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Abstract

We propose a phase-aware complex-spectrogram autoencoder (AE) for preprocessing
raw vibration signals of rotating electrical machines. The AE reconstructs normal com-
ponents and separates fault components as residuals, guided by an input-phasor phase-
orthogonality regularization that defines parallel/orthogonal residuals with respect to
the local signal phase. We use a U-Net-based AE with a mask-bias head to refine lo-
cal magnitude and phase. Decisions are based on residual features—magnitude/shape,
frequency distribution, and projections onto the normal manifold. Using the AI Hub
open dataset from field ventilation motors, we evaluate eight representative motor cases
(2.2–5.5 kW: misalignment, unbalance, bearing fault, belt looseness). The preprocessing
yielded clear residual patterns (low-frequency floor rise, resonance-band peaks, harmonic-
neighbor spikes), and achieved an area under the receiver operating characteristic curve
(ROC-AUC) = 0.998–1.000 across eight cases, with strong leave-one-file-out generalization
and good calibration (expected calibration error (ECE) ≤ 0.023). The results indicate that
learning to remove normal structure while enforcing phase consistency provides an un-
supervised front-end that enhances fault evidence while preserving interpretability on
field data.

Keywords: rotating electrical machines; vibration signal processing; complex-spectrogram
autoencoder; phase-orthogonality regularization; residual-based features

1. Introduction
1.1. Research Background

Vibration monitoring of rotating electrical machines such as industrial motors and
generators is crucial for early fault detection and predictive maintenance [1,2]. Even minute
incipient faults—e.g., bearing defects or rotor unbalance-can escalate into severe failures if
they are not identified in time. Accordingly, by analyzing vibration signals, maintenance
engineers seek to detect such faults at an early stage and prevent unplanned downtime
or catastrophic accidents [1]. To this end, a variety of signal-processing techniques have
been investigated to effectively extract and enhance fault-related signatures from raw
vibration signals.
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1.2. Related Work

Early studies concentrated on preprocessing to attenuate background noise and station-
ary components while emphasizing fault features. A representative approach is envelope
analysis, in which the bearing-resonance band is isolated using a band-pass filter and faults
are identified by peaks at characteristic defect frequencies in the envelope spectrum [3].
Spectral kurtosis (SK) quantifies impulsiveness as a function of frequency to automate band
selection, whereas Antoni’s kurtogram provides a visual means of locating the optimal
band (where kurtosis is maximized) and separating transient fault components [4,5]. Cep-
strum pre-whitening (CPW) removes prominent cepstral peaks to whiten the spectrum and
thereby reveal weak modulation components [6]. Kiakojouri et al. combined CPW with a
high-pass filter to suppress low-frequency content, emphasize weak impulses, and surpass
the kurtogram under low signal-to-noise ratio (SNR) conditions [7]. Wavelet transforms
have been widely used to separate and denoise transients via multiresolution analysis and
to classify faults using wavelet-packet or discrete wavelet transform (DWT) features [8]. For
nonlinear and nonstationary signals, empirical mode decomposition (EMD) and ensemble
EMD (EEMD) decompose signals into intrinsic mode functions (IMFs); information-entropy
criteria have been proposed to select effective IMFs, and grey system theory has been used
to preserve salient features [9,10].

However, these classical preprocessing schemes share common limitations. Strong
stationary components often mask weak fault signatures. Consequently, CPW, notch fil-
ters, and related methods may remove fault information together with the interference, or
conversely, insufficient suppression may leave residuals that obscure discriminative char-
acteristics [7,11]. Moreover, performance is sensitive to numerous hyperparameters-filter
bands, thresholds, mother wavelets, decomposition levels, etc.-which increases dependence
on expert tuning. Early kurtogram formulations have also been reported to be sensitive
to outliers [4,8,10]. EMD suffers from mode mixing and result instability, while EEMD
improves stability at the cost of computational overhead and additional decisions for IMF
selection [9,10]. Procedures tailored to specific fault scenarios or operating conditions often
generalize poorly to other fault modes or variable regimes, and they can be fragile when
confronting incipient defects [2,11,12].

To address these limitations, data-driven approaches have gained traction [2]. Early
attempts used simple artificial neural networks (ANNs) to classify fault severity [13].
More recently, deep learning has achieved high accuracy by transforming vibration into
time-frequency images for convolutional neural networks (CNNs), or by modeling tem-
poral dependencies with 1D-CNNs and long short-term memory (LSTM) networks [14].
Nevertheless, in industrial settings, the scarcity and imbalance of fault labels, the in-
feasibility of intentionally collecting fault data, and domain shift between training and
field conditions often cause severe performance degradation [11,12]. This has motivated
unsupervised/semi-supervised anomaly detection, particularly autoencoder (AE) methods.
Trained solely on normal data, an AE reconstructs normal patterns well. Reconstruction
error, therefore, serves as an anomaly indicator, and frequency analysis of the residual
can localize defect components [15]. Variants such as the variational autoencoder (VAE)
and LSTM-VAE have shown promise in detecting early bearing faults with subtle spectral
changes and in enabling dynamic, input-adaptive decisions instead of fixed thresholds [16].

Within the AI Hub open dataset (Predictive Maintenance Sensors for Mechanical
Facilities) used in this study, Sung et al. reported that advanced preprocessing com-
bined with logistic regression (LR), k-nearest neighbors (KNN), support vector machine
(SVM), random forest (RF), or light gradient boosting machine (LGBM) drove F1-scores to
≈0.999–1.000, whereas models on raw signals achieved only 52.8–96.7%
accuracy [17]. Seo et al. built an LSTM-VAE anomaly detector over vibration/current and
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obtained > 97% accuracy across two scenarios [18]. An et al. encoded current time series as
Gramian angular summation/difference fields (GASF/GADF), Markov transition fields
(MTF), and recurrence plots (RP) for a compact CNN, reporting near-ceiling results (bearing
F1 = 0.999/Acc = 0.998; rotor F1 = 0.996; belt F1 = 0.990; shaft-misalignment F1 = 0.948) [19].
Lee et al. benchmarked 13 deep time-series classifiers on vibration data and found CNN
variants approaching 100% across standard metrics in their setting [20]. Complementing
these supervised pipelines, Sim et al. used current-spectrum features with a multivariate
kernel density estimation (MKDE) outlier detector to reach 98.93% accuracy on 5974 test
samples, illustrating the practicality of nonparametric unsupervised detection [21].

To date, however, most vibration-based deep-learning studies for rotating electrical
machines rely on spectral magnitude (amplitude) or time-domain amplitude alone, dis-
carding phase information [4]. Yet phase can carry critical diagnostic cues: misalignment
or eccentricity may yield amplitude spectra resembling healthy operation but induce char-
acteristic phase differences between signals measured at different locations. Practitioners
routinely exploit two-channel phase relations—e.g., ≈0◦ between bearing housings for
rotor unbalance versus ≈ 180◦ across a coupling for misalignment—signals that vanish
when only envelope or amplitude is used [1,8]. Consistent with this, An et al.’s magnitude-
only image encoding achieved strong scores overall but a comparatively lower F1 for the
phase-sensitive defect of shaft misalignment (0.948) [19]. Reflecting a broader shift, recent
studies have begun to incorporate phase explicitly—for example, by emulating complex
convolution via separate real/imaginary kernels [22] or by encoding time–frequency repre-
sentations as quaternion color images so that different channels capture amplitude, phase,
and related attributes [23]. In audio signal processing, feeding complex spectrograms to
deep models is already known to markedly improve restoration and separation [16,24].

Motivated by these observations, we adopt a phase-aware complex-spectrogram
formulation to learn normal operating behavior and to separate fault-related components
into physically interpretable residuals. We validate the approach by benchmarking it
against classic feature-based preprocessing pipelines and by situating the results relative to
recent learning-based studies; key findings are consolidated in the Results and Discussion.

1.3. Research Objectives

This study proposes a method that feeds a phase-aware complex spectrogram to a
deep learning model and reconstructs the learned normal behavior to effectively separate
fault-related components. While applying an AE to vibration is not new, we introduce a
preprocessing scheme that employs a complex-spectrogram AE to learn and remove normal
components from rotating-machinery vibration and to extract only the fault components.
First, we explicitly incorporate phase information by representing vibration signals as
complex spectrograms. Second, we augment AE training with a constraint that enforces
physically meaningful phase relationships.

