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Abstract: This project aims to develop a recommendation system to mitigate looping issues in HDD
slider testing using the Amber testing machine (Machine A). Components simulating the HDD often
fail and require repair before re-testing. However, post-repair, there is a 34% probability that the
component (referred to as Product A) will experience looping, characterized by repeated failures with
error code A. This recurring issue significantly hampers testing efficiency by reducing the number
of successful slider tests. To address this challenge, we propose a dual-approach recommendation
system that provides technicians with actionable insights to minimize the occurrence of looping.
For previously analyzed components, a collaborative filtering technique utilizing implicit ratings is
employed to generate recommendations. For new components, for which prior data are unavailable,
a cosine similarity approach is applied to suggest optimal actions. An automatic training system is
implemented to retrain the model as new data become available, ensuring that the recommendation
system remains robust and effective over time. The proposed system is expected to offer precise
guidance to technicians, thereby improving the overall efficiency of the testing process by reducing
the frequency of looping issues. This work represents a significant advancement in enhancing
operational reliability and productivity in HDD slider testing.

Keywords: recommendation system; collaborative filtering; implicit rating; artificial neural network

1. Background and Problem Statement

A hard disk drive (HDD) [1-4] is a storage device used to store digital data in a
computer. The two crucial components of an HDD are the media disk and the slider. The
slider is responsible for reading from and writing data to the media disk. To ensure the
quality of the slider, the slider dynamic electrical test (SDET) process is conducted using
the Amber testing machine in conjunction with an HDD simulator component (referred to
as the component).

In the event of a component failure during testing, the component will be ejected from
the Amber testing machine with an error code and sent for repair. After the repair, the
component will be returned to the Amber testing machine for re-testing. However, the
repaired component may encounter a looping problem, characterized by being ejected
with the same error within six hours of operation. This issue indicates that the component
repeatedly fails with the same error even after being repaired, presenting a significant
challenge to maintaining the efficiency and reliability of the testing process.

An HDD [5-9] is a fundamental storage device used in computers to store various types
of digital data, including images, documents, videos, and more. The HDD [10-14] consists of
several critical components, among which the media disk and the head (commonly referred
to as the “Slider”) are paramount. The media disk serves as the physical medium in which
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digital data are stored, while the slider is responsible for reading and writing data to and
from the media disk. Ensuring the quality and reliability of the slider is crucial for the
overall performance and longevity of the HDD.

To maintain high standards of quality, the slider undergoes a rigorous testing process
known as the slider dynamic electrical test (SDET). This process is essential for identifying
and eliminating defective sliders before they proceed to the next stage of the assembly
process. The SDET is conducted using a specialized machine, referred to as the Amber
testing machine, which operates in conjunction with a simulated HDD device known as
the blade. The blade simulates the working environment of the HDD [15-20], allowing for
accurate testing of the slider’s performance under real-world conditions.

Despite the critical importance of the SDET process, challenges have arisen, partic-
ularly in the handling of components that fail during testing. When a blade encounters
an issue during testing, it is ejected from the Amber testing machine with an associated
error code and sent to a repair station. At the repair station, technicians attempt to rectify
the identified issue and then return the blade to the Amber testing machine for re-testing.
However, a recurring problem has been observed, in which some blades are repeatedly
ejected with the same error code, even after undergoing repairs. This phenomenon, known
as “Blade Looping,” presents a significant challenge to the efficiency and reliability of the
slider testing process.

From April 2021 to February 2023, the issue of blade looping was recorded in 34% of all
cases involving the product A blades shown in Figure 1, with error code A being particularly
problematic, accounting for 3.3% of all blade looping occurrences. This recurring issue not
only disrupts the testing process but also reduces the overall testing throughput, resulting
in fewer sliders being tested than originally anticipated. On average, only 540 out of
an expected 4000 sliders were tested due to the impact of blade looping, representing a
significant shortfall in testing capacity.

Machine A

L — @

Figure 1. Schematic of the looping blade issue.

