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Abstract

Model predictive control (MPC) has emerged as a favorable control approach for PMSM
drives, though its practical deployment is frequently hindered by superior computational
complexity and execution burden. This paper presents four finite control set MPC (FCS-
MPC) techniques applied to a two-level inverter-fed PMSM drive. Two of the approaches
are conventional methods, while the other two are novel developed strategies proposed
in this paper. The novel techniques focus on significantly decreasing computational bur-
dens by employing an efficient space-vector selection mechanism that quickly selects the
optimum switching vector without exhaustive evaluation. A comprehensive comparative
assessment of all four control methods is conducted under various operating conditions,
evaluating their dynamic and steady-state performance, computational requirements, and
real-time feasibility. Simulation results demonstrate that the proposed techniques achieve
a significant reduction in computational effort and faster processing, up to 39.65% faster
than conventional full-state evaluation, while maintaining control performances compa-
rable to conventional techniques. These results highlight the potential of the proposed
MPC approaches to bridge the gap between advanced control theory and practical imple-
mentation in real-time PMSM drive systems, providing effective solutions for installing
high-performance PMSM drives on hardware with limited resources.

Keywords: permanent magnet synchronous motor; model predictive control; current
predictive control; three-phase two level inverter

1. Introduction
Known for their exceptional performance characteristics, permanent magnet syn-

chronous motors (PMSMs) are among the most commonly utilized devices in electric drive
systems. The remarkable torque-to-current ratio, outstanding efficiency, and high power
density of PMSMs are some of its significant benefits [1]. There is no requirement for rotor
currents because PMSMs use permanent magnets in the rotor, which significantly lowers
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copper losses. Furthermore, reduced rotor copper loss and the lack of brushes and slip
rings result in an improved performance over traditional machines [2].

Field-oriented control (FOC) and direct torque control (DTC) are the two commonly
used conventional speed control methods for PMSMs. Field-oriented control (FOC) sepa-
rates the torque and flux components through an appropriate coordinate transformation,
allowing PMSM control to mimic that of a direct current (DC) motor [3]. Proportional–
integral (PI) controllers are commonly used in the literature when FOC is applied to PMSMs
in order to control the speed and regulate the iq and id components [4,5]. FOC’s ability to
provide superior steady-state performance and good torque quality are its main advan-
tages. Nevertheless, it has drawbacks such as a decreased dynamic response because of PI
controllers’ constrained bandwidth and the difficulty of adjusting their parameters [5].

On the other hand, DTC works by choosing the right inverter switching states to
directly regulate stator torque and flux without the need for current control loops. This
approach uses hysteresis controllers to adjust the error between reference and estimated
values of torque and flux linkage [6] and flux and torque estimators that are taken from
the PMSM model. The removals of current control loops, coordinate transformations,
and PI regulators are some of the main advantages of DTC. However, DTC can lead
to disadvantages like a torque ripple and excessive current. A self-tuning stator flux
observer was proposed in [7] to improve the overall performance of DTC in PMSM systems,
while improvements were made in [8] to reduce torque ripples and enhance dynamic
torque responsiveness.

In recent decades, model predictive control (MPC) has developed as a promising
alternative to conventional control approaches. Its application has been widely investigated
in various motor drive systems, including synchronous reluctance motors, brushless DC
motors, induction machines, and both interior and surface-mounted permanent magnet
synchronous motors (PMSMs) [9]. MPC operates by employing a discrete-time system
model to predict future behaviors over a defined prediction horizon [10]. The optimal
control action is then determined by minimizing a cost function that reflects the desired
control objectives [10].

Model predictive control (MPC) has developed a highly attractive approach for power
electronic applications, owing to its inherently discrete design, which aligns well with
converter switching behavior [11]. In finite control set MPC (FCS-MPC), the optimal
switching state is obtained from a predefined admissible set by minimizing the deviation
between the reference signals and the predicted system responses. Despite its effectiveness,
conventional FCS-MPC implementations need the evaluation of all possible switching
states through repeated prediction of load and source currents, followed by a cost function
calculation, which executes a significant computational burden.

Regardless of its potential, MPC’s real-time processing demand becomes a serious
issue, especially when considering the high sampling frequencies and long prediction
horizons needed for the best results. In order to overcome this difficulty, one particular
approach is to shift a portion of the computation offline and use an explicit solution, which
is a precomputed lookup table, to apply the control law [12].

Numerous optimization procedures have been investigated to reduce the computa-
tional load of MPC. For instance, multistep FCS-MPC [13] uses a modified sphere decoding
algorithm to simplify long-horizon predictions, although Zafra et al. [14] redeveloped
the problem as a box-forced integer least-squares job. Other methods reduce computa-
tional load by limiting the control set [15] through graphical [16], adjacent-vector [17],
or commutation-based selections [15]. Similarly, Habibullah et al. [18] employed a DTC-
based switching table, and subsequent works [19,20] additionally reduced the vector states.
In [21], a simplified method that requires only a single prediction was introduced, eliminat-
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ing the need to evaluate all possible vectors. Stabilizing terminal constraint-free nonlinear
MPC through a sliding mode-based terminal cost significantly reduces the computational
burden compared with classical approaches as in [22].

