can be expressed algorithmically as follows.
For the HTP approach, the interpretation process is defined as follows (3):

Ryrp = fVLM (I, Pcomprehensive) (3)

where [ represents the input industrial control image, Peoyprenensive denotes the holistic
prompt containing all task components (task definition, visual analysis guidelines, format
requirements, and examples), and fyp represents the VLM's inference function. The
comprehensive prompt structure can be formalized as follows (4):

Pcomprehensive = {Tdefr Goisuals Ssteps; Ffurmat/ Eexamples} 4

where each component addresses specific aspects of the interpretation task. In contrast, the
CoT strategy implements a sequential reasoning chain, as shown in Equations (5)—(7):

Ry = fvim(L Pigentiry) ()
Ry = fvrm(L, Petassify, R1) (6)
RCoT = fVLM(I/ Pextract/ R1/ RZ) (7)

where Pigensify, Pelassify, and Pextract Tepresent the three sequential prompts for control
identification, type classification, and value extraction, respectively. Each subsequent step
R; 1 incorporates the previous responses {Ry, ..., R;} as contextual information, enabling
progressive refinement of the interpretation process. This decomposition allows for explicit
verification at intermediate stages while building comprehensive understanding through
stepwise reasoning.

Chain-of-Thought strategy Holistic-Thought Protocol strategy

Tnput Input

Continuous industrial Discrete industrial Continuous industrial Discrete industrial
control image control image control inage control inage

Prompt 1 Prompt
Tdentify what control is shown Exanine control and determine reading
Step-by-step guidance...

1. Identify region of interest
2 control. type

3. Deter 1 category
4
5

reading
level

Return XL with control type, category,
reason, confidence and result

The gauge has a
with labeled in
needle points to g

<Uresult>

Figure 4. Prompting strategy comparison showing (left) Chain-of-Thought (CoT) approach with
three sequential steps (control identification — type classification — value extraction), and (right)
Holistic-Thought Protocol (HTP) approach providing comprehensive guidance in a single interaction.
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3.3. Evaluation Framework

The evaluation framework implemented in this research follows a hierarchical ap-
proach, as illustrated in Figure 5, enabling comparative analysis across model categories
and prompting strategies. Each industrial control image traverses a defined pathway
through one of three model categories, and is processed using one of the two prompt-
ing strategies, generating standardized interpretation results that undergo metric-specific
evaluation. The framework processes each control image through the specified model
and prompting strategy while handling continuous and discrete control types through
specialized processing paths. This approach ensures that performance differences can be
directly attributed to the specific model capabilities or prompting strategies rather than
evaluation inconsistencies.

The standardized evaluation methodology incorporates an input data processing
pipeline that organizes industrial control data according to their classification. Image
data and annotations are parsed from JSON files that distinguishes between continuous
and discrete control types. Each control image receives appropriate metadata associa-
tion, and continuous controls are linked with their numerical readings and scale range
parameters. Conversely, discrete controls maintain their current state classification and
enumeration options. This typology enables validation procedures and normalization
techniques, which are particularly critical for continuous controls where scale-aware error
calculation significantly impacts evaluation accuracy.

Input

Continuous industrial Discrete industrial
control image control image

Model categories

Base VLMs Fine-tuned models TIoT models
(6PT-40, Claude 3.7 Sonnet...) (Domain-specialized G6PT-40) (Moondream-2, SmolVLM-Instruct...)

L

Prompting strategies
Holistic-Thought Protocol strategy Chain-of-Thought strategy
(Single prompt) (Sequential multi-step prompting)

|

(Control interpretation results]

l

Evaluation metrics

Continuous controls evaluation metrics Discrete controls evaluation metrics
(MAE, RMSE, R2...) (Accuracy, Macro precission, Macro recall...)

Figure 5. Methodological framework showing the evaluation flow across three model categories
using two prompting strategies, with standardized performance metrics.

The evaluation framework for continuous control interpretation implements metrics
designed to assess numerical prediction accuracy across diverse scales and measurement
ranges. All metrics utilize normalized calculations based on each instrument specific ranges
to ensure fair comparison across controls with different value ranges.
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Mean Absolute Error (MAE) quantifies the average magnitude of prediction errors (8):
1 n
MAE ==} lyi — i ®)
i=1
Root Mean Squared Error (RMSE) provides greater sensitivity to large errors (9):

RMSE =

S| =
.m:

Il
-

(yi — 9:)? )

The coefficient of determination (R?) measures predictive performance relative to
using the mean value, with values closer to 1 indicating superior performance (10):

(1 — 17:)2
RZ — 1 _ Zl (]/z ]/_1)2 (10)
Li(vi —7)

For practical industrial assessment, the percentage Within Tolerance calculates the
proportion of predictions falling within a specified tolerance range, typically 5% of the
instrument’s full-scale range.