In investigating the causes of blade looping to address the issue of blade looping,
several hypotheses have been proposed regarding its underlying causes. The first hypoth-
esis concerns the limited repair time available to technicians. Given the complexity of
the blade repair process, which involves multiple intricate procedures, technicians may
struggle to complete repairs effectively within the allocated time. The second hypothesis
focuses on the complexity of the repair steps themselves, suggesting that the numerous
procedures required during the repair process may be contributing to the recurrence of the
same error code. Finally, the third hypothesis highlights the varying levels of experience
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among technicians, with less experienced technicians potentially lacking the necessary
knowledge to prioritize critical areas during the repair process.

Considering these challenges, this study aims to develop a recommendation system
designed to enhance the repair process and reduce the incidence of blade looping. The
proposed recommendation system will provide technicians with actionable guidance tai-
lored to address the specific issues associated with error code A in Product A blades. By
leveraging insights from historical data and incorporating machine learning techniques,
the system will help technicians perform repairs more accurately and efficiently, ultimately
improving the overall quality and reliability of the slider testing process.

The remainder of this paper is organized as follows: Section 2 provides a theoretical
framework and a review of related works, including definitions of recommendation sys-
tems, an overview of artificial neural networks, and a discussion of relevant evaluation
methods. Section 3 outlines the methodology employed in the development of the rec-
ommendation system, detailing the data collection process, the model selection, and the
implementation strategy. Section 4 presents the experimental results, including an analysis
of the system’s performance and its impact on reducing blade looping occurrences. Finally,
Section 5 concludes this paper by summarizing the key findings and offering suggestions
for future research.

2. Theory and Related Works
2.1. System Description

A recommendation system is a subset of machine learning [21,22], defined as a
decision-making tool for users navigating complex information environments. It assists in
enhancing the social process of utilizing others” recommendations to make choices when
users lack personal knowledge or experience with the alternatives. Recommendation
systems can be categorized into three types as in Figure 2.

L Recommendation System J
|
{ ] 1
[ Content-based } Collaborative Filtering L Hybrid models J

l . 1 vy
' N

Comparing Exploiting behavior

user — profile and of other users and

item — profile (content) items

- /

Figure 2. System description types.

2.1.1. Content-Based Filtering

This method recommends items that are similar to the user’s known preferences.

2.1.2. Collaborative Filtering
This method recommends items based on the preferences of similar users. It is further
classified into two types:

e  User-based collaborative filtering: recommendations are made based on the prefer-
ences of users who are similar to the target user.

e Item-based collaborative filtering: recommendations are made based on items that are
similar to those the target user has previously liked.

2.1.3. Hybrid

This approach combines content-based and collaborative filtering techniques to im-
prove the accuracy and effectiveness of the recommendation system.
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2.2. Cosine Similarity

Cosine similarity [23,24] is a metric used to measure the similarity between two non-
zero vectors bound by a constrained range between 0 and 1. The similarity measurement is
derived from the cosine of the angle between vector A and vector B. If the angle between
the two vectors is 90 degrees, the cosine similarity value is 0, indicating that the vectors are
orthogonal or perpendicular to each other. As the value approaches 1, the angle becomes
smaller, indicating that the vectors are more similar. The equation for cosine similarity is
as follows:

n
AiB;
_AB El .
~[AIBl T [a n
LA x| LB
i=1 i=1

The rating score [25] is a critical component in recommendation systems and collab-
orative filtering techniques, as it reflects the user’s preference for any given item. Rating
scores can be classified into two types.

Cosine Similarity (COS0) 1)

2.3. Rating Score

2.3.1. Explicit Rating

An explicit rating is obtained directly from the user through methods such as voting
or satisfaction questionnaires. The main drawback of this approach is that it requires effort
from users, who may not always be willing or able to provide sufficient information [26].

2.3.2. Implicit Rating

In real-world data, users often do not provide ratings directly. Instead, implicit
ratings [27] can be inferred from users’ interactions with the system. This type of rating
deduces user preferences from their behavior, such as purchase history, time spent on
certain web pages, or button clicks, among other activities.