By exploiting the finite number of inverter switching states, finite control set model
predictive control (FCS-MPC) has emerged as an extensively used approach that decreases
computational complexity in real-time applications [23]. The effectiveness of conventional
MPC for current control has been investigated across various power converters [24–26]
and motor drive systems [27,28]. Nevertheless, the processing limitations of standard
hardware remain a major challenge in industrial applications, as conventional MPC requires
evaluating the predicted future currents for each possible voltage vector generated by the
inverter [23,29,30]. In multilevel inverter systems, where there are substantially more
potential voltage vectors—for example, 19 for three-level and 61 for five-level inverters—
this problem becomes even more serious. As a result, each sample interval requires 19 or
61 evaluations of the cost function [31]. The short sampling times needed for traditional
MPC to function well are in conflict with this high computational load [32]. Furthermore,
MPC’s capacity to fully utilize its theoretical benefits is constrained by the computational
load, particularly in multilevel inverters [23,30], and [33]. Field programmable gate arrays
(FPGAs) are a potential approach to avoid these restrictions by accelerating calculations [34].
Furthermore, especially in cascaded H-bridge inverter topologies, Patricio Cortes and
colleagues proposed a technique for lowering the number of evaluated vectors by choosing
a subset according to a predetermined distance criterion [26]. A technique is presented
in [31] that selects a narrow subset of voltage vectors that are similar to those used in space
vector pulse width modulation (SVPWM), thereby reducing computational complexity
significantly. This method is exceptionally scalable and suitable for multilevel inverter
topologies since it successfully restricts the number of voltage vectors taken into account
during prediction and optimization to just three.

This study investigates two novel methods aimed at enhancing the efficiency of
model predictive control (MPC) in multilevel inverter systems. The first approach reduces
computational complexity by restricting the number of candidate voltage vectors from
seven vectors to only two in each control cycle. This approach minimizes the processing
burden without compromising control accuracy, thereby enabling faster implementation,
improved dynamic response, and practical implementation on cost-effective hardware with
limited computational capacity. The second strategy employs a direct selection method
that identifies the optimal voltage vector without iterative evaluation of a cost function.
By eliminating this computational step, the approach hurries decision-making, reduces
latency, and enhances real-time performance, particularly in high-frequency switching
applications. Both methods can be successfully implemented in higher-level inverter
topologies and are naturally scalable. They help increase control accuracy, system stability,
and overall hardware efficiency under a variety of operating circumstances in addition to
lowering computing complexity. These techniques mark a significant step forward for the
implementation of MPC in contemporary electric drive and power electronic systems in a
way that is realistic, fast, and resource efficient.

The remainder of this paper is organized as follows: Section 2 presents the mathe-
matical modeling of the system, including the PMSM and the two-level inverter. Section 3
presents the conventional model predictive control techniques applied to PMSMs. Section 4
investigates the two proposed MPC methods for the motor to reduce the computational
burden. Sections 5 and 6 discuss the comparative analysis and simulation results of all
techniques. Finally, Section 7 provides the conclusions of the study.
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2. System Modeling
2.1. PMSM Modeling

The following are the mathematical modeling equations for the PMSM in the dq0
rotating reference frame [35,36],

λq = Lqiq, (1)

λd = Ldid + λm, (2)

vq =
(

rs + pLq

)
iq + ωrLdid + ωrλm, (3)

vd = (rs + pLd)id − ωrLqiq, (4)

Te =
3
2

P
2
[
λmiq +

(
Ld − Lq

)
iqid

]
, (5)

Te = Tl + Bωm + j
dωm

dt
. (6)

where
(
vq, vd

)
,
(
iq, id

)
, and

(
λq, λd

)
denote the stator voltages, currents, and flux linkages

in the dq-reference frame. The stator winding resistance is represented by rs. ωr represents
the electrical rotor angular speed and ωm stands for the mechanical rotor angular speed.
λm denotes the magnetic rotor flux linkage; p symbolizes the time differentiator, Te; Tl

represents the electromagnetic torque and torque of the load; and b, P, and j are the viscous
friction of the motor, the total poles numbers, and the inertia of the machine, respectively.
In our model, we considered a round-rotor PMSM, where Ld = Lq. The equivalent PMSM
circuit might easily be signified as shown in Figure 1.

Figure 1. The equivalent PMSM circuit [35].

2.2. Inverter Model

As presented in Figure 2a, the three-phase two-level inverter has been tied to the
PMSM for providing three-phase voltage since it is thought to be the most typically used
inverter in power drive applications. According to Table 1 and Figure 2b, this specific
type of inverter can produce eight voltage vectors from eight switching states. The dc-
link voltage and switching vector in Equation (7) could be used to calculate the stator
voltages vabc.

vabc =
1
3

Vdc

 2 −1 −1
−1 2 −1
−1 −1 2

Sabc
s . (7)



Machines 2025, 13, 908 5 of 24

Equation (8) applies the Clarke transformation for transferring the stator voltages
from the abc stationary frame to the αβ stationary frame.

vaβ =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] va

vb

vc

. (8)

The output voltages of the PMSM in the dq rotating reference frame are calculated
using Park transformation and expressed in terms of the switching vector [37] of the
inverter in Equation (9).

vdq =

[
cos θr sin θr

−sin θr cos θr

][
vα

vβ

]
. (9)

where θr is the rotor electrical position.

 

Figure 2. (a) A three-phase inverter provides power to a permanent magnet synchronous motor;
(b) the space vector of three-phase two-level inverter [36].

Table 1. Two-level inverter switching state and voltage vectors.

Inverter State SA,SB,SC SA, SB, SC
VA
Vdc

VB
Vdc

Vc
Vdc

0 000 111 0 0 0
1 100 011 2/3 −1/3 −1/3
2 110 001 1/3 1/3 −2/3
3 010 101 −1/3 2/3 −1/3
4 011 100 −2/3 1/3 1/3
5 001 110 −1/3 −1/3 2/3
6 101 010 1/3 −2/3 1/3
7 111 000 0 0 0

3. Conventional Algorithms for Control PMSM
3.1. Conventional MPCI—Full-State Evaluation

Inverter control, a full-state assessment technique, is one of the most well-established
approaches. As shown in Figure 2b, each voltage vector that corresponds to a switching
state is evaluated with the objective of identifying the one that generates current responses
that most closely match the reference currents.