Mean Absolute Percentage Error (MAPE) quantifies error as a percentage of the true
value, providing scale-independent comparison but requiring careful handling of values
near zero (11):

1 n
MAPE = — )
i3

The coefficient of variation of RMSD (CV-RMSD) offers another scale-independent
metric enabling comparison across measurement ranges (12):

Yi— i

x 100% (11)

Yi

RMSE

CV-RMSD =

% 100% (12)

Finally, the Percentage of Full Scale Error (PFSE) measures error magnitude relative to
instrument range rather than measured value (13):
MAE

PFSE = x 100% (13)
rangeax — fangen,,

This multi-dimensional metric approach provides a broad performance assess-
ment balancing absolute accuracy, relative error magnitude, and practical industrial
tolerance requirements.

For discrete control evaluation, the framework implements classification metrics
designed to assess categorical prediction performance. The foundational measurement is
classification accuracy, calculated as the percentage of correctly classified controls within

the test set (14):
TP+ TN

TP+TN+FP+FN

where TP represents true positives, TN true negatives, FP false positives, and FN

Accuracy =

(14)

false negatives.

The framework extends beyond simple accuracy with macro-averaged precision and
recall metrics to account for class imbalance issues. To avoid false positive classifications,
macro-precision quantifies the average ability across all k classes (15):

. 1& TP
Precisionmacro = % Z

SRR (15)
i TP; + FP;
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Complementarily, macro-recall measures the average ability to identify all instances of
each class (16):

1& TP
Recallmacro = % 1221 m (16)

These metrics are synthesized in the macro-F1 score, representing the harmonic mean
of precision and recall (17):

(17)

Zk: 2 x Precision; x Recall;

F1 -1
macro = g Precision; + Recall;

i=1

For robust performance assessment, the Matthews Correlation Coefficient (MCC)
provides a balanced measure suitable for multiclass settings with class imbalance (18):

€S — Yk Pk bk
V&= Tipd) - (2 - i)

MCC = (18)

where c is the total number of correctly predicted samples, s is the total number of samples,
and py and t; are the sums of predicted and actual values for class k, respectively.

A clear and direct performance metric is necessary for evaluating multiclass discrete
controls in an industrial context. The Matthews Correlation Coefficient (MCC) was selected
because other metrics proved unsuitable for this task. AUC-ROC becomes computation-
ally complex in multiclass scenarios and requires decomposition methods that obscure
practical performance assessment. Expected Calibration Error (ECE) was also not applica-
ble, as most evaluated VLMs do not provide probability outputs in a format suitable for
calibration analysis.

Additionally, the evaluation tracks class-specific performance through a confusion
matrix and per-class metrics, enabling granular analysis of model strengths and weaknesses
across different control types.

The cross-model comparison framework implements a standardized evaluation ap-
proach that ensures fair assessment across all model categories and prompting strategies.
Each model processes the same test images, enabling direct performance comparisons that
isolate each model’s specific characteristics from methodology variations. The evaluation
pipeline processes each control image through every model/strategy combination. Perfor-
mance data are stored hierarchically by model category and prompting strategy, facilitating
multi-dimensional comparative analysis. This approach captures performance differences
attributable specifically to model architecture, parameter count, training methodology,
and reasoning approach rather than evaluation inconsistencies. All the calculated metrics
allow the identification of model strengths and weaknesses across different industrial
control interpretation scenarios, providing insights into optimal model selection based on
specific deployment requirements. The evaluation framework establishes a methodology
for analyzing error patterns across model predictions, enabling systematic categorization
of interpretation failures beyond aggregate performance metrics. For continuous controls,
the framework examines metric distributions across value ranges to identify potential
biases, whether models systematically underperform on specific measurement scales. The
evaluation methodology captures normalized error distributions, distinguishing between
small absolute errors on narrow-range instruments versus proportionally significant errors
on wide-range instruments through metrics like PFSE and MAPE. The approach utilizes
confusion matrices for discrete controls to distinguish between inter-class confusion pat-
terns versus random errors, with particular attention to false-positive and false-negative
distributions across control state categories.
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4. Results and Discussion