2.4. Assessment

Before delivering the recommendation system, we need to ensure that its performance
is satisfactory, therefore, evaluation metrics are used to measure the performance of the
system. The following metrics were used to evaluate the performance.

2.4.1. Mean Absolute Error (MAE)

The MAE [28] measures the average of the absolute deviations between the predicted
ratings and the actual ratings. It is calculated as shown in Equation (2).

n
_2l|pri — arj]
AE="—— 2
M = @l

where

MAE is the mean absolute error.

N is the total number of observations.

pri is the predicted value for the i-th observation.
ar; is the actual (true) value for the i-th observation.

2.4.2. Mean Square Error (MSE)

The MSE [29] is used to give more importance to cases with larger deviations from the
actual rating. It is used instead of MAE and is calculated as shown in Equation (3).
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where

MSE is the mean squared error.

N is the total number of observations.

pri is the predicted value for the i-th observation.
ar; is the actual (true) value for the i-th observation.

2.4.3. Root Mean Square Error (RMSE)
The RMSE [30] is a variant of MSE. The RMSE is calculated as shown in Equation (4).

(pr; — ari)2

it

—

RMSE =

where

MRSE is the root mean squared error.

N is the total number of observations.

prj is the predicted value for the i-th observation.
ar; is the actual (true) value for the i-th observation.

2.4.4. Precision

The precision is the fraction of relevant items recommended compared to the total
number of items in the recommendation list, as shown in Equation (5).

|relevant items recommended||

Precision = . Y
litem in the recommenation list|

)

This formula emphasizes that precision is the ratio of relevant items (those that are
truly relevant to the user) to the total number of items in the recommendation list. The
goal of a high precision value is to ensure that most of the recommended items are actually
useful or relevant to the user.

2.4.5. Recall

The recall is defined as the fraction of relevant items, as identified by the user, that is
included in the recommended list, as shown in Equation (6).

|relevant items recommended||

Recall = :
|relevant items|

(6)

This formula shows that the recall is the ratio of the number of relevant items recom-
mended by the system to the total number of relevant items available. Recall measures the
system’s ability to identify all relevant items within the dataset. A higher recall indicates
that the system is effective at finding most of the relevant items, but it does not consider
whether non-relevant items were also recommended.

In summary, the equation calculates the average of the absolute differences between
the predicted ratings and the actual ratings.

2.5. Artificial Neural Network

An artificial neural network (ANN) [31-35] is a computational model inspired by
the principles of biological neurons. An ANN is defined as a network constructed using
computer programming (mathematical functions) that emulates the behavior of a neuron.
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It receives inputs, performs calculations or makes decisions, and provides outputs, as
illustrated in Figure 3.

Hidden

Output

Figure 3. Artificial neural network.

2.6. Autoencoder

An autoencoder [36] is a type of neural network that can learn to reconstruct images,
text, and other data from compressed versions of themselves. Autoencoders are highly
useful in the field of unsupervised machine learning, particularly for tasks involving data
compression and dimensionality reduction. They consist of three main components as
listed below.

2.6.1. Encoder

The encoder compresses the input data into a lower-dimensional representation. This
compressed representation is often a distorted version of the original input but retains the
most salient features.

2.6.2. Code

The code layer, also known as the bottleneck layer, holds the compressed representa-
tion of the input data. It serves as the intermediary that the decoder will use to reconstruct
the original data.

2.6.3. Decoder

The decoder reconstructs the original data from the compressed representation in the
code layer. This reconstruction is typically lossy, meaning that some information from the
original input may be lost during the process.

e  First, the code or bottleneck size is the most critical hyperparameter. It determines
the degree of data compression, directly influencing the model’s ability to capture
essential features while minimizing reconstruction error.

e  Second, the number of layers plays a crucial role. Increasing the depth of the autoen-
coder enhances its capacity to model complex data patterns; however, deeper models
may also lead to higher computational costs and longer training times.

e  Third, the number of nodes in each layer typically decreases as the data progresses
through the layers of the autoencoder. This gradual reduction in the number of nodes
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reflects the shrinking size of the input data across layers, aiming to compress and
encode the information effectively.