To apply the current model predictive control and obtain the following anticipated
sampling instant states, the permanent magnet synchronous motor continuous time
model has to be discretized [34], using the Euler approximation technique as described in
the following:

dx
dt

=
x(k + 1)− x(k)

Ts
, (10)
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where Ts is the sampling time.
Consequently, the following future value of the PMSM currents may be predicted:

id(k + 1) =
(

1 − RsTs

Ld

)
id(k) + Tsωr(k)iq(k) +

Ts

Ld
vd(k), (11)

iq(k + 1) =
(

1 − RsTs

Lq

)
iq(k)− Tsωr(k)id(k) +

Ts

Lq
vq(k)−

Tsλm

Lq
ωr(k). (12)

Using the current stator currents iq(k) and id(k), stator voltages vq(k) and vd(k), and
speed ωr(k) as a basis, iq(k + 1) and id(k + 1) represent the stator currents at the upcoming
sampling time. Ts is the sampling time.

The stator voltages vdq could be calculated using Equations (7)–(9). Using Equations (11)
and (12), the seven inverter voltage vectors are used to obtain seven corresponding stator
current predictions. Next, applying a cost function established in [37,38], the most optimal
inverter switching vector is determined. The following is the cost function utilized by
this study:

g =
[
idre f (k + 1)− id(k + 1)

]2
+

[
iqre f (k + 1)− iq(k + 1)

]2
. (13)

The conventional MPCI algorithm can be presented as displayed in Figure 3 and its
flow chart shown as

Figure 3. The conventional MPCI block diagram for controlling PMSM [35,36].

As Algorithm 1 illustrates, there are several calculations involved in each sample
period. Some of these are independent of the number of voltage vectors and are related to
system attributes like flux calculation, rotor speed, or stator resistance. On the other hand,
a large percentage of the computations are directly related to the inverter voltage vectors
and scale in proportion to their quantity. One of these is the need to recalculate the stator
current predictions for every potential switching state at each sampling time. The main
emphasis of this research is vector-dependent calculations, which comprise the majority of
the computational load and are where the proposed enhancements would have the most
impact. Therefore, it is clear that the controller has to achieve the following:

a.
Calculate the voltage vector in the dq-frame via
Equations (8) and (9).

[executed for all voltage vectors]

b.
Calculate the predicted currents in the dq-frame
via Equations (11)–(12).

[executed for all voltage vectors]

c. Calculate the cost function using Equation (13). [executed for all voltage vectors]



Machines 2025, 13, 908 7 of 24

Algorithm 1: Algorithm of the conventional MPCI

Step 1: Read iq, id, iq_re f , id_re f , and ωr.
Step 2: Calculate the voltages vdq(k) at each state by employing Equations (8) and (9).
Step 3: Calculate the predicted currents for each switching state id(k + 1) and iq(k + 1)
using Equations (11) and (12).
Step 4: The cost function is computed using Equation (13), which evaluates the
deviation between the predicted currents corresponding to each switching state and the
reference currents.
Step 5: The switching state that yields the minimum cost function value is then selected.

In the case of a two-level inverter, there are seven voltage vectors, resulting in approxi-
mately 35 equation evaluations per sampling interval. However, in multilevel inverters, the
number of voltage vectors increases exponentially with the number of levels—for example,
19 vectors in a three-level inverter and 61 in a five-level inverter.

This exponential growth in computational load poses a significant challenge for real-
time implementation, especially in high-level inverters. It can negatively impact both
control performance and system efficiency, making computational complexity a major
limiting factor in the conventional MPCI.

3.2. Conventional MPCII—Three-State Evaluation

A simpler method called conventional MPCII has been devised to lessen the computing
burden that comes with conventional MPCI, which evaluates every potential voltage vector
at every sampling moment [31]. Conventional MPCII determines the necessary voltage
vector and limits the assessment to those vectors inside the same sector, as compared
with examining each switching state. This approach, which draws inspiration from the
space vector modulation (SVM) method, greatly reduces processing requirements without
sacrificing control precision, making it more appropriate for real-time applications.

The first step is to calculate the required inverter voltages in the dq-reference
frame using Equations (14) and (15) so that the predicted currents match their reference
values [36–38].

v∗d(k) = Rs ∗ id(k) +
(

Ld
Ts

)[
idre f (k + 1)− id(k)

]
− Ldωriq(k), (14)

v∗q(k) = Rs ∗ i
q
(k) +

(
Lq

Ts

)[
iqre f (k + 1)− iq(k)

]
+ Lqωrid(k) + ωrλm. (15)

Secondly, using the inverse Park transformation, transform the calculated inverter
voltages in the rotating dq-reference frame into the inverter voltages in the αβ (alpha–beta)
stationary frame using the inverse Park transformation.

v∗αβ =

[
cos θr −sin θr

sin θr cos θr

][
v∗d
v∗q

]
. (16)

Next, use Equation (17) to determine the voltage vector’s angle in the αβ stationary
reference frame.

α(k) = atan2[vβ(k + 1), vα(k + 1) (17)

Based on this angle, the corresponding sector is identified (as shown in Figure 2b and
Table 2), which determines the three most relevant voltage vectors for the next prediction
step. For instance, if the angle lies between 0◦ and 60◦, the vectors in sector 1 (e.g., vectors 0,
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1, and 2) are selected. If the angle is between 60◦ and 120◦, vectors in sector 2 (e.g., vectors
0, 2, and 3) are considered, and so forth.