To evaluate the performance of VLMs in interpreting industrial controls, a testing
framework that assessed both continuous and discrete control reading capabilities has been
developed. The methodology involved presenting models with images of various industrial
controls that belong to both categories and comparing their interpretations against ground
truth values. The evaluation dataset comprised 122 continuous controls and 127 discrete
controls. Two distinct prompting strategies were applied across the selected models: the
HTP approach that provided instructions in a single query and a CoT strategy that broke
the interpretation task into sequential steps. For each approach, performance using metrics
tailored to the control type was measured as explained in Section 3.3. The following sections
present detailed evaluation results, examining models’ performance across control types
and prompting strategies.

4.1. Continuous Control Interpretation Performance

The analysis of continuous control interpretation reveals significant performance
variations across the evaluated models and prompting strategies, as shown in Figure 6. Fine-
tuned GPT-40 achieved the lowest MAE of 0.027 when employing either prompting strategy,
outperforming all other model configurations (see Table 3). This error level represents an
improvement over the baseline performance established by general models like GPT-40 or
Molmo 7B, which exhibited MAE values exceeding 0.30 and 0.34, respectively.

Mean Absolute Error Across VLM Categories
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Figure 6. Mean Absolute Error (MAE) comparison using HTP versus CoT prompting strategies for
continuous controls.

MAE is a particularly relevant metric in industrial control reading scenarios as it quan-
tifies the average magnitude of interpretation errors. Even slight deviations in readings can
have significant operational implications in practical industrial applications. Interestingly,
the performance differential between prompting strategies varied across models, with mod-
els such as LLaVA v1.6 showing more improvements when using the HTP approach and
models such as Molmo 7B showing more pronounced improvements when using the CoT
approach. In contrast, other models exhibited less sensitivity to prompting methodology.
This suggests that some models can take advantage of the step-by-step reasoning process
to improve their interpretation precision, whereas other models may be limited by their
fundamental visual analysis capabilities regardless of prompting technique.

While MAE provides insight into average error magnitude, RMSE offers a complemen-
tary perspective by penalizing larger deviations more heavily. As illustrated in Figure 7, the
RMSE results follow a pattern similar to MAE across models, with the fine-tuned GPT-40
achieving the lowest RMSE (0.079) when using the CoT strategy.
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Table 3. Performance metrics for continuous control interpretation across models and prompting
strategies. MAE and Root Mean Squared Error (RMSE) values are normalized, PFSE represents
Percentage of Full Scale Error, and Within Tolerance indicates percentage of predictions within +5%

of ground truth.
Model Strategy MAE RMSE  PFSE (%) Within Tol. (%)
GPT-40 HTP 0.030 0.084 3.0 87.7
GPT-4o CoT 0.039 0.098 3.9 83.6
GPT-40 mini HTP 0.061 0.159 6.1 79.5
GPT-40 mini CoT 0.076 0.208 7.6 80.3
Claude 3.7 HTP 0.071 0.184 7.1 80.3
Claude 3.7 CoT 0.085 0.216 8.5 77.9
Molmo 7B HTP 0.062 0.154 6.2 72.1
Molmo 7B CoT 0.034 0.133 3.4 91.8
LLaVA v1.6 HTP 0.054 0.125 5.4 72.3
LLaVA v1.6 CoT 0.094 0.242 94 68.0
Fine-tuned GPT-40 HTP 0.027 0.093 2.7 91.0
Fine-tuned GPT-40 CoT 0.027 0.079 2.7 89.3
Moondream?2 HTP 0.123 0.173 12.3 24.6
Moondream?2 CoT 0.139 0.417 13.9 77.8
SmolVLM HTP 0.117 0.213 11.7 35.0
SmolVLM CoT 0.106 0.280 10.6 76.2
PaliGemma 3B HTP N/A N/A N/A N/A
PaliGemma 3B CoT 0.064 0.135 6.4 68.4
Bunny-Phi2 HTP N/A N/A N/A N/A
Bunny-Phi2 CoT 0.122 0.296 12.2 72.3
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Figure 7. RMSE comparison using HTP versus CoT prompting strategies for continuous controls.