Rather than relying on the default Cartesian decomposition into the real and imaginary
axes, we promote physical consistency via a decomposition parallel and orthogonal to
the input phasor’s phase reference. This guides the AE to produce outputs that are not
only amplitude-consistent but also physically coherent in terms of phase relationships.
The proposed method can enhance weak fault features more effectively than conventional
techniques under low SNR and at incipient stages, and it can be applied without fault-data
training or expert parameter tuning. Considering the pervasive use of electric motors
across industries and the importance of their condition monitoring, we select motors as
a representative application. Through case studies on motor vibration data, we aim to
demonstrate that the proposed approach effectively distinguishes healthy and faulty states
and delivers strong diagnostic performance.
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2. Materials and Methods
2.1. Data Sources and Experimental Setup

This study used the AI Hub open dataset (Predictive Maintenance Sensors for
Mechanical Facilities). The dataset comprises raw time-series accelerometer and current
signals sampled at 4 kHz, together with metadata (root-mean-square (RMS), revolutions
per minute (RPM), and rated power), collected from 41 heating, ventilation, and air condi-
tioning (HVAC) motors installed at three Daejeon Metro stations (Daejeon, City Hall, and
Gapcheon). Continuous signals are stored as comma-separated values (CSV) in ~3 s chunks,
and condition labels are standardized as normal, shaft misalignment, rotor unbalance, bear-
ing fault, and belt looseness. The procedures for data acquisition, cleaning, and quality
control are documented. Importantly, training and validation sets are provided as separate
partitions drawn from the same equipment and environment, enabling a reproducible
training-evaluation configuration.

To reflect the diversity of motor ratings (2.2–5.5 kW) and fault types, eight representa-
tive cases were selected, as summarized in Table 1.

Table 1. Selected motor cases from the AI Hub condition monitoring dataset used in this study.

Case Power (kW) Failure Mode Target Equipment Name RPM

1 2.2 Misalignment
(shaft misaligned by +5 mm/+4 mm) Blower L-DSF-01 1730

2 2.2 Bearing fault
(lubricant-removed from bearing) Blower A L-SF-04 1760

3 2.2 Belt looseness
(belt removed, motor shifted 5 mm) Blower R-SF-03 1760

4 3.7 Unbalance
(added rotor imbalance weight) Air Handling Unit A L-PAC-01 1750

5 3.7 Bearing fault
(lubricant-removed from bearing) Blower A L-EF-02 1755

6 5.5 Misalignment
(shaft misaligned by +5 mm/+4 mm) Blower R-SF-01 1765

7 5.5 Unbalance
(added rotor imbalance weight) Air Handling Unit B R-CAHU-01R 1760

8 5.5 Belt looseness
(belt removed, motor shifted 5 mm) Blower L-SF-01 1765

Each case includes the same motor in a healthy state and in one induced-fault state.
Faults were introduced by removing lubricant (bearing fault), adding imbalance weights
(rotor unbalance), loosening the belt and shifting the motor, or applying a shaft-alignment
offset. Considering that lower-rated equipment tends to have a lower signal-to-noise
ratio (SNR), we began the analysis with the lower ratings, and the case combination was
arranged so that each fault type appears at least twice.

Each validation subset consists of multiple files, and the total number of samples
reaches several hundred thousand. The number of files, samples, generated patches, and
the validation throughput are summarized in Table 2. Each case comprises raw time-series
data for a different motor under a normal condition and a single induced fault condition.
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Table 2. Dataset & validation summary.

Case Failure
Mode

Power
/RPM

Files
(N/F)

Samples
(N/F)

STFT Frames T
(N/F)

Patches
(N/F)

Validation Speed
(it/s, N/F)

1 Misalignment 2.2 kW
/1730

998
/2066 11,976,000/24,792,000 11,694

/24,209
1460

/3025
2.89

/2.87

2 Bearing fault 2.2 kW
/1760

838
/2397 10,056,000/28,764,000 9819

/28,088
1226

/3510
3.37

/2.91

3 Belt
looseness

2.2 kW
/1760

1329
/1707 15,948,000/20,484,000 15,573

/20,002
1945

/2499
9.28

/9.63

4 Unbalance 3.7 kW
/1750

2095
/2027 25,140,000/24,324,000 24,549

/23,752
3067

/2968
10.21

/10.61

5 Bearing fault 3.7 kW
/1755

1011
/2171 12,132,000/26,052,000 11,846

/25,440
1479

/3179
9.14

/9.44

6 Misalignment 5.5 kW
/1765

12,089
/16,000 145,068,000/192,000,000 141,666

/187,499
17,707

/23,436
9.61

/10.71

7 Unbalance 5.5 kW
/1760

13,369
/16,000 160,428,000/192,000,000 156,666

/187,499
19,582

/23,436
8.85

/9.24

8 Belt
looseness

5.5 kW
/1765

13,025
/14,877 156,300,000/178,524,000 152,635

/174,338
19,078

/21,791
3.03

/3.05

Abbreviations—N: normal; F: fault; it/s: iterations per second.

2.2. Signal Aggregation and Segmentation

CSV fragments were chronologically ordered by file and timestamp to reconstruct a
single continuous raw time series. We then performed zero-mean normalization by sub-
tracting the mean (removing the direct-current (DC) offset) and segmented the signal using
a 2048-sample window with 50% overlap, given the 4000 Hz sampling frequency (Nyquist
2000 Hz). To mitigate boundary discontinuities and to support invertible reconstruction
via the inverse short-time Fourier transform (iSTFT), a square-root Hann (

√
Hann) window

was used.
Each segment was transformed using the short-time Fourier transform (STFT) under

the same parameters to form complex spectrogram patches of 16 consecutive frames with
50% patch overlap. All subsequent methods operate on this same input. The overall
aggregation and re-partitioning pipeline is illustrated in Figure 1.

Figure 1. The data aggregation and re-partitioning process.
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2.3. Phase-Aware Complex Spectrogram Autoencoder

We design an AE that operates directly on the complex STFT of the vibration signal.
The AE is trained to reconstruct normal components and to separate fault-components as
residuals, while a phase-orthogonality regularizer encourages physical consistency with
the input phasor at each time-frequency bin.

2.3.1. Problem Statement and Notation

The raw vibration signal x(t) is modeled as the sum of a normal deterministic part
s(t), background noise n(t), and a fault-component f (t):

x(t) = s(t) + n(t) + f (t). (1)

Letting the normal term be u(t) = s(t) + n(t), we obtain

x(t) = u(t) + f (t), (2)

for time-frequency analysis we use the STFT,

X(τ, ω) =
∫

x(t)w(t− τ) e−jωt dt, X = S + N + F, (3)

where w(t) is the analysis window, τ the frame center time, j =
√
−1 is the imaginary unit,

and ω the angular frequency. The discrete STFT with frame length N and hop size H is

X[m, k] =
N−1

∑
n=0

x[n + mH]w[n] e−j2πkn/N , (4)

where n ∈ {0, 1, 2 · · · , N − 1} is the sample index within a frame, m is the frame index,
and k ∈ {0, 1, 2 · · · , N − 1} is the frequency bin index.

The AE takes the two-channel input [R(X), I(X)] and outputs the reconstruction X̂.
The residual

R = X− X̂ (5)

is used to isolate fault-related content. When needed, the time-domain residual is obtained
via the inverse STFT (iSTFT):

r(t) = iSTFT{R}. (6)

These definitions establish the reconstruction-residual framework on which subse-
quent regularization and loss terms are built.

2.3.2. Phase-Orthogonality Regularization

Orthogonality is defined not with respect to the fixed real/imaginary axes of the
STFT, but with respect to the local input phasor at each bin. Let ϕ = ∠X. Define
∼
R[m, k] = R[m, k] e−jϕ. Then

R∥ = R(
∼
R), R⊥ = I(

∼
R). (7)

To encourage reconstructions that are physically consistent with the input phase on
normal segments, we penalize the orthogonal component via

L⊥ = E(m,k)∈N [∥ I(
∼
R)(m, k) ∥], (8)

where N is the set of normal training regions, and the expectation is the mean over a
spectrogram patch. This definition avoids assuming universal orthogonality of the STFT
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real/imag axes (which in practice depends on window, hop, and local phasor geometry)
and instead enforces orthogonality directly relative to the input phase. We set λ⊥ = 0.5 for
this term.