Table 2. Angle range and its corresponding candidate vectors for Algorithm 2 for 2-level inverters.

Angle Range Sector Candidate Vectors

0◦ ≤ α < 60◦ 1 0, 1, 2
60◦ ≤ α < 120◦ 2 0, 2, 3

120◦ ≤ α < 180◦ 3 0, 3, 4
180◦ ≤ α < 240◦ 4 0, 4, 5
240◦ ≤ α < 300◦ 5 0, 5, 6
300◦ ≤ α < 360◦ 6 0, 6, 1

Lastly, the three determined voltage vectors are the only ones to which the prediction
and optimization stages of the conventional MPCII are applied. Equations (11) and (12)
are used to compute the predicted currents, and Equation (13), which evaluates the cost
function, is then used. This selected method preserves efficient control performance while
drastically lowering computational complexity.

As illustrated in Algorithm 2, perform several computations for each sampling interval.
Specifically, the controller must achieve the following:

a. Calculate v∗dq, then v∗αβ, then α(k) via Equations (14)–(17). [executed once]

b. Identify the sector (via if condition or equivalent equation) [executed once]

c.
Calculate the voltage vector in the dq-frame via
Equations (8) and (9).

[executed for three
voltage vectors]

d.
Calculate the predicted currents in the dq-frame via
Equations (11) and (12).

[executed for three
voltage vectors]

e. Calculates the cost function using Equation (13).
[executed for three
voltage vectors]

Algorithm 2: Algorithm of the conventional MPCII

Step 1: Read iq, id, iq_re f , id_re f , and ωr.
Step 2: Calculate the required inverter voltage v∗dq using Equations (14) and (15).
Step 3: Calculate the voltage in αβ stationary frame v∗αβ using Equation (16).
Step 4: Determine the angle of this voltage using Equation (17).
Step 5: Determine sector from α(k) based on Table 2.
Step 6: Calculate the voltage vectors vdq for the 3 candidate vectors in the dq-reference
frame using Equations (8) and (9).
Step 7: Calculate predicted currents for the 3 candidate vectors id(k + 1) and iq(k + 1)
using Equations (11) and (12).
Step 8: Compute the cost function for the candidate vectors using Equation (13), which
typically evaluates the error between the predicted currents and reference currents.
Step 9: Select the switching state that results in the minimum cost function value.

For a two-level inverter, the algorithm requires approximately 20 equation evalu-
ations per sampling interval. Notably, for higher-level inverters, the number of equa-
tion evaluations remains constant at 20; only the conditional function—or its equivalent
formulation—changes. The block diagram of the conventional MPCII is shown in Figure 4.
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Figure 4. The conventional MPCII block diagram for controlling PMSM.

4. Proposed Algorithms for Control PMSM
4.1. Proposed MPCI—Two-State Evaluation

For the purpose of achieving improvements, this study presents a new method that
only uses two voltage vectors. The fundamental concept derives from examining the three
voltage vectors utilized in conventional MPCII, which could be understood as those nearest
to the reference vector (i.e., the required inverter voltage). Building on this realization, a
little change is made to the vector space sectors: they are moved by 30◦ rather than being
defined at 0◦ with a 60◦ span each. As a result, the first sector now spans from −30◦ to 30◦

(instead of 0◦ to 60◦) while the second sector runs from 30◦ to 90◦ (instead of 60◦ to 120◦),
as shown in Figure 5.

Figure 5. Space vector for the two-state MPC algorithm.

With this modification, the algorithm only has the option of selecting two voltage
vectors (e.g., vectors 0 and 1) when the reference voltage vector is located within a certain
sector, such sector 1. This simplifies the control strategy. The process is identical to that
utilized by conventional MPCII. First, Equations (14) and (15) are used to determine the
necessary inverter voltage. Equation (16) is then used to derive the reference voltages in the
αβ reference frame (v∗αβ). Equation (17) is then used to calculate this voltage vector’s angle.

The primary distinction is seen in the angular ranges and the candidate vectors that
correspond to them. In order to identify the two appropriate voltage vectors for the
following prediction step, the corresponding sector is determined based on this angle (as
seen in Figure 5 and Table 3). Vectors 0 and 1 in sector 1 are determined, for example, if
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the angle falls between −30◦ and 30◦ but consideration is given to sector 2 vectors (such
as 0 and 2) if the angle falls between 30◦ and 90◦, and so on. The conventional MPC’s
prediction and optimization stages are then applied, but just to the two voltage vectors
that were chosen. Equations (11) and (12) are used to compute the expected currents, and
Equation (13), which evaluates the cost function, is then used.

Table 3. Angle range and its corresponding candidate vectors for Algorithm 3 for 2-level inverters.

Angle Range Sector Candidate Vectors

330◦ ≤ α < 30◦ 1 0, 1
30◦ ≤ α < 90◦ 2 0, 2

90◦ ≤ α < 150◦ 3 0, 3
150◦ ≤ α < 210◦ 4 0, 4
210◦ ≤ α < 270◦ 5 0, 5
270◦ ≤ α < 330◦ 6 0, 6

As illustrated in Algorithm 3, perform several computations for each sampling interval.
Specifically, the controller must achieve the following:

a. Calculate v∗dq, then v∗αβ, then α(k) via Equations (14)–(17). [executed once]

b. Identify the sector (via if condition or equivalent equation) [executed once]

c.
Calculate the voltage vector in the dq-frame via
Equations (8) and (9).

[executed for
2 voltage vectors]

d.
Calculate the predicted currents in the dq-frame via
Equations (11) and (12).