To account for the varying scales of industrial controls, models were additionally eval-
uated using PFSE, which normalizes errors relative to each instrument’s range. As shown
in Figure 8, PFSE results reveal that errors typically represent 5-15% of an instrument’s full
scale, with fine-tuned GPT-40 again demonstrating superior performance (2.7% PFSE with
either prompting strategy). The PFSE metric provides context for industrial applications,
as it translates abstract normalized errors into practical percentage-based deviations that
operators can readily interpret. Notably, the GPT-40 model achieved comparable PFSE
performance (3.0%) to its fine-tuned counterpart, suggesting that fine-tuning can little
optimize for scale-aware interpretation. For instruments with wide operational ranges,
such as industrial pressure gauges that might span hundreds of PSI, even models with
higher PFSE values could still provide readings with acceptable absolute error for many
non-critical applications. However, for precision instruments or safety-critical controls, the
lower PFSE values achieved by larger models represent a significant practical advantage.
Inspection of the error distribution reveals that misinterpretations are not random but
typically stem from recurrent causes:
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1. Difficulty interpreting controls under strong glare or shadows that obscure pointer edges;

Scale misalignment in gauges where needles overlap with thick or irregular tick marks;

3. Systematic bias in narrow-range instruments where minor pixel-level deviations

translate into proportionally large errors.

Percentage of Full Scale Error Across VLM Categories
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Figure 8. PFSE comparison using HTP versus CoT prompting strategies for continuous controls.

Beyond error metrics, the percentage of readings falling Within Tolerance (5% of
ground truth) provides a pragmatic assessment of model utility in industrial contexts.
As depicted in Figure 9, both Molmo 7B with CoT strategy and fine-tuned GPT4-o with
HTP strategy achieved the highest within-tolerance rate at 91.0%, followed closely by
the fine-tuned GPT4-o with CoT strategy, at 89.3%. This metric effectively translates
statistical performance into practical reliability by indicating how frequently a model’s
interpretations would meet typical industrial tolerance requirements. Smaller models
demonstrated markedly lower performance, with Moondream?2 and SmolVLM achieving
within-tolerance rates below 50%, thus limiting their suitability for applications requiring

consistent accuracy.

Within 5% Tolerance Across VLM Categories
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Figure 9. Within Tolerance percentage comparison using HTP versus CoT prompting strategies for

continuous controls.

Industrial control environments often specify acceptable tolerance bands based on process
criticality, with typically tighter tolerances for safety-critical systems (+1-2%) and wider
allowances for monitoring-only applications (+5-10%). The within-tolerance metric directly
addresses whether a model’s performance satisfies these practical requirements. The left
plot of Figure 10 illustrates the relationship between MAE and within-tolerance percentage,
revealing an expected negative correlation but with notable outliers. Some models achieved
higher within-tolerance rates than their MAE values might suggest, indicating more consistent
performance around the mean value rather than exhibiting extreme deviations. This finding
highlights the importance of considering multiple performance dimensions when evaluating
models for industrial deployment, with GPT-4o, fine-tuned GPT4-0, and Molmo 7B delivering
the best overall performance across metrics. These results suggest that model selection
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should consider both the specific tolerance requirements of the industrial application and the
consistency of model performance, not merely average error rates.

Performance Trade-offs in Industrial Control Interpretation
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Figure 10. Performance trade-offs for continuous (a) and discrete (b) industrial control tasks.

4.2. Discrete Control Interpretation Performance

Discrete control interpretation is particularly relevant in industrial contexts for mon-
itoring safety interlocks, operational modes, valve positions, and equipment states. In
these scenarios, misclassification can have severe consequences, consequently trigger-
ing inappropriate automated responses or providing operators with misleading system
status information.

Figure 11 presents the accuracy results for discrete control state classification across the
evaluated models and prompt strategies. Fine-tuned GPT-40 again demonstrated superior
performance, achieving 78.7% accuracy with the CoT approach, followed by the same
model but with the HTP strategy, with 78.0% accuracy (see Table 4). The performance gap
between the mentioned model and the next with the highest accuracy (GPT4-o with HTP
strategy, 67.2% of accuracy) was more pronounced for discrete controls than for continuous
readings, with models such as LLaVa v1.6 and GPT-40 mini achieving accuracies below
50%. This widening performance disparity suggests that discrete state classification may
require more sophisticated reasoning capabilities.
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Figure 11. Accuracy comparison using HTP versus CoT prompting strategies for discrete controls.