2.3.3. Training Objective

The total loss is

L = ∥W f ⊙ (X− X̂) ∥1⏟ℒೝ೐೎ + λ⊥L⊥ + λsLsp + λcLcwt, (9)

where ⊙ denotes the Hadamard (element-wise) product. The frequency weight W f

is derived from the standard deviation σf of the STFT magnitude over the normal
training set:

W f =
1

σf + ε
,

1
F ∑

f
W f = 1, (10)

with F the number of frequency bins used for normalization and ε = 1× 10−8 for numerical
stability. The sparsity term on the residual is

Lsp =∥ R ∥1, λs = 1× 10−3. (11)

To preserve broadband shape, we add a continuous-wavelet-transform (CWT) auxil-
iary loss,

Lcwt = ∥ Scalogram(x̂)− Scalogram(x) ∥1, x̂ = iSTFT
{

X̂
}

. (12)

The CWT uses a complex Morlet kernel (central parameter w0 = 6) with 24 logarithmically
spaced center frequencies over f ∈ [5, 0.45 × 4000] Hz, kernel length 1024, and reflect
padding. The kernel is

ψ(t, f ) = e−
t2

2σ2 ·[cos(2π f t) + jsin(2π f t)], σ =
w0

2π f
. (13)

We set λc = 0 for the first three epochs and then linearly ramped it to 0.05 by conver-
gence. Because the parallel and orthogonal components are defined with respect to the
input phase at each time–frequency bin rather than the STFT’s fixed Cartesian axes, this
regularization is more robust to the choice of window and hop parameters and to local
phasor variations.

2.4. Model Architecture and Implementation

As described in Section 2.2, the two input channels are [R(X), I(X)]. All signals were
transformed to the spectral domain via the STFT and then partitioned into STFT patches
before being fed to the model. For example, in one file from Case 1, we obtained about
224,541 time-domain frames and, from these, extracted roughly 28,066 STFT patches of
length 16 frames using an overlap (stride 8). The detailed hyperparameters are listed
in Table 3.

2.4.1. U-Net-Based Autoencoder (Normal Extractor)

We employ a real-valued U-Net autoencoder that takes the complex-spectrogram
patch [R(X), I(X)] and reconstructs normal patterns.

Downsampling is performed with 2D convolutions of stride 2, and upsampling uses
bilinear upsampling followed by convolution. Skip connections are introduced between the
encoder and decoder. The output has the same spatial resolution as the input,

[
R
(
X̂
)
, I
(
X̂
)]

.
The architecture consists of a four-stage encoder–decoder. At each stage two convolutional
blocks are applied, and downsampling uses stride-(2,2) convolution. The bottleneck com-
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prises two convolutional blocks. The decoder proceeds in the order decoder-3→ decoder-2
→ decoder-1 with bilinear upsampling and convolutional blocks. Finally, the shallow skip
feature from encoder-stage 1 (e1) is concatenated with the corresponding decoder feature
map (d1) and passed to the head.

See the diagram in Figure 2.

Table 3. Hyperparameters.

Category Item Value/Description

Input NFFT , hop, window 2048, 1024,
√

Hann

Patch T (frames), channels 16, [R(X), I(X) ]

Common block Conv-BN-GELU 3 × 3, padding = 1

Down/Up Down/up Stride-2 Conv/bilinear + Conv

U-Net (teacher) Base_ch, depth 64, 4-stage encoder–decoder

Output (teacher) Out-ch 2ch (R(X), I(X) )

Affine head (student) Head-ch 4ch
(R(M), I(M), R(B), I(B) )

Affine constraints mmax 1.5

Optimization Adamw, early-stop Validation-MAE, patience = 30,
∆ = 1× 10−4

AMP/Hardware dtype, HW bf16, A100 40 GB
Abbreviations—NFFT : number of points in the fast Fourier transform; BN: batch normalization; GELU: Gaussian
error linear unit; MAE: mean absolute error; AMP: automatic mixed precision; dtype: data type; HW: hardware;
bf16: bfloat16.

 

Figure 2. Phase-aware complex spectrogram AE with phasor-rotation regularization.

2.4.2. Mask-Bias Head

Given the final decoder features [d1 ∥ e1], a 1 × 1 2D convolution produces
four output channels (Figure 3):
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Figure 3. Fault-aware normal extractor.

The first two constitute a complex mask M (real/imaginary), and the last two consti-
tute a complex bias B (real/imaginary). The mask is gated by tanh and scaled by a scalar
mMax, i.e., M = tanh(MRaw) · mMax. The final reconstruction is computed by complex,
element-wise multiplication plus bias:

X̂ = M⊙ X + B, (14)

where ⊙ denotes element-wise multiplication applied to the complex components. Operat-
ing on high-resolution features that fuse the decoder and the shallow skip, this mask-bias
head finely adjusts local amplitude and phase while reproducing the normal pattern.

2.4.3. Training and Inference

All experiments were conducted on an NVIDIA A100 40 GB graphics processing unit
(GPU) using the PyTorch 2.8.0 framework. AMP was enabled, and the bf16 data type was
used to improve computational efficiency.

Training follows normal-centric reconstruction. Stage 1 (teacher): train the U-Net AE
to recover normal patterns. Stage 2 (student): train the affine mask-bias head. In both stages,

the total loss is given by (9). In Stage 2, letting
∼
X denote the Stage-1 teacher output, a weak

guidance term is added to stabilize convergence and strengthen local phase alignment:

LTeach =∥ X̂−
∼
X ∥1, L ← L+ λTeachLTeach (λTeach = 0.10). (15)

We set the random seed to 2025 and the batch size to 16. Each stage is trained for up to
1000 epochs with AdamW (fixed learning rate = 2× 10−4 and weight decay = 1× 10−4),
AMP (bf16), channels_last, and torch.compile. Early stopping uses patience = 30 and
∆ = 1× 10−4. During the first five epochs, a warm-up schedule increases the proportion of
normal batches. The weight of Lcwt is linearly ramped during the first three epochs. L⊥ is
evaluated only on normal regions N . Frequency weights W are fixed from statistics of the
normal training set.

At inference, given X we produce X̂, compute the residual R = X − X̂, and derive
magnitude (energy/L1), shape (CWT-based), frequency-distribution (band/centroid/peak),
and orthogonal components (R⊥). These residual-based features are then combined accord-
ing to Section 2.5 for decision making.
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2.5. Residual Features for Decision

To derive discriminative evidence from the residuals, we employ three feature families:
(i) Magnitude/Shape, (ii) Frequency Distribution, and (iii) Normal-Manifold Projection
(Parallel/Orthogonal).

Magnitude/Shape. The Residual-to-signal ratio (RSR) is defined as

RSR =
∑m,k|R[m, k]|
∑m,k|X[m, k]| , (16)

here, R[m, k] = X[m, k]− X̂[m, k] denotes the residual.
The weighted residual score is

Wscore = ∑k wk∑m|R[m, k]|
∑m,k|R[m, k]| , (17)

where wk is the weight assigned to the k-th frequency bin. We also compute shape-similarity
indicators such as the input-reconstruction correlation coefficient.

Frequency Distribution. The centroid of the residual spectrum is

Centroid =
∑k fk∑m|R[m, k]|

∑m,k|R[m, k]| , (18)

where fk is the center frequency of bin k. The maximum-peak ratio and its frequency are

Rpeak =
max

k
∑m|R[m, k]|

∑m,k|R[m, k]| , fpeak = argmax
k

∑
m
|R[m, k]|. (19)

We also use band energy ratios over [0, 50], [50, 100], [100, 200], [200, 400], [400, 800],
[800, 1600], and [1600, 2000] Hz:

B[ f1, f2]
=

∑k∈[ f1, f2] ∑m|R[m, k]|
∑m,k|R[m, k]| , ∑

[0,2000]
B = 1. (20)

Normal-Manifold Projection (Parallel/Orthogonal). Using the input spectrogram

phase ϕ = ∠X, we rotate the residual by −ϕ to obtain
∼
R = R e−jϕ and decom-

pose it into parallel and orthogonal components with respect to the local input phasor:

R∥ = R(
∼
R), R⊥ = I(

∼
R).

The band-energy ratios of the orthogonal component are then

d⊥,B[ f1, f2]
=

∑k∈[ f1, f2] ∑m ∥I(
∼
R[m, k])∥

∑k ∑m ∥I(
∼
R[m, k])∥

. (21)

Unless otherwise stated, all orthogonality-based features are computed on I(
∼
R).