[executed for
2 voltage vectors]

e. Calculate the cost function using Equation (13).
[executed for
2 voltage vectors]

Algorithm 3: Algorithm of the proposed MPCI

Step 1: Read iq, id, iq_re f , id_re f , and ωr.
Step 2: Calculate the required inverter voltage v∗dq using Equations (14) and (15).
Step 3: Calculate the voltage in αβ stationary frame v∗αβ using Equation (16).
Step 4: Determine the angel of this voltage using Equation (17).
Step 5: Determine the sector from α(k) based on Table 3.
Step 6: Calculate the voltage vectors vdq for the two candidate vectors in the
dq-reference frame using Equations (8) and (9).
Step 7: Calculate predicted currents for the two candidate vectors id(k + 1) and iq(k + 1)
using Equations (11) and (12).
Step 8: Compute the cost function for the candidate vectors using Equation (13), which
typically evaluates the error between the predicted currents and reference currents.
Step 9: Select the switching state that results in the minimum cost function value.

For a two-level inverter, the algorithm requires approximately 15 equation evaluations
per sampling interval. Notably, for higher-level inverters, the number of equation evalu-
ations remains constant at 15; only the conditional function—or equivalent expression—
changes. The overall block diagram of the proposed MPCI is shown in Figure 6.
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Figure 6. The proposed MPCI block diagram for controlling PMSM.

4.2. Proposed MPCII—Direct Evaluation

To continue enhancing performance even further, this study presents a different, novel
method that finds the optimum voltage vector immediately, removing the need to calculate
all of the voltage vectors in the dq-frame, predicted currents, and related cost function.
These computations are typically required in order to assess the cost function and choose
the best switching state. Nevertheless, the procedure can be greatly accelerated if the
optimal state can be identified beforehand, avoiding the full set of calculations.

Using the anticipated current expressions to simplify the cost function after a thorough
analysis is the core idea of the proposed MPCII approach. Equations (11)–(13), in particular,
are combined to provide a simplified cost function:

g =
[
idre f (k + 1)− id(k + 1)

]2
+

[
iqre f (k + 1)− iq(k + 1)

]2
(18)

By substituting form Equations (11) and (12), we obtain

g =
[
idre f (k + 1)−

(
1 − RsTs

Ld

)
id(k)− Tsωr(k)iq(k)− Ts

Ld
vd(k)

]2

+
[
iqre f (k + 1)−

(
1 − RsTs

Lq

)
iq(k) + Tsωr(k)id(k)− Ts

Lq
vq(k) + Tsλm

Lq
ωr(k)

]2 (19)

By performing some simplifications, we obtain

g =

[(
Ts
Ld

)
[

idre f (k+1)−id(k)
Ts
Ld

+ Rsid(k)− Ldωr(k)iq(k)− vd(k)]
]2

+

[(
Ts
Lq

)
[

iqre f (k+1)−iq(k)
Ts
Lq

+ Rsiq(k) + Lqωr(k)id(k) + λmωr(k)− vq(k)]

]2 (20)

Using Equations (14) and (15), we obtain

g =

[(
Ts

Ld

)
[v∗d(k)− vd(k)]

]2
+

[(
Ts

Lq

)
[v∗q(k)− vq(k)]

]2
(21)

g =

(
Ts

Ld

)2

[v∗d(k)− vd(k)]
2

+

(
Ts

Lq

)2[
v∗q(k)− vq(k)

]2

(22)
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In case of a round rotor, the Ld = Lq, so the cost function can be written as

g = F ∗
[

[v∗d(k)− vd(k)]
2 +

[
v∗q(k)− vq(k)

]2
]

(23)

where F = ( Ts
Ld
)

2

We could eliminate F to obtain the final cost function since minimizing a function
scaled by a constant that is positive is the same as minimizing the function itself:

g = [v∗d(k)− vd(k)]
2 +

[
v∗q(k)− vq(k)

]2
. (24)

Figure 7a illustrates how this cost function depicts the distance between the reference
voltage vector [v∗d v∗q ] and each candidate voltage vector [vd vq]. As a result, the cost is
reduced, which is the same as reducing the separation between these two vectors (Figure 7b).
Using this geometric interpretation, we may identify places in the αβ-plane where each
voltage vector is nearest to the reference vector, as a result, the vector space is divided into
regions as shown in Figure 7c.

Figure 7. (a,b) The geometric interpretation of the cost function for 2-level inverters; (c) the space
vector diagram rejoins for the proposed MPCII algorithm.

Two concentric hexagons having the same center are depicted in Figure 7c. The active
voltage vectors are represented by the outside hexagon. The inner hexagon is arranged
so that each of its sides is perpendicular to a state vector drawn from the shared center,
having just half the side length. The inner hexagon’s boundary can be written as

|x| = vdc
3

and
√

3 |y|+ |x| = 2vdc
3

(25)

For more illustration, the zero vector is the nearest if the reference is in the middle
hexagon; voltage vector 1 is the best if it is in region 1, and so on. The best switching state
could be directly chosen without computing all intermediate equations thanks to regions,
which are illustrated in Figure 7c.

The proposed MPCII method starts with the same stages as the MPCI algorithm:
Equations (14) and (15) are used to generate the reference voltage vector, and Equation (16)
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is used to convert it into the αβ stationary frame. In contrast to MPCI, the angle is not
calculated instantly. Rather, it first determines if the reference vector is inside the middle
hexagon. If so, it is categorized as region 0, and the zero vector is the optimal switching state.
If the vector is located outside the hexagon, the angle is determined using Equation (17).
As shown in Figure 7c. and Table 4, the appropriate region is identified based on this angle.
For example, the best switching state is state 1 if the vector falls inside region 1 and the
angle is between −30 and 30.