While accuracy provides an intuitive performance measure, the MCC offers a more
integral assessment of classification reliability, particularly for datasets with imbalanced
state distributions. As shown in Figure 12, the MCC results reveal significant perfor-
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mance differences across model categories and prompting strategies. Among general-
purpose VLMs, GPT-40 achieved the highest MCC value of 0.61 with the HTP prompting
approach, with only a slight decrease to 0.60 using CoT. Claude 3.7 followed closely
with MCC values of 0.59 (HTP) and 0.58 (CoT), while smaller general-purpose models
showed substantially lower performance, with GPT-40 Mini reaching only 0.26 with
HTP prompting. The fine-tuned GPT-40 model demonstrated impressive reliability
with MCC values of 0.73 (HTP) and 0.74 (CoT), outperforming even the base models.
This improvement highlights the value of specialized training for industrial control
classification tasks. By contrast, edge-optimized models showed considerably lower
reliability, with SmolVLM achieving an MCC of 0.32 using CoT prompting but failing
to produce valid predictions with the HTP approach. Similarly, Moondream?2 reached
0.29 with CoT while delivering no valid predictions using HTP prompting. Bunny-Phi2
managed an MCC of 0.21 with CoT, while PaliGemma-3B could not produce reliable
classifications under either prompting strategy.

Table 4. Classification performance metrics for discrete control interpretation across models and
prompting strategies. All precision, recall, and F1-score values represent macro-averaged metrics.

Model Strategy Accuracy (%) MCC
GPT-40 HTP 67.2 0.61
GPT-40 CoT 66.1 0.60
GPT-40 mini HTP 34.7 0.26
GPT-40 mini CoT 48.8 0.41
Claude 3.7 HTP 66.7 0.59
Claude 3.7 CoT 64.6 0.58
Molmo 7B HTP N/A N/A
Molmo 7B CoT 40.9 0.31
LLaVA v1.6 HTP 46.7 0.23
LLaVA v1.6 CoT 61.4 0.54
Fine-tuned GPT-40 HTP 78.0 0.73
Fine-tuned GPT-40 CoT 78.7 0.74
Moondream?2 HTP 0.0 0.0
Moondream?2 CoT 40.5 0.29
SmolVLM HTP 60.0 0.0
SmolVLM CoT 441 0.32
PaliGemma 3B HTP N/A N/A
PaliGemma 3B CoT 0.0 0.0
Bunny-Phi2 HTP N/A N/A
Bunny-Phi2 CoT 34.7 0.21
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Figure 12. Matthews correlation comparison using HTP versus CoT prompting strategies for dis-
crete controls.
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The MCC metric, which ranges from —1 to 1 (with 1 indicating perfect prediction),
accounts for true and false positives and negatives across all classes, making it especially
relevant for industrial applications where misclassifying certain states may have asym-
metric consequences. These results demonstrate that while general-purpose VLMs offer
reasonable classification reliability, fine-tuned models provide substantially better indus-
trial control state determination performance. The significant gap between larger models
and edge-optimized alternatives indicates that effective deployment in industrial settings
may require substantial computational resources or specialized training approaches to
achieve acceptable reliability levels. Error inspection of discrete tasks shows that most mis-
classifications occur between visually similar states; for instance, adjacent switch positions
or selector dials with degraded labels. Another frequent cause is partial occlusion, which
leads the model to confuse discrete positions.

Figure 10 also illustrates the relationship between prediction rate and accuracy for
discrete control classification, providing valuable insights into model reliability. The scatter
plot reveals distinct performance clusters that align with model capabilities and optimiza-
tion approaches. Fine-tuned GPT-40 demonstrates the greatest performance, achieving
both high prediction rates (near 100%) and higher accuracy (approximately 77-80%), po-
sitioning it in the top-right quadrant of the chart. This indicates that the model provides
classifications for almost all presented controls and maintains high accuracy in those deter-
minations. The general-purpose VLMs exhibit varied performance patterns. GPT-40 and
Claude 3.7 form a high-performance cluster with accuracy between 65-67% and prediction
rates near 90%, indicating strong reliability. On the other hand, smaller models show more
scattered performance. GPT-40 mini presents an interesting case where the prompting
strategy affects the model’s accuracy, but neither surpasses 50% accuracy. Edge-optimized
models predominantly occupy the lower regions of the chart, with most achieving accu-
racies below a practical utility threshold of 50%. Particularly concerning are PaliGemma
3B and Moondream?2 with HTP prompting, which could not perform any prediction, indi-
cating fundamental limitations in their ability to interpret industrial controls. SmolVLM
presents an interesting exception among edge models, with HTP prompting achieving
60% accuracy despite a low prediction rate (20%), suggesting potential utility in specific
constrained scenarios where prediction selectivity is acceptable.