We further use the orthogonal fraction and the parallel/orthogonal ratio:

p⊥ =
∥ I(

∼
R) ∥1

∥
∼
R ∥1

, ρP/O =
∥ R(

∼
R) ∥1

∥ I(
∼
R) ∥1

. (22)

These quantities directly measure the energy that the normal model fails to explain.
The final classifier is a Gaussian Naive Bayes. Inputs are z-score normalized using TRAIN
statistics, class priors are fixed to (0.5, 0.5), and the tile-level decision threshold is chosen on
TRAIN by maximizing Youden’s index. No post hoc calibration is applied.
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2.6. Evaluation Protocol and Metrics

We split the data into Train, Validation, and Test. Feature selection (Top-K), standard-
ization (z-score), and the Youden threshold (θ*) are determined only on TRAIN, and we
report final performance only on TEST.

Tile-level posteriors pi are aggregated into a file-level score by a top-k mean (top 10%
of tiles):

sFile =
1
k ∑

i∈top−k
pi, k = ⌈0.10× NTiles⌉. (23)

All significance tests in the manuscript use this sFile. Where case-specific feature
optimization is needed, selection and tuning are performed in inner cross-validation, then
fixed in the outer fold to avoid information leakage. Generalization is additionally checked
with Leave-One-File-Out (LOFO).

Classification performance. We evaluate ROC-AUC (with bootstrap 95% confidence
interval (CI), using group-preserving bootstraps at the file level, B = 1000), F1-score,
and the confusion matrix. From the confusion matrix we also compute accuracy and
balanced accuracy:

Acc =
N · rNN + F · rFF

N + F
, Balanced Acc = 1/2(rNN + rFF), (24)

where N and F are the numbers of normal/fault tiles and rNN, rFF are the
corresponding recalls.

Calibration. We report the Expected Calibration Error (ECE) and Brier score.
Generalization/statistical tests. We report LOFO file-level accuracy, a permutation test

(label shuffle at the file level, R = 2000), and a null test (R = 500), both to rule out split bias
or chance performance. The p-value is computed as

p = (#{null statistics ≥ observed })/(R + 1). (25)

Overfitting prevention and monitoring. We use AdamW, early stopping, and a normal-
region regularizer. We monitor the Train-Test area under the curve (AUC) gap, ECE drift,
residual-growth flags, Kolmogorov–Smirnov (KS)-shift, and results of the null test. The
evaluation protocol is summarized in Table 4.

Table 4. Evaluation protocol summary used in this study.

Category Item Setting/Method Notes

Datasplit

Training
/Internal validation

Public training set,
70/30 stratified split Maintain class/case balance

Independent test Public validation set,
Entirely used Prevent information leakage

Cross-validation LOFO File-level generalization check

Classification
Performance

ROC-AUC Report with bootstrap
95% CI

Threshold-invariant
Performance

F1-score Computed at the
optimal threshold Balances precision and recall

Confusion matrix Report
TP/FP/FN/TN Identifies error patterns
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Table 4. Cont.

Category Item Setting/Method Notes

Calibration
ECE Expected Calibration Error Closer to 0 is better

Brier score Mean squared error of
Probabilistic predictions Closer to 0 is better

Generalization
/statisticaltests

LOFO file-level accuracy Accuracy with file-
level holdout Checks split bias

Permutation test Label-shuffle p-value Rules out chance performance

Null test Performance against
No-information inputs Detects overfitting/bias

Overfitting
Prevention

Regularization AdamW weight decay (L2) Weight-level regularization

Early stopping Validation MAE criterion Prevents overfitting

Normal-region regularizer Identity preservation on
normal segments Preserves normal patterns

Overfittingdetection
(monitoring)

Performance gap Train-test AUC gap Generalization drop
Indicator

Calibration drift ECE change over training Over/under-confidence
Indicator

Abbreviations—TP: true positives; FP: false positives; FN: false negatives; TN: true negatives.

3. Results
Using the settings specified in Section 2, we report both quantitative and qualita-

tive results. Unless otherwise stated, the STFT parameters, data partitioning, and train-
ing hyperparameters follow Sections 2.1–2.4. First, Section 3.1 visualizes the effect of
the proposed preprocessing; subsequently, Section 3.2 presents the feature-selection and
classification results.

3.1. Misalignment

Case 1 considers the normal and misalignment of a 2.2 kW blower, whereas Case 6
considers the normal and misalignment of a 5.5 kW blower. For both cases, we report the
pre-processing (residual) spectra and the corresponding fault-classification outcomes.

3.1.1. Data Preprocessing Results

As shown in Figure A1 for Case 1, the healthy data yield a residual that is broadly low
in energy across the entire band, with only small, isolated narrowband peaks. By contrast,
under misalignment, a distinctly harmonic series of equally spaced narrowband peaks
emerges—most prominently in the low-frequency region—indicating that, after subtraction
of the reconstructed normal component, a set of order-related components persists and is
spectrally separable from the raw spectrum. In particular, the prominent 1× and 2× orders
are consistent with well-known spectral symptoms of shaft misalignment and, therefore,
support the misalignment diagnosis for Case 1.

The results for Case 6 (see Figure A6) show the same qualitative trend. In the healthy
state, the residual is of low amplitude and largely free of pronounced narrowband peaks.
Under misalignment, however, we again observe low-frequency harmonics together with
clusters of narrowband peaks in selected mid- to high-frequency bands. This indicates
that, in Case 6 as well, the residual effectively cancels normal components while recovering
fault-specific content as the remaining signal.

In summary, for both cases, the healthy residuals are comparatively flat, whereas
misalignment yields harmonic narrowband peak trains—notably the 1× and 2× series in
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the low-frequency region—consistent with standard spectrum-based diagnostic rules for
shaft misalignment. These observations suggest that the proposed pre-processing enhances
fault-related harmonic structure by attenuating normal components.

3.1.2. Feature Selection & Classification Results

As shown in Figure A9 for Case 1, the top two features were the relative sum of
residual energy orthogonal to the normal subspace ( RST × p⊥), and the energy ratio of
the component parallel to the normal subspace to the orthogonal component (ρP/O). Thus,
in Case 1, the magnitude and proportion of energy located in the orthogonal subspace pro-
vided the strongest discriminative power. In line with Section 3.1.1, this implies that, even
after normal-component removal, a phase-coherent harmonic train (≈1×, 2×) survives in
the residual and that its energy is concentrated along directions geometrically orthogonal
to the learned normal subspace.

As shown in Figure A14 for Case 6, the two most discriminative features were
d⊥,B[800,1600] and d⊥,B[1600,2000], the fraction of orthogonal-residual energy concentrated
in the 0.8–1.6 kHz and 1.6–2.0 kHz bands, respectively. This indicates an ambidomain signa-
ture: along with the low-frequency harmonic train, Case 6 exhibits abnormal concentration
of residual energy in specific mid/high-frequency windows.

3.2. Bearing Fault—Lubricant-Removed

Case 2 contrasts a 2.2 kW blower A in a healthy condition with bearing fault—lubricant-
removed; Case 5 does the same for a 3.7 kW blower A. For both cases, we report the
pre-processing result (residual) and the ensuing fault-classification outcomes.

3.2.1. Data Preprocessing Results

In Figure A2 (Case 2), the principal deterministic shaft-order components in the healthy
runs (1×, 2× and other low-frequency rotating components) are effectively cancelled in the
residual, whereas the lubricant-removed condition exhibits clear new components and an
energy increase in the low-frequency band (0–200 Hz), together with additional content in
the high-frequency band (1.6–2.0 kHz). The newly appearing low-frequency lines with their
harmonics/sidebands are consistent with amplitude-modulated patterns at the bearing
characteristic frequencies (BCFs) spaced by the running speed.

As shown in Figure A5 (Case 5), the residual remains overall low for the healthy
segments, but under the lubricant-removed condition, the energy rises markedly in
mid-/high-frequency ranges—most prominently 200–400 Hz and 400–800 Hz—along
with a substantial increase in the relative amplitude of a few dominant spectral lines. In
other words, both the residual-to-signal ratio and the prominence of the most dominant
peak(s) increase under fault, and the energy concentration around the 400–800 Hz reso-
nance band indicates impact-induced structural resonance, a characteristic symptom of
bearing damage.

3.2.2. Feature Selection & Classification Results

As shown in Figure A10 for Case 2, the two top-ranked features quantify the residual
energy fraction, relative to the healthy baseline, in two low-frequency bands (100–200 Hz
and 0–50 Hz), thereby corroborating the low-frequency concentration of the residual energy.
In particular, the 0–50 Hz band overlaps the fundamental (1×) and its harmonics/sidebands;
its persistence after removal of the normal phase-aligned components indicates a clear
low-frequency defect component.