Table 4. Angle range and its corresponding candidate vectors for Algorithm 4 for 2-level inverters.

Selection Criteria Region Optimal Vectors (State)

Inside the middle hexagon - 0 0
Outside the middle hexagon 330◦ ≤ α < 30◦ 1 1
Outside the middle hexagon 30◦ ≤ α < 90◦ 2 2
Outside the middle hexagon 90◦ ≤ α < 150◦ 3 3
Outside the middle hexagon 150◦ ≤ α < 210◦ 4 4
Outside the middle hexagon 210◦ ≤ α < 270◦ 5 5
Outside the middle hexagon 270◦ ≤ α < 330◦ 6 6

For checking whether a vector lies inside the hexagon, this requires using the built-in
function (inploygon) or applying a simple if statement consisting of two inequalities:

|v∗α| ≤
vdc
3

and
√

3
∣∣∣v∗β∣∣∣+ |v∗α| ≤

2vdc
3

(26)

If both inequalities are true, the reference vector v∗αβ lies inside the inner hexagon.
This is computationally efficient due to avoiding the additional transformations and cost
function calculations required when converting future currents into the dq-frame for
each vector.

Algorithm 4: Algorithm of the Proposed MPCII

Step 1: Read iq, id, iq_re f , id_re f , and ωr.
Step 2: Calculate the required inverter voltage v∗dq using Equations (14) and (15).
Step 3: Calculate the voltage in αβ stationary frame v∗αβ using Equation (16).
Step 4: Determine whether v∗αβ is inside the central hexagon using the geometric
inclusion check (e.g., inpolygon in MATLAB)
If inpolygon = 1

Return the zero-vector state as the optimal switching state.
else

Determine the angle of the v∗αβ voltage using Equation (17).
Based on the value of α(k), determine the optimal switching state according to the

following angle intervals:
end

For a two-level inverter, the algorithm requires approximately five or seven equation
evaluations per sampling interval. Notably, for higher-level inverters, the number of
equation evaluations remains constant at five or seven; only the conditional function—or
equivalent equation—changes. The final block diagram of the proposed MPCII is displayed
in Figure 8.
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Figure 8. The proposed MPCII block diagram for controlling PMSM.

As illustrated in Algorithm 4, perform several computations for each sampling interval.
Specifically, the controller must achieve the following:

a. Calculate v∗dq then v∗αβ via Equations (14)–(16). [executed once]

b. Determine whether v∗αβ inside the hexagon. [executed once]

c.
Use a conditional statement (or equivalent expression)
to determine inclusion.

[executed once]

d.
If it lies outside the hexagon, compute the angle α(k)
using Equation (17).

[conditionally executed]

e.
Obtain the region and optimal state via conditional
logic or an expression.

[conditionally executed]

5. The Differences Between the Algorithms
The fundamental difference between the four MPC algorithms is their computational

expense as well as execution effectiveness:

• Conventional MPCI (Algorithm 1): This algorithm evaluates every potential switching
state (seven for a two-level inverter), which makes real-time implementation difficult
due to its large computing burden (~35 equations each period).

• Conventional MPCII (Algorithm 2): This algorithm improves efficiency while preserv-
ing high accuracy by choosing three candidate vectors based on sector identification
(around 20 equations each period).

• Proposed MPCI (Algorithm 3): By redefining sectors (around 15 equations each period), it
further restricts assessments to two candidate vectors, improving computing efficiency.

• The most efficient method for real-time systems is the proposed MPCII (Algorithm 4),
which reduces calculations to 5–7 equations per period by using a geometric integra-
tion test to either directly choose the zero state or identify an optimal state depending
on the angle.

Figure 9 illustrates the differences in the number of candidates switching states across
the algorithms, while Table 5 provides a general comparison among them.
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Figure 9. Comparison between number of candidate vectors for each algorithm for the
2-level inverter.

Table 5. Comprehensive comparison between the computational burden for each algorithm.

Feature Convention MPCI
Algorithm 1

Convention MPCII
Algorithm 2

Proposed MPCI
Algorithm 3

Proposed MPCII
Algorithm 4

Full Vector Evaluation yes no no no

Number of candidates
vectors

Increase
exponentially constant constant constant

for 2-level inverter 7 3 2 1
for 3-level inverter 19 3 2 1
for 5-level inverter 61 3 2 1

Calculation of vector
voltages

in dq, predicted
currents and the cost

function

yes yes yes no

Calculation of angle of
the reference voltage no yes yes conditionally

Conditional logic No yes yes yes

Approximated number
of equations per cycle

Increase
exponentially Constant constant constant

for 2-level inverter 5 × 7 = 35 20 15 5–7
for 3-level inverter 5 × 19 = 95 20 15 5–7
for 5-level inverter 5 × 61 = 305 20 15 5–7

6. Results and Discussion
A comprehensive analysis of the proposed model predictive control (MPC) techniques

for a non-salient pole permanent magnet synchronous motor (PMSM) is provided in this
section with parameters as Table 6. Three primary components comprise the results:

(a) Analysis of the proposed MPCI algorithm under various operating conditions.
(b) Analysis of the proposed MPCII algorithm under various operating conditions.
(c) Comparative analysis between the proposed and conventional approaches.



Machines 2025, 13, 908 16 of 24

Table 6. PMSM parameters.