4.3. Prompt Strategy Effectiveness

The evaluation followed in the current study revealed distinct patterns in the effective-
ness of different prompting strategies across model categories and control types. The HTP
approach generally outperformed the CoT strategy across most metrics and models. As
shown in Figures 6—12, HTP prompting led to performance improvements in most cases,
though with some notable exceptions depending on the model and task type.

For continuous control interpretation, HITP prompting achieved lower error rates
across general-purpose VLMs, with GPT-40 showing a normalized MAE of 0.039 with
HTP versus 0.030 with CoT. This pattern was consistent across RMSE and PFSE metrics,
where HTP generally yielded lower error measurements. Figures 6-8 illustrate this trend,
with most general-purpose models showing better performance with HTP prompting. The
fine-tuned GPT-40 model also performed slightly better under the CoT approach (RMSE of
0.079) compared to HTP (RMSE of 0.093). For discrete control classification, CoT prompting
similarly demonstrated advantages. Classification accuracy, as shown in Figure 11, was
higher for several models when using HTP, with fine-tuned GPT-40 achieving 78.7% ac-
curacy under CoT. The MCC results (Figure 12) reinforce this finding, with most models
showing better-balanced classification performance under CoT prompting. Interestingly,
edge-optimized models showed mixed results, with some metrics favoring CoT in specific
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instances. For example, SmolVLM achieved better within-tolerance percentages with CoT
(76.2%) than with HTP (35.0%), as seen in Figure 9. This suggests that while HTP is gener-
ally more effective, certain lightweight models may benefit from the designed guidance
provided by CoT prompting in some scenarios.

HTP prompting excels in scenarios requiring efficient, direct interpretation, partic-
ularly when models have strong inherent reasoning capabilities. Providing instructions
in a single query, HTP enables models to make the most out of their internal reasoning
processes without the overhead of multiple interactions. This approach is particularly
effective for larger models that can process complex instructions. In contrast, CoT may offer
advantages for smaller edge-optimized models on specific tasks by providing a framework
that compensates for more limited reasoning capabilities. This is demonstrated in models
such as Moondream?2, which could not make any predictions with HTP prompting while
giving a prediction with CoT prompting (see Figure 11).

From an implementation perspective, HTP prompting offers significant practical ad-
vantages, requiring only a single API call and reducing both latency and token consumption.
For time-sensitive industrial applications, this reduced latency represents a substantial
benefit. The token economy also favors HTP. While the initial prompt is larger, the overall
token usage is typically lower due to eliminating multiple API calls.

The underlying mechanisms driving these performance differences provide insights
for industrial deployment decision-making. Large models like GPT-40 and Claude 3.7 ben-
efit from HTP prompting because their extensive parametric knowledge enables good
reasoning within single inference steps. These models can simultaneously process visual
information, access domain knowledge, and apply complex reasoning patterns without
external scaffolding, explaining their consistent performance across the HTP approach.

Edge-optimized models operate under fundamentally different computational con-
straints that explain the dramatic performance variations observed in this study. The
failure of models like Bunny-Phi2 or PaliGemma 3B under HTP prompting contrasts with
their performance using CoT strategies. This pattern indicates that reduced parameter
counts limit simultaneous processing of multiple reasoning components. CoT prompting
addresses this limitation by decomposing complex interpretation tasks into sequential steps
that fit within the computational constraints of smaller models.

The failure patterns provide diagnostic evidence for strategy selection in industrial
scenarios. When edge models fail under HTP prompting, they typically produce no
output or inconsistent responses, suggesting complete task breakdown rather than gradual
performance degradation. CoT prompting prevents this failure mode by establishing clear
reasoning checkpoints where models must commit to intermediate conclusions before
proceeding. This structured approach explains why Moondream?2 achieved 40.5% accuracy
with CoT versus minimal functionality with HTP.