As shown in Figure A13 for Case 5, the RSR ranked first and RPeak ranked second. The
former reflects the marked increase in the residual energy share under fault, whereas the
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latter indicates that one dominant peak in the pre-processed spectrum becomes relatively
more pronounced in the faulty condition.

3.3. Belt Looseness

Cases 3 and 8 concern belt looseness. Case 3 compares a healthy state and a
belt-looseness state of a 2.2 kW blower, whereas Case 8 does so for a 5.5 kW blower.
For both cases, we report the pre-processing result (residual) and the ensuing fault-
classification outcome.

3.3.1. Data Preprocessing Results

From Figure A3 (Case 3), the spectrum of the belt-looseness condition exhibits clear
morphological departures from the healthy baseline in the 100–200 Hz and 400–800 Hz
bands. In particular, the relative ordering of several low-/mid-frequency peaks is al-
tered, and the fault average rises more prominently over a portion of the high-frequency
range (≈1.6–1.8 kHz). For Case 8, as shown in Figure A8, belt looseness carries higher
energy at low frequencies (notably 0–50 Hz) and in portions of the low-to-mid band;
after pre-processing, the residual (green) remains appreciable over a broad range. In gen-
eral, belt defects can introduce sub-synchronous and asynchronous components; because
the belt traverses two pulleys, a 2× belt-frequency component may become dominant.
Consequently, peaks at non-integral multiples of the shaft speed together with enhanced
low-frequency content can be observed. In our data, the residual for Case 8 shows a relative
increase within 0–50 Hz, which we interpret as a sub-synchronous pattern consistent with
belt looseness.

3.3.2. Feature Selection & Classification Results

In Figure A11 (Case 3), the top two ranked features are d⊥,B[100,200] and d⊥,B[400,800],
indicating that—after phase alignment—the fraction of the total residual energy (orthogonal
to the healthy subspace) attributable to the 100–200 Hz and 400–800 Hz bands increases
under belt looseness. In Figure A16 (Case 8), RSR ranks first and RST × p⊥ second,
the overall residual-to-signal ratio rises most strongly, followed by the total orthogonal
residual energy. Thus, band-specific changes dominate discrimination for Case 3, whereas
broadband residual magnitude is more decisive for Case 8. This suggests that defect energy
clusters in specific low-to-mid bands for Case 3, while broad low-frequency-centered
changes occur for Case 8.

3.4. Unbalance

Case 4 pairs the normal condition of a 3.7 kW air handling unit (AHU) A with its
unbalanced state, and Case 7 pairs the normal condition of a 5.5 kW AHU B with its unbal-
anced state. For both cases, we report the pre-processing residuals and the corresponding
fault-classification outcomes.

3.4.1. Data Preprocessing Results

From Figure A4 (Case 4), the residual obtained after pre-processing the normal data
remains low across the band, with a particularly shallow floor over ≈ 0–50 Hz. Under
unbalance, by contrast, the residual (green) forms a distinct single peak in the low-frequency
region at the 1× rotational component, and the residual level is markedly higher than that
of the normal data at low frequency.

In Figure A7 (Case 7), the residual for the normal data is similarly low over the entire
band and shows a very small low-frequency peak. Under unbalance, the residual exhibits
a prominent single peak in the low-frequency range (again coincident with 1×), which is
much larger than that of the normal condition.
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Taken together, Cases 4 and 7 show that, even after removing normal components,
out-of-phase (anti-phase) content remains concentrated at low frequency under unbalance.
The dominance of the 1× RPM tone with comparatively small harmonics is consistent with
the canonical spectral signature of rotor unbalance.

3.4.2. Feature Selection & Classification Results

As shown in Figure A12 (Case 4), the two highest-ranking features are centroid and
B[0,50]. The downward shift in the spectral centroid indicates that the fault-energy distribu-
tion is significantly biased toward lower frequencies in the unbalanced state, consistent
with a dominant 1× component; B[0,50] likewise emphasizes the increased energy share in
the 0–50 Hz band where the unbalanced tone appears.

For Case 7 (Figure A15), the top two features are fPeak and B[0,50]. The former denotes
the frequency of the largest spectral peak and, together with B[0,50], again indicates that the
unbalance-related 1× component dominates the spectrum, as in Case 4.

4. Discussion
4.1. Overall Discriminative Performance (ROC-AUC)

As summarized in Table 5, the test ROC-AUC across all eight cases was 0.998–1.000,
indicating threshold-free separability (AUC 0.998–1.000). The bootstrap 95% confidence
intervals also concentrated near 1.0. ECE(test) ≤ 0.023 and Brier(test) ≤ 0.0228 except
modest increases for Cases 4−5.

Table 5. Classification performance & calibration.

Case ROC-AUC
(Train/Test)

AUC 95% CI
(Bootstrap) F1-Score Confusion ECE

(Train/Test)
Brier Score
(Train/Test)

1 1.000
/1.000 1.000–1.000 1.000

N → N = 1.000
N → F = 0.000
F → N = 0.000
F → F = 1.000

0.000
/0.000 0.0000/0.0000

2 1.000
/1.000 1.000–1.000 1.000

N → N = 1.000
N → F = 0.000
F → N = 0.000
F → F = 1.000

0.000
/0.000 0.0001/0.0000

3 1.000
/0.999 0.999–1.000 1.000

N → N = 0.999
N → F = 0.001
F → N = 0.000
F → F = 1.000

0.000
/0.000 0.0001/0.0004

4 1.000
/1.000 1.000–1.000 0.997

N → N = 1.000
N → F = 0.000
F → N = 0.006
F → F = 0.994

0.000
/0.003 0.0001/0.0031

5 0.998
/1.000 1.000–1.000 0.996

N → N = 0.997
N → F = 0.003
F → N = 0.007
F → F = 0.963

0.016
/0.005 0.0172/0.0039

6 1.000
/1.000 1.000–1.000 1.000

N → N = 1.000
N → F = 0.000
F → N = 0.000
F → F = 1.000

0.000
/0.000 0.0001/0.0001
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Table 5. Cont.

Case ROC-AUC
(Train/Test)

AUC 95% CI
(Bootstrap) F1-Score Confusion ECE

(Train/Test)
Brier Score
(Train/Test)

7 1.000
/1.000 0.999–1.000 1.000

N → N = 1.000
N → F = 0.000
F → N = 0.000
F → F = 1.000

0.000
/0.000 0.0002/0.0002

8 1.000
/1.000 1.000–1.000 1.000

N → N = 1.000
N → F = 0.000
F → N = 0.000
F → F = 1.000

0.000
/0.000 0.0000/0.0000

4.2. Threshold-Dependent Metrics (F1-Score, Confusion Matrix) and Error Characteristics

While the AUC was 0.998–1.000 for all cases (validation criterion), the F1-score was
1.000 in most cases, with only slight reductions for Case 4 (0.997) and Case 5 (0.996).
Inspection of the confusion matrices shows that the decrease in F1-score for these two cases
arose almost entirely from F→N errors. In other words, the operating threshold was tuned
to keep false positives (specificity loss) nearly at zero, at the cost of increased false negatives
(sensitivity loss). Calibration metrics (ECE and Brier score) were generally negligible but
relatively larger in Case 4 and Case 5.

4.3. Calibration Quality and Drift

Overall probability calibration was good. In Table 5, ECE(test) ranged from 0.000 to
0.005 and Brier(test) from 0.0000 to 0.0039, both close to zero in most cases, with noticeable
deviations only in Case 4 and Case 5. Calibration drift measured by ∆ECE > 0 was
evident only for Case 4 (+0.003) and Case 5 (−0.011), suggesting a mild tendency toward
under-confidence in these cases.

4.4. Accuracy, Balanced Accuracy, and Overall Weighted Summary

From the confusion-matrix counts (Table 6), accuracy (Acc) and balanced accuracy
(bacc) per case were 99.4–100.00% and 99.5–100.00%, respectively. When weighted by the
number of test patches per case, the overall summary was Acc ≈ 99.88% and bacc ≈ 99.90%
(FP/FN = 6/40), with most errors concentrated in Cases 4–5. Errors were concentrated in
Case 4 and Case 5, highlighting the importance of threshold-cost configuration.

Table 6. Acc & balanced Acc results.