Autoencoders are instrumental in various applications, such as anomaly detection,
denoising, and feature learning, due to their ability to learn efficient data representations
without supervision.

The autoencoder has a construction following Figure 4.

ﬂ

Latent Space \
Representations -~
Encoder Decoder =~

D
Reconstructed
Input

Figure 4. Autoencoder construction.

2.7. Literature Review
2.7.1. Deep Learning

Presently, recommendation systems are increasingly being developed using deep
learning [37—40] techniques due to their superior performance. The purpose of utilizing
deep neural networks for YouTube recommendations is to leverage deep learning’s ability
to handle noisy and sparse data. Deep learning methods have been shown to outperform
the previous matrix-based approaches used by YouTube.

Moreover, an innovative deep learning architecture has been developed to enhance
the quality of predictions and recommendations. This architecture improves the system
by incorporating prediction errors and reliability, leading to more accurate and reliable
recommendations.

One notable example of using deep learning in recommendation systems is the im-
plementation of a deep autoencoder for building a recommender system. In this case,
a three-month Netflix dataset was used to develop the system. This approach demon-
strated the effectiveness of deep learning in handling large-scale data and providing
high-quality recommendations.

Furthermore, deep learning can be combined with other methods to further improve
performance, as suggested by recent research and developments in the field. This hybrid
approach can capitalize on the strengths of multiple techniques, leading to more robust
and efficient recommendation systems.

2.7.2. Implicit Ratings in Recommendation

In cases in which explicit ratings [41,42] are not available in the dataset, implicit ratings
can be utilized instead. The purpose of calculating implicit ratings is to generate a rating
score that can be used to create a recommendation system. These implicit ratings are
derived from user behavior and data history rather than from direct user feedback.

To calculate an implicit rating, a specific function is applied to the historical data. This
function analyzes patterns such as the frequency of interactions, duration of engagement,
or other relevant metrics that indicate user preferences. By translating these patterns into
rating scores, the recommendation system can effectively predict and suggest items that
align with user interests, even in the absence of explicit ratings.
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2.7.3. Evaluation

There are various evaluation metrics used to assess the performance of recommenda-
tion systems. These include mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), precision, recall, and discounted cumulative gain (DCG). Each
metric is suitable for different types of data and evaluation purposes.

For instance, MAE is often used to evaluate the accuracy of predictions by measuring
the average magnitude of the errors between predicted and actual values. MSE and RMSE
provide a measure of the squared errors and their square root, respectively, offering insights
into the variance of the errors. Precision and recall are commonly used in classification
tasks to evaluate the relevancy and completeness of the recommendations. DCG is useful
for assessing the quality of rankings provided by the recommendation system.

In the context of this evaluation, MAE was used as the evaluation metric with the
MovieLens 1M and MovieLens latest small datasets. MAE was chosen due to its simplicity
and effectiveness in measuring the average prediction error, providing a clear indication of
the system’s accuracy.

2.7.4. Application

Recommendation systems have various applications across different industries. For
example, in the offline retail industry, a recommendation system can be used to suggest
products to customers. This is particularly useful for products that sell quickly, as retailers
aim to encourage customers to purchase a wide variety of products. The data for these
recommendations can be stored and processed on high-capacity hard disk drives, ensuring
that the system can handle large volumes of transaction data efficiently.

Another innovative approach involves investigating the use of sentiment scores for
skincare product recommendations rather than relying on traditional ratings. By analyzing
customer sentiments expressed in reviews and feedback stored on HDDs, the recommenda-
tion system can provide more personalized and relevant suggestions.

Additionally, user-based collaborative filtering systems have been applied in the
gaming industry, specifically for deck recommendations in the game Clash Royale. This
system helps players make better decisions about their decks by analyzing the preferences
and successes of similar players, with the data being securely stored on reliable HDDs to
manage the extensive player interaction data.

3. Research and Methodology