These performance patterns translate into actionable deployment strategies for vary-
ing industrial scenarios. Safety-critical applications requiring consistent interpretation
benefit from HTP prompting with large models, which demonstrated stable performance
across both continuous and discrete controls as shown in the presented figures. Resource-
constrained environments should employ CoT prompting with edge models, accept-
ing lower peak performance in exchange for reliable operation within computational
limits. The diagnostic understanding of failure modes enables practitioners to antic-
ipate model limitations and implement appropriate verification protocols rather than
discovering failures during operation, particularly for scenarios involving ambiguous
control states or challenging visual conditions where edge models historically demonstrate
reduced reliability.
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4.4. Fine-Tuning Impact

The fine-tuning of GPT-40 on industrial control images yielded substantial perfor-
mance improvements across all evaluation metrics. As demonstrated previously, the fine-
tuned GPT-40 model consistently outperformed its base version and all other models in the
presented evaluation. For continuous control interpretation, the fine-tuned model achieved
an MAE of 0.027. Similarly, PFSE (2.7% vs. 3.0%) improvements were observed, indicating
that fine-tuning enhanced average accuracy and error consistency. For discrete control
classification, the fine-tuned model achieved 78.0% accuracy, a relative improvement over
the base model’s 67.2%. This classification improvement was even more pronounced in
the MCC, where the fine-tuned model reached 0.73-0.74 compared to the base model’s
0.60-0.61, indicating better-balanced performance across different control states. Perhaps
most significantly, the fine-tuned model is less sensitive to prompting strategy variations,
maintaining consistent performance across both HTP and CoT approaches. This suggests
that specialized training helps the model internalize the interpretation task, reducing re-
liance on prompt engineering. From a cost-benefit perspective, fine-tuning represents a
significant initial investment but offers compelling long-term advantages. The fine-tuning
process followed in this research used only 50 annotated control images, with resulting
performance improvements that justify the small investment in industrial settings where
interpretation errors carry operational or safety implications. Table 5 consolidates the best
performance achieved by each model category across both control types.

Table 5. Best performance achieved by each model category across continuous and discrete
control interpretation.

Best Continuous Best Discrete .
Model Category (MAE) (Accuracy %) Optimal Strategy
Fine-tuned GPT-40 0.027 78.7 Both
General-purpose Large 0.030 67.2 HTP
Edge-optimized 0.064 60.0 Both

Reproducibility considerations acknowledge both the strengths and limitations of
OpenAl’s fine-tuning approach. While specific hyperparameters remain proprietary, the
automatic optimization process does not guarantee identical convergence across different
runs because learning rate, batch size, epochs, and optimizer details are not publicly
specified. Independent researchers can replicate the methodology using identical training
data formatting, the same base model and equivalent dataset size. Token consumption
metrics enable transparent cost estimation using known pricing: fine-tuning training costs
USD 25 per million training tokens, and inference costs USD 3.75 per million input tokens
and USD 15 per million output tokens, applicable to image tokens billed like text.

Economic analysis demonstrates explicit trade-offs based on publicly verifiable pricing.
Token accounting, reflecting image tokenization and prompt/response lengths, yields a
training cost in the range of low single-dollar to low double-digit USD for 50 images and a
few epochs, depending on image resolution and text length. Inference cost per thousand
control interpretations similarly ranges from approximately USD 4 to USD 12, depending
on image size and output length.

Cost-effectiveness extends beyond initial training to operational deployment. For
industrial monitoring applications processing 1000 monthly readings, break-even analysis
should be computed using the empirically estimated training cost, based on tokens and
model runs, versus per-interpretation inference cost. For example, if training cost is USD 6
and per-reading inference is USD 0.006, break-even occurs after 1000 readings; if inference
costs more (e.g., USD 0.012), break-even extends to 500-1000 readings.
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5. Conclusions

This investigation presents a comparative analysis of VLMs for industrial control in-
terpretation, evaluating their performance across diverse model categories and prompting
strategies. The findings of the presented work demonstrate a clear performance hierarchy:
the fine-tuned GPT-40 model consistently outperformed all alternatives, achieving the
lowest error rates for continuous controls and the highest classification metrics for discrete
controls. General-purpose VLMs, particularly GPT-40 and Claude 3.7 Sonnet, demonstrated
strong capabilities even without domain-specific training, while edge-optimized models
showed substantially lower performance, particularly in discrete control classification tasks.
Regarding prompting strategies, the HTP approach generally yielded better performance
for larger models, while CoT occasionally benefited smaller edge-optimized models by
providing more guidance. These findings have significant practical implications for in-
dustrial monitoring applications, where the selection between model categories involves
critical compromises between interpretation accuracy, computational requirements, and
deployment constraints.