Case Acc
(%)

Balanced Acc
(%)

FP
(N→F)

FN
(F→N)

Number of
Test Patches

1 100.0 100.0 0 0 4485

2 100.0 100.0 0 0 4736

3 100.0 100.0 2 0 4444

4 99.7 99.7 0 18 6035

5 99.4 99.5 4 22 4658

6 100.0 100.000 0 0 41,143

7 100.0 100.000 0 0 43,018

8 100.0 100.000 0 0 40,869
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4.5. Spectrum-Level Preprocessing Effects (Normal vs. Fault Frequency Bands)

From Figures A1–A8, normal segments exhibited high input-reconstruction overlap
and a low residual floor, whereas fault segments consistently showed (i) an elevated
low-frequency floor, (ii) resonance-pocket peaks, and (iii) spikes around harmonics. This
indicates that the autoencoder reconstructs the linear/deterministic skeleton of normal
patterns while pushing abnormal components into the residual.

4.6. Generalization Performance and Statistical Significance (LOFO, Permutation, Null)

Table 7 shows LOFO file-level accuracies mostly in the 0.994–1.000 range, with Case 5
slightly lower at 0.994. Thus, generalization remained strong even when an entire group
was held out, although distribution dependence was somewhat stronger for Case 5. The
permutation test on file-level aggregate scores (R = 2000) yielded p ≈ 0.00050, and the null
test with label shuffling (R = 500) gave p ≈ 0.002 at AUCreal ≈ 0.999–1.000, rejecting the
null that predictions carry no label information.

Table 7. Generalization and statistical tests.

Case LOFO Permutation Test
(p, R = 2000)

Null Test
(p, R = 500)

1 1.000 <0.0005 <0.002

2 1.000 <0.0005 <0.002

3 1.000 <0.0005 <0.002

4 1.000 <0.0005 <0.002

5 0.994 <0.0005 <0.002

6 1.000 <0.0005 <0.002

7 1.000 <0.0005 <0.002

8 1.000 <0.0005 <0.002

4.7. Overfitting Monitoring Results

Given the high classification performance, we verified that the results were not due to
overfitting. As summarized in Table 8, the performance gap ∆AUC = val − train was
0.000 in most cases (Case 5: +0.002. Case 3: −0.001), indicating virtually no overfitting in
discriminative power. Calibration drift ∆ECE = val − train was meaningfully positive
only in Case 4 (+0.003) and Case 5 (−0.011)-that is, only the reliability of the probability
calibration deteriorated for some domains/groups, precisely matching the ECE/Brier
observations in Table 5.

4.8. Performance Comparison with Baselines

We quantitatively compared the proposed approach with a family of classic feature-
based baselines. Performance was evaluated at the tile level using ROC-AUC and F1-score.
The classic pipelines comprised (i) spectral kurtosis (SK) followed by envelope power
spectral density (EnvPSD), harmonic/sideband features (H/SB), and cepstral features
(Cep), coupled with Naïve Bayes (NB), logistic regression (Logit), or an SVM; and (ii) a
fixed narrow-band variant, band-pass (BP, 0.8–1.6 kHz) + EnvPSD + H/SB + Cep with a
Logit classifier (Classic-BP-Logit). For fairness, all baselines used exactly the same features
introduced in Section 2.5, and we reported training-guided decision thresholds and tile-
level confusion matrices in a common format.

Across all eight cases, the proposed method achieved ROC-AUCs of 0.998–1.000
and F1-scores of 0.996–1.000, indicating near-perfect, threshold-insensitive separabil-
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ity and good probability calibration (Table 5). The modest dip in F1-score was driven
primarily by FN in Cases 4–5, a consequence of thresholds chosen to suppress FP. By con-
trast, the classic baselines exhibited strong case-dependent variability. Averaged over the
eight cases, the proposed method (ROC-AUC 0.9999, F1-score 0.9993) outperformed
Classic-NB (ROC-AUC 0.8666, F1-score 0.8212), Classic-Logit (ROC-AUC 0.9272, F1-score
0.9254), Classic-SVM (ROC-AUC 0.9736, F1-score 0.9305), and Classic-BP-Logit (ROC-AUC
0.5949, F1-score 0.4784). The BP–Logit variant frequently collapsed, yielding TN = 0 or
a large number of FN in several cases. For example, in Case 5, NB effectively failed
(ROC-AUC ≈ 0, F1-score = 0), whereas SVM remained acceptable (>0.96), underscoring the
sensitivity of these pipelines to classifier choice and case particulars. Table 9 summarizes
ROC-AUC and F1-scores for the proposed method and all classic baselines.

Table 8. Overfitting detection (monitoring).

Case Performance Gap
(∆AUC = val−train)

Calibration Drift
(∆ECE = val−train)

1 0.000 0.000

2 0.000 0.000

3 −0.001 0.000

4 0.000 +0.003

5 +0.002 −0.011

6 0.000 0.000

7 0.000 0.000

8 0.000 0.000

Table 9. ROC-AUC and F1-scores for the proposed method and all classic baselines.

Case
Proposed Full
(ROC-AUC/

F1-Score)

NB
(ROC-AUC/

F1-Score)

Logit
(ROC-AUC/

F1-Score)

SVM
(ROC-AUC/

F1-Score)

BP-Logit
(ROC-AUC/

F1-Score)

1 1.000000/1.000000 1.000000/1.00000 1.000000/1.00000 1.000000/0.99278 0.049978/0.00000

2 1.000000/1.000000 0.963850/0.85090 0.964972/0.85132 0.964972/0.85132 0.626469/0.85132

3 0.999486/0.999600 0.970200/0.71986 0.452837/0.71968 0.824507/0.71986 0.080720/0.00000

4 1.000000/0.996789 0.998864/0.99899 1.000000/0.99983 1.000000/0.99748 0.997184/0.65934

5 0.999971/0.998111 0.000237/0.00000 1.000000/0.83232 1.000000/0.96230 0.004541/0.12746

6 0.999887/0.999893 0.999944/0.99998 1.000000/1.00000 1.000000/0.99979 1.000000/0.72581

7 0.999744/0.999829 1.000000/1.00000 1.000000/1.00000 0.999515/0.92381 0.999924/0.70533

8 1.000000/1.000000 1.000000/1.00000 1.000000/1.00000 1.000000/0.99662 1.000000/0.75814

4.9. Consistency with Prior Work and Distinctive Contributions

To check consistency, we compared our findings with prior studies that used the
AI Hub open dataset. The AI Hub predictive maintenance sensors for mechanical facili-
ties literature commonly emphasizes preprocessing combined with traditional machine-
learning classifiers (LR/KNN/SVM/RF/LGBM) [20], leverages representation learning
in unsupervised/semi-supervised settings to mitigate label scarcity and class imbal-
ance [21,24], and encodes 1D signals as images (GASF/GADF/MTF/RP) to feed CNNs
for high accuracy [22,23]. Our design-learning to extract fault-components with an AE
and making decisions with a compact classifier on residual features aligns with this trend
of learned preprocessing that amplifies fault signatures before classification. In particu-
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lar, Sung et al. [20] reported dramatic performance differences between models with and
without preprocessing (F1-score ≈ 0.999–1.000 vs. Raw-signal Acc 52.8–96.7%), supporting
our choice to place AE-based learned preprocessing at the core. (See Table 10 for the
comparative summary.)

Table 10. Comparative results on the AI Hub open dataset (Predictive maintenance sensors for
mechanical facilities).

No. Study Sensor Task Method (Traditional/DL) Reported Test Metric(s)

1 This
Paper Vibration Binary

(normal vs. fault)

Complex-spectrogram
AE + phase-orthogonality
regularization. 2 residual

features + simple classifier

ROC-AUC 0.998–1.000
F1-score 0.983–1.000
LOFO 0.980–1.000
ECE 0.000–0.023

Brier 0.0000–0.0228

2 [20] Vibration/Current Binary (per-fault)
Preprocessing (noise reduction

& spectrum augmentation)
+ LR/KNN/SVM/RF/LGBM

After preprocessing
F1-score ≈ 0.999–1.000

(tree models)
Without preprocessing

Acc 52.8–96.7%

3 [21] Vibration/Current Anomaly
detection

LSTM-VAE (unsupervised) vs.
IF/OC-SVM/AE

Accuracy > 97%
(two scenarios)

4 [22] Current Multi/Binary
Time-series→ image

(GASF/GADF/
MTF/RP) + CNN

Bearing F1-score 0.999/
Acc 0.998

Rotor F1-score 0.996
Belt F1-score 0.990

Misalignment F1-score 0.948

5 [23] Vibration Multi 13 DL time-series
classifiers compared

CNN variants reported
near-100%

Acc/Prec/Rec/F1-score
(abstract level)

6 [24] Current Anomaly
detection

FFT/THD features + MKDE
(non-parametric density)

Accuracy 98.93%
(test n = 5974)

Abbreviations—IF: isolation forest; OC-SVM: one-class SVM; FFT: fast Fourier transform; THD: total
harmonic distortion.