Parameter Nomenclature/Unit Value

flux linkage λm 0.41
Nominal d-axis inductance Ld [H] 0.01
Nominal q-axis inductance Lq [H] 0.01
Nominal Stator resistance Rs [Ω] 1.3

Number of Pole pairs P 3
Rotor inertia J [kg.m2] 0.0012

6.1. Analysis of the Proposed MPCI Algorithm Under Various Operating Conditions

Three popular operating situations are used to assess the effectiveness of the first
proposed MPC algorithm: (a) step-up in speed, (b) speed step-down to standstill, and (c)
torque variation at constant speed. The simulation results are shown in Figure 10a–c, which
illustrates the system’s response to torque, rotor speed, dq-axis currents, and three-phase
stator currents.
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Figure 10. Analysis of the proposed MPCI algorithm under various operating conditions: (a) step-up
in speed; (b) speed step-down to standstill (c) torque variation at constant speed.

(a) Step-Up in Speed

• The speed reference is raised by two steps for the motor.
• There are minor overshoot and steady-state errors, demonstrating fast dynamic

behavior, as actual rotor speed ωm rapidly follows the reference ωm,ref.
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• The electromagnetic torque Te sudden transition in reaction to changes in speed
demonstrates the responsiveness of the control system.

• The d-axis current id is roughly equal to zero, demonstrating adequate PMSM
operation, whereas the q-axis current iq precisely matches the torque profile.

• The sinusoidal and balanced ia, ib, and ic stator currents show proper inverter
switching.

(b) Speed Step-Down to Standstill

• To simulate slowing down to a stop, the speed reference is gradually reduced
until it reaches zero.

• Throughout all phases, the rotor speed ωm keeps tracking the reference precisely
and smoothly.

• During braking, there occurs a momentary reversal in torque Te, which is accu-
rately reflected in the iq waveform.

• The id component stays close to zero, guaranteeing appropriate flux direction.
• The stator currents maintain their balance and sinusoidal during transitional

phases, confirming stability during deceleration.

(c) Torque Variation at Constant Speed

• The torque reference Te,ref is changed in three separate phases while keeping the
speed constant.

• Each torque adjustment is followed by a quick and steady reaction in Te with
little settling time

• There is no change in the rotor speed ωm, indicating resilience and efficient
decoupling.

• While id is relatively constant, the torque change is accurately reflected by the
iq current.

• Although the waveforms maintain their sinusoidal shape, the amplitude of stator
currents varies with torque levels.

• Overall, the findings show that under a variety of operating situations, the first
proposed MPC algorithm provides high dynamic stability, precise torque and
speed tracking, and outstanding current quality.

6.2. Analysis of the Proposed MPCII Algorithm Under Various Operating Conditions

As demonstrated in Figure 11a–c, the second proposed MPC technique was tested
under the same dynamic operating conditions as the first: torque changes at constant speed,
speed step-up, and speed step-down to standstill. The findings acquired show that the
behavior of the drive system is the same as that obtained with the first proposed approach.
In particular,

• The rotor speed closely matches its reference
• When the load varies, the electromagnetic torque reacts rapidly.
• The three-phase stator currents stay balanced and sinusoidal during all transitions.
• The dq-axis currents preserve predicted profiles, with id staying near zero and iq

exactly matching torque demands.

These outcomes validate the efficiency of the second proposed approach in high-
performance PMSM drive applications by confirming that they guarantee the same degree
of dynamic performance and control precision as the first.
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Figure 11. Analysis of the proposed MPCII algorithm under various operating conditions: (a) step-up
in speed; (b) speed step-down to standstill; (c) torque variation at constant speed.

6.3. Comparative Analysis Between the Proposed and Conventional Approaches

In order to evaluate the controllers’ performance, they are put through three distinct
dynamic scenarios: a step-up in speed, a speed step-down to standstill, a torque variation
at constant speed, and a comparison of the computational times for each.

Plots demonstrating the rotor speed, electromagnetic torque, three-phase currents,
dq-axis currents, and absolute differences between the currents derived from full-state and
reduced-state evaluations are shown for each example. By demonstrating the proposed
MPCs’ capacity for real-time implementation due to their lower computing load, these vi-
sual comparisons seek to confirm that they are effective in terms of dynamic responsiveness,
waveform quality, and control accuracy.

6.3.1. Step Increase in Reference Speed

Figure 12 assesses how well the controllers work when the reference speed is increased
step-by-step.

• Rotor Speed (ωm) and Torque (Te): All controllers exhibit efficient speed control by pre-
cisely tracking the reference speed and torque with little overshoot and quick reaction.

• dq Currents (id, iq): All controllers exhibit well-regulated current actions that have a
relationship with torque demand.

• Three-Phase Currents (iabc): The sinusoidal and balanced waveforms show that the
inverter is operating and regulating current properly.
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• The speed tracking root mean square error (RMSE) was identical for all algorithms; its
value was 6.37 for the entire simulation period.

• The d- and q-axis current tracking errors (RMSEs) were the same among the algorithms;
the values were 0.086 and 0.706, respectively, for the full simulation time.

• The torque ripple was calculated during the steady-state period (0.065–0.1 s); it was
the same for all algorithms, with 3.72%.

• Current Difference (Row 5): Although certain approaches use fewer states, differences
between full-state and reduced-state (one-, two-, and three-state) assessments are
none, demonstrating that all algorithms provide the same three-phase current outputs.
Consequently, the total harmonic distortion (THD) is also the same for all of them
validating the reduced-complexity model.
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Figure 12. Comparative analysis between all approaches under step increase in reference speed:
(a) conventional MPCI; (b) conventional MPCII; (c) proposed MPCI; (d) proposed MPCII.

6.3.2. Step Decrease in Reference Speed

The scenario shown in Figure 13 investigates the reaction to a step decrease in speed.