The traditional CNN-based approaches to industrial control interpretation represent a
fundamentally different paradigm than the VLM-based methods evaluated in the presented
study. While CNNs have demonstrated effectiveness in specific gauge reading tasks, they
typically require extensive control-specific training datasets, often necessitating hundreds
or thousands of labeled examples for each gauge type with limited transfer capability
between different instrument designs. By contrast, the performed evaluation reveals that
general-purpose VLMs offer remarkable zero-shot generalization capabilities, achieving
acceptable performance across diverse control types without domain-specific training. This
inherent understanding of visual controls substantially reduces the annotation burden
characteristic of traditional Computer Vision approaches. Most significantly, fine-tuning
results demonstrate that VLMSs can achieve substantial performance improvements with
minimal training data: the fine-tuned model used only 50 annotated control images yet
delivered significant performance gains in both continuous and discrete control interpre-
tation. This data efficiency represents a compelling advantage for industrial applications
where collecting and annotating large control-specific datasets is often impractical or pro-
hibitively expensive, suggesting that fine-tuned VLMs offer an optimal balance between
implementation effort and interpretation reliability.

Beyond data efficiency, the presented results show that fine-tuned VLMs maintain
stable performance across varying lighting conditions, instrument designs, and prompt
formulations—scenarios where prior methods in the literature often experienced signifi-
cant performance degradation. This robustness to domain shifts positions the proposed
approach as a more dependable solution for real-world deployments, where variability
and environmental factors are unavoidable. In contrast, earlier CNN-based and modular
systems typically required retraining or extensive pre-processing to sustain performance
under such changes.

Based on the presented analysis, some implementation recommendations tailored to
specific industrial requirements are recommended. For safety-critical applications where
interpretation accuracy is paramount, fine-tuned VLMs using the HTP prompting strategy
represent the optimal solution. Base models like GPT-40 or Claude 3.7 Sonnet offer a
compelling balance between performance and implementation simplicity for general moni-
toring scenarios with moderate accuracy requirements. Resource-restricted environments
may leverage edge-optimized models with CoT prompting, though with the understanding
that interpretation reliability will be substantially reduced. Deployment considerations
must account for operational environments, unstable network connectivity may necessitate
edge solutions despite their limitations, while continuous monitoring applications should
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prioritize HTP prompting to minimize latency and token consumption. Several limitations
and promising research directions emerge from this work. The dataset scope, while repre-
sentative of common industrial control types, represents a foundational evaluation rather
than comprehensive coverage of all industrial variants. Real-world industrial environments
present additional challenges including chemical corrosion, structural degradation, emer-
gency conditions, and hundreds of specialized gauge configurations that extend beyond
the current evaluation scope. The 249 control samples used in this study provide sufficient
statistical power for comparative model evaluation while enabling rigorous analysis across
multiple architectures and prompting strategies. Industrial deployments typically involve
standardized instrumentation within specific facilities, where control types and environ-
mental conditions remain relatively consistent, making the focused approach applicable to
many practical scenarios. Future research should investigate transformer distillation tech-
niques to improve edge model performance, explore multimodal retrieval augmentation to
enhance interpretation accuracy for specialized instruments, develop hybrid architectures
that balance reasoning capabilities with efficiency requirements, and validate performance
across larger datasets encompassing extreme environmental conditions. The framework
established here provides a systematic methodology for such expanded evaluations while
maintaining rigorous comparative analysis standards, enabling incremental scaling to ad-
dress broader industrial complexity as domain-specific requirements emerge. The analysis
of error origins indicates that continuous control deviations arise mainly from visual arte-
facts such as reflections, blurred needles, or ambiguous scales, whereas discrete errors are
concentrated in cases of visual similarity between adjacent states or partial occlusion. These
findings emphasize that errors are not arbitrary but traceable to identifiable operational
factors, which provides a clear pathway for rectification through better imaging practices,
targeted fine-tuning, and redundancy checks in safety-critical systems. Ultimately, this
work demonstrates that VLMs present a paradigm shift for industrial control interpreta-
tion, offering unprecedented generalization capabilities that can transform monitoring
applications across diverse industrial environments.
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