In line with prior work that fused image encoding with a lightweight CNN [22],
many studies on bearing faults, rotor unbalance, and belt looseness have reported F1-
scores around 0.99. However, for phase-sensitive defects such as shaft misalignment-
where phase alignment and coherence are critical, the reported F1-score is relatively lower
(≈0.948). In this study, under a vibration-only modality and a binary (normal vs. fault)
setting, we achieved an area under the ROC curve (AUC) of 0.998–1.000 and F1-scores of
0.983–1.000. Notably, the misalignment cases (2.2/5.5 kW) were classified with
F1-score = 1.000, confirming the advantage of exploiting explicit phase information.
Nevertheless, because the prior studies summarized in Table 9 differ in sensor type
(current vs. Vibration), task formulation (binary/multi-class/anomaly detection), and
data-splitting protocols, a direct, absolute comparison of performance figures should be
interpreted with caution.

4.10. Ablation Study

To quantify the contributions of the two key components—phase-orthogonality based
on the input phase-ordering criterion and the mask–bias head (M, B)—we evaluated
five variants: no-ortho-feats (phase-orthogonality-based features removed at inference),
M = I (mask disabled by forcing the identity mask), B = 0 (bias disabled), phase-random
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(randomized input phase), and no-L⊥ (phase-orthogonal regularizer turned off during
training). In the last variant, the phase-orthogonality regularizer was disabled only during
training; the corresponding features were still used at inference. All other pipeline, training,
and aggregation settings were held fixed (Train/Test split; classifier = Naive Bayes; features
frozen; Top-K aggregation at 10%). Performance was assessed by ROC-AUC, F1-score,
and ECE.

As summarized in Table 11, the proposed method achieved ROC-AUC ≥ 0.999 and
F1-score ≥ 0.996 across all eight cases, with ECE predominantly in the 10−4–10−3 range,
indicating near-perfect separability together with stable probability calibration. In con-
trast, M = I caused the largest degradation. For example, in Case 4, the F1-score fell from
0.9968 to 0.7685; in Case 5, the AUC dropped from 0.99997 to 0.8872, and ECE deteriorated
to approximately 2.63 × 10−1, confirming that frequency- and spatio-temporal-selective
gating is critical in noisy or overlapping spectra. For no-ortho-feats, ROC-AUC and F1-
score were generally similar to the baseline, but ECE consistently increased (e.g., Case 2:
6.22 × 10−3; Case 7: 3.02 × 10−4), indicating a negative impact on calibration. Disabling
the bias (B = 0) produced only minor accuracy changes yet raised ECE in some settings
(e.g., Case 5, from ≈ 0.0037 to ≈ 0.0085), suggesting that retaining B benefits calibration
stability. With phase-random, AUC tended to remain high, but F1/ECE worsened consis-
tently (e.g., Case 8, ECE ≈ 9.39 × 10−4), showing that indiscriminate phase perturbation
harms classifier reliability. The effect of no-L⊥ was case-dependent: several cases changed
only marginally (e.g., Case 1 F1 = 0.9992, ECE = 4.16 × 10−4; Case 3 AUC = 0.9985,
ECE = 6.75 × 10−4; Cases 6–8 with minor shifts), Case 2 was effectively unchanged
(1.000/1.000/1.00 ×10−8), and Case 4 even improved to 1.000/1.000 (ECE ≈ 1.02 × 10−4).
However, Case 5 exhibited a clear drop (AUC 0.9830/F1 0.9541/ECE 5.24 × 10−2), cor-
roborated by a grouped-bootstrap ∆AUC ≈ −0.0169; p < 0.001, indicating that L⊥
stabilizes learning, particularly in bearing-resonance-dominated or complex spectral
conditions (Case 5).

As shown in Table 11, across all eight evaluation cases, the proposed method
achieved ROC-AUC ≥ 0.999, F1-score ≥ 0.996, and ECE predominantly on the order of
10−4–10−3, indicating near-perfect separability and stable probability calibration. In con-
trast, M = I (mask off) produced the most pronounced degradation. For example, in Case 4
(unbalance), the F1-score fell from 0.997 to 0.768, and in Case 5 (bearing fault), ROC-AUC
dropped from 0.99997 to 0.88700, and ECE worsened from ≈0.003 to ≈0.205. These re-
sults underscore that the mask-gating mechanism, which applies frequency-selective and
spatiotemporal-selective suppression/emphasis, provides decisive protection in spectra
with noise/overlap.

In summary, mask gating is essential under complex spectra and low SNR; disabling it
can precipitate severe performance collapse. Phase-orthogonality has little effect on average
accuracy but improves calibration stability and interpretability. Retaining B yields small yet
consistent ECE gains, while random phase manipulation degrades calibration and should
be avoided. Disabling L⊥ can be harmless, neutral, or even mildly beneficial (Case 4), but
may be risky in resonance-dominated environments (Case 5). These findings, together with
Top-K aggregation, AUC confidence intervals, LOFO, and permutation/null testing, jointly
support both the magnitude and the statistical reliability of the reported scores.

4.11. Limitations and Threats to Validity

Because faults were induced and the power-rating range was limited, additional
validation is needed for naturally occurring faults and extreme operating conditions. We
also observed slightly degraded calibration and divergent decision thresholds in Case 4
and Case 5, compared with the other cases. Specifically, the proposed method’s validation
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ECE was 0.00313 in Case 4 and 0.00469 in Case 5 (whereas many other cases were around
~10−8), suggesting minor calibration drift; the NB tile thresholds learned on TRAIN were
also quite different (0.951 in Case 4 vs. 0.322 in Case 5), indicating domain shift possibly
due to sensor/device calibration or operating conditions.

Ablation studies further showed that removing the spectral mask/orthogonalization
steps leads to pronounced drops in these cases (e.g., in Case 4, No-Mask ECE 0.205/F1
0.768; in Case 5, No-Mask AUC 0.893/ECE 0.252/F1 0.863), underscoring their role in
robustness against global spectral tilt/gain shifts.

Table 11. Ablation of phase-orthogonality and the mask–bias head: case-wise ROC-AUC, F1-score,
and ECE.

Case
Proposed Full
(ROC-AUC/F1-

Score/ECE)

No-Ortho-Feats
(ROC-AUC/F1-

Score/ECE)

M = I (No-Mask)
(ROC-AUC/F1-

Score/ECE)

B = 0 (No-Bias)
(ROC-AUC/F1-

Score/ECE)

Phase-Random
(ROC-AUC/F1-

Score/ECE)

No-L⊥
(ROC-AUC/F1-

Score/ECE)