• Rotor Speed and Torque: All controllers once more demonstrate accurate tracking,
rapid deceleration, and steady transitions, demonstrating resilience in decelerating
circumstances.

• Currents: With equally clear and steady profiles, the dq and abc currents behave
similarly to the previous case.
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• Speed tracking (RMSE) for all algorithms was equal to 6.68 for full interval.
• The d- and q-axis current (RMSE) were again identical for algorithms. It is measured

at 0.112 and 1.081, respectively.
• The torque ripple is evaluated in the steady-state region (0.065–0.1 s) and it was

uniform for the algorithms, with a value of 3.74%.
• Current Difference: Once more, the current difference graphs (bottom row) demon-

strate the computational effectiveness of the reduced-state algorithms without com-
promising performance, which means that the total harmonic distortion (THD) is
identical for all methods, confirming that all reduced-state assessments match the
full-state findings.

 Conventional MPCI Conventional MPCII Proposed MPCI Proposed MPCII 

ω
m
 [r

ad
/s

ec
] 

 

Te
 [N

] 
Idq

 [A
] 

Iab
c [

A
] 

  

 
  𝑖௔௕௖ for full-state evalua-

tion minus 𝑖௔௕௖ for 3 states evaluation 

𝑖௔௕௖ for full-state evalua-

tion minus 𝑖௔௕௖ for 2 states evaluation 

𝑖௔௕௖ for full-state evaluation 

minus 𝑖௔௕௖ for 1 state evaluation 
 (a) (b) (c) (d) 

Figure 13. Comparative analysis between all approaches under step decrease in reference speed:
(a) conventional MPCI; (b) conventional MPCII; (c) proposed MPCI; (d) proposed MPCII.

6.3.3. Torque Variation at Constant Speed

Now the torque responds to step changes while the speed is constant, as in Figure 14.

• Speed and Torque: The controllers exhibit decoupling control efficacy by maintaining
a steady speed even when torque steps are applied. The torque response stays precise
and follows the standard.

• Currents: abc currents maintain high-quality waveforms, but dq currents adapt suitably
to torque demands.

• The speed tracking (RMSE) was again uniform for all algorithms; it was 5.019.
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• The d- and q-axis current tracking errors were consistent also for algorithms, with
values of 0.112 and 0.289, respectively, for the full interval.

• The torque ripple is calculated for the steady-state period (0.2–0.3 s); it was the same
for all algorithms, with a value of 1.73%.

• Current Difference: Even under different torque settings, the suggested reduced-state
algorithms operate exactly like the full-state one indicating that (THD) is also the same.
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Figure 14. Comparative analysis between all approaches under torque variation at constant speed:
(a) conventional MPCI; (b) conventional MPCII; (c) proposed MPCI; (d) proposed MPCII.

6.3.4. Comparing the Computational Time

Figures 12–14 demonstrate that all four algorithms provide similar control perfor-
mance under a range of dynamic situations, such as load disturbances, acceleration, and
deceleration. But in addition to control quality, the computational burden involved in
operating an MPC algorithm is a crucial consideration when assessing its effectiveness.
This is particularly important in real-time embedded systems, where time restrictions and
limited computing capacities must be taken into account. Therefore, a thorough evaluation
of processing time was performed to supplement the visual comparison.

The following are the total execution times needed to complete 1,800,211 control loop
iterations for each method, as seen in Figure 15:

• Conventional MPCI: 1.867 s → (baseline)
• Conventional MPCII: 1.593 s → 14.68% improvement
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• Proposed MPCI: 1.417 s → 24.10% improvement
• Proposed MPCII: 1.127 s → 39.64% improvement

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 15. Comparative analysis between all approach computational times: (a) conventional MPCI;
(b) conventional MPCII; (c) proposed MPCI; (d) proposed MPCII.

This graph illustrates how the number of switching states assessed by the proposed
approaches has decreased. With a 39.64% enhancement over the baseline conventional
MPCI, the proposed MPCII exhibits the lowest computational burden. For real-time appli-
cations, where less computing work immediately improves hardware simplicity, energy
economy, and system responsiveness, this enhancement is especially beneficial.

7. Conclusions
This paper investigates four finite control set model predictive control (FCS-MPC)

approaches for a two-level inverter-fed PMSM drive. Two of these methods are newly
developed and presented in this paper, while the other two are derived from determined
conventional approaches. The proposed techniques decrease the selection process among
space vectors from seven candidates to only two or even a single vector. According to
simulation findings, the four assessed MPC algorithms show comparable control accuracy
in all dynamic conditions, including torque variation at constant speed, speed raise, and
speed decrease. This features excellent waveforms, efficient current control, and accurate
tracking of speed and torque. Interestingly, the phase current variations between the full-
state and reduced-state implementations are represented in the simulation results, which
are essentially null (equal zero). This shows that even though they evaluate a lot fewer
switching states, the reduced-state predictive controllers perfectly mimic the behavior of
their full-state counterparts.

In addition to control performance, each technique’s computational effectiveness
was evaluated quantitatively across 1,800,211 cycles of the control loop. Conventional
MPCI, conventional MPCII, proposed MPCI, and proposed MPCII all had times of exe-
cution of 1.867 s, 1.593 s, 1.417 s, and 1.127 s, respectively. These translate into decreases
of around 14.65%, 24.10%, and 39.65% in computing time compared with the baseline
conventional MPCI.

These results highlight how beneficial the proposed MPC techniques are for appli-
cations that operate in real time. The reduced-state techniques, especially the MPCII,
provide useful benefits for implementation in real-time control hardware, where comput-
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ing economy is crucial, by significantly reducing computational needs while maintaining
control quality.
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