1 1.000000/1.000000/
1.00 × 10−8

1.000000/1.000000/
1.01 × 10−8

1.000000/0.999835/
4.41 × 10−5

1.000000/1.000000/
1.00 × 10−8

1.000000/1.000000/
1.00 × 10−8

1.000000/0.999174/
4.16 × 10−4

2 1.000000/1.000000/
1.00 × 10−8

0.999928/0.998006/
6.22 × 10−3

1.000000/1.000000/
1.00×10−8

1.000000/1.000000/
1.00×10−8

1.000000/1.000000/
1.00 × 10−8

1.000000/1.000000/
1.00 × 10−8

3 0.999486/0.999600/
4.43 × 10−4

0.998972/0.999600/
6.75 × 10−4

1.000000/0.999800/
2.25 × 10−4

0.998972/0.999400/
6.75 × 10−4

0.999486/0.999600/
4.50 × 10−4

0.998458/0.999400/
6.75 × 10−4

4 1.000000/0.996789/
3.13 × 10−3

1.000000/0.998650/
2.04 × 10−3

0.997934/0.768465/
2.05 × 10−1

0.999921/0.997128/
3.55 × 10−3

1.000000/0.996958/
3.61 × 10−3

1.000000/1.000000/
1.02 × 10−8

5 0.999971/0.998111/
3.66 × 10−3

0.999995/0.999528/
3.21 × 10−3

0.887223/0.864343/
2.63 × 10−1

0.999995/0.998109/
8.48 × 10−3

0.999984/0.996845/
5.94 × 10−3

0.983043/0.954070/
5.24 × 10−2

6 0.999887/0.999893/
1.22 × 10−4

0.999944/0.999957/
7.30 × 10−5

0.999887/0.999893/
1.22 × 10−4

0.999944/0.999957/
4.90 × 10−5

0.999887/0.999893/
1.22 × 10−4

0.999887/0.999851/
1.70 × 10−4

7 0.999744/0.999829/
1.86 × 10−4

0.999584/0.999723/
3.02 × 10−4

0.999995/0.999872/
2.60 × 10−4

0.999744/0.999829/
1.86 × 10−4

0.999460/0.999274/
7.90 × 10−4

0.999900/0.999637/
3.95 × 10−4

8 1.000000/1.000000/
1.35 × 10−7

1.000000/1.000000/
1.00 × 10−8

1.000000/0.999977/
2.69 × 10−5

1.000000/0.999908/
1.28 × 10−4

0.999991/0.999242/
9.39 × 10−4

0.999947/0.999862/
2.31 × 10−4

5. Conclusions
This study proposed a preprocessing framework that combines a complex-spectrogram

autoencoder (incorporating phase information) with phase-orthogonality regularization
defined with respect to the input phasor. The framework reconstructs the normal com-
ponent in a data-driven manner and separates the fault component as a residual. Using
a U-Net-based AE with a mask-bias head, local amplitude/phase modulations in the
time-frequency plane are finely corrected while restoring the normal pattern, and resid-
ual features-Magnitude/Shape, Frequency Distribution, and Normal-Manifold Projection
(Parallel/Orthogonal)-are then exploited for normal-fault classification. A distinctive aspect
of the design is its physical consistency: the decomposition is aligned to the input phase
(parallel/orthogonal) rather than the fixed real-imaginary axes in the STFT. In the case
studies, normal segments showed high overlap between input and reconstruction with
a low residual floor, whereas fault segments exhibited consistent residual patterns that
varied with fault type and rating, such as a rise in the low-frequency floor, local peaks
in resonance pockets, and spikes around principal harmonics (see the frequency-domain
comparison figures).

Even with only the top-2 residual features, the method achieved strong separabil-
ity. Leave-one-file-out (LOFO) validation, together with calibration metrics (ECE and
Brier), confirmed both generalization performance and probabilistic reliability. For certain
equipment-fault combinations, predictive probabilities tended to be slightly conservative
(under-confident), indicating a need for calibration against domain shift. Overall, the
proposed preprocessing complements rule-based and filter-based approaches and offers
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interpretability that is readily applicable to field data through the physical meaning of
residual features.

As future work, we will extend the approach beyond binary normal-fault decisions
to multi-type fault diagnosis (e.g., bearing defects, unbalance, misalignment, and belt
looseness). Concretely, we plan to develop a prototype and metric-learning-based multi-
class decision rules using frequency-band features of the residual and the distribution of
components orthogonal to the normal manifold. We will incorporate domain adaptation
to absorb inter-case differences in motor operating conditions and calibrate small-sample
regimes (per line or per facility). In addition, we will optimize thresholds by fault type
using an adaptive Youden index and progressively introduce hybrid rule-and-learning
pipelines that encode physical knowledge (e.g., bearing defect frequencies and 1×/2×
harmonics where 1× denotes the rotational frequency), with the goal of a fully automated
fault-type diagnostic system.
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Appendix A
After training and validation, the test-set results for Cases 1–8 are presented as

frequency-domain plots of the short-time Fourier transform (STFT). For each case and
for both normal and faulty data, we show the STFT of the input signal (blue), the STFT of
the reconstructed signal (orange), and the pre-processing residual (green), defined as the
difference between the input and reconstructed STFTs.

https://www.aihub.or.kr/aihubdata/data/view.do?pageIndex=1&currMenu=115&topMenu=100&srchOptnCnd=OPTNCND001&searchKeyword=&srchDetailCnd=DETAILCND001&srchOrder=ORDER003&srchPagePer=20&srchDataRealmCode=REALM005&aihubDataSe=data&dataSetSn=238
https://www.aihub.or.kr/aihubdata/data/view.do?pageIndex=1&currMenu=115&topMenu=100&srchOptnCnd=OPTNCND001&searchKeyword=&srchDetailCnd=DETAILCND001&srchOrder=ORDER003&srchPagePer=20&srchDataRealmCode=REALM005&aihubDataSe=data&dataSetSn=238
https://www.aihub.or.kr/aihubdata/data/view.do?pageIndex=1&currMenu=115&topMenu=100&srchOptnCnd=OPTNCND001&searchKeyword=&srchDetailCnd=DETAILCND001&srchOrder=ORDER003&srchPagePer=20&srchDataRealmCode=REALM005&aihubDataSe=data&dataSetSn=238
https://www.aihub.or.kr/aihubdata/data/view.do?pageIndex=1&currMenu=115&topMenu=100&srchOptnCnd=OPTNCND001&searchKeyword=&srchDetailCnd=DETAILCND001&srchOrder=ORDER003&srchPagePer=20&srchDataRealmCode=REALM005&aihubDataSe=data&dataSetSn=238
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(a) 

 
(b) 

Figure A1. Frequency domain comparison of case 1: (a) 2.2 kW misalignment-normal. (b) 2.2 kW
misalignment-fault.

 
(a) 

 
(b) 

Figure A2. Frequency domain comparison of case 2: (a) 2.2 kW bearing fault-normal. (b) 2.2 kW
bearing fault-fault.
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(a) 

(b) 

Figure A3. Frequency domain comparison of case 3: (a) 2.2 kW belt looseness-normal. (b) 2.2 kW belt
looseness-fault.

 
(a) 

 
(b) 

Figure A4. Frequency domain comparison of case 4: (a) 3.7 kW unbalance-normal. (b) 3.7 kW
unbalance-fault.



Machines 2025, 13, 945 25 of 30

 
(a) 

 
(b) 

Figure A5. Frequency domain comparison of case 5: (a) 3.7 kW bearing fault-normal. (b) 3.7 kW
bearing fault-fault.

(a) 

(b) 

Figure A6. Frequency domain comparison of case 6: (a) 5.5 kW misalignment-normal. (b) 5.5 kW
misalignment-fault.
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(a) 

 
(b) 

Figure A7. Frequency domain comparison of case 7: (a) 5.5 kW unbalance-normal. (b) 5.5 kW
unbalance-fault.

 
(a) 

 
(b) 

Figure A8. Frequency domain comparison of case 8: (a) 5.5 kW belt looseness-normal. (b) 5.5 kW belt
looseness-fault.
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Appendix B
For Cases 1–8, scatter plots of the top two features extracted from the pre-processing

residuals, together with the corresponding classification outcomes, are provided; normal
samples are plotted in blue and faulty samples in orange.

 
(a) (b) (c) 

Figure A9. Top-2 features and P(fault) histogram for Case 1: (a) Feature distribution RST × p⊥.
(b) Feature distribution ρP/O. (c) P(fault) histogram.

 
(a) (b) (c) 

Figure A10. Top-2 features and P(fault) histogram for Case 2: (a) Feature distribution d⊥,B[100,200].
(b) Feature distribution d⊥,B[0,50]. (c) P(fault) histogram.

 
(a) (b) (c) 

Figure A11. Top-2 features and P(fault) histogram for Case 3: (a) Feature distribution d⊥,B[100,200].
(b) Feature distribution d⊥,B[400,800]. (c) P(fault) histogram.
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(a) (b) (c) 

Figure A12. Top-2 features and P(fault) histogram for Case 4: (a) Feature distribution centroid.
(b) Feature distribution d⊥,B[0,50]. (c) P(fault) histogram.

 
(a) (b) (c) 

Figure A13. Top-2 features and P(fault) histogram for Case 5: (a) Feature distribution RSR.
(b) Feature distribution RPeak. (c) P(fault) histogram.

 
(a) (b) (c) 

Figure A14. Top-2 features and P(fault) histogram for Case 6: (a) Feature distribution d⊥,B[800,1600].
(b) Feature distribution d⊥,B[1600,2000]. (c) P(fault) histogram.

 
(a) (b) (c) 

Figure A15. Top-2 features and P(fault) histogram for Case 7: (a) Feature distribution fPeak.
(b) Feature distribution B[0,50]. (c) P(fault) histogram.
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(a) (b) (c) 

Figure A16. Top-2 features and P(fault) histogram for Case 8: (a) Feature distribution RSR.
(b) Feature distribution RST × p⊥. (c) P(fault) histogram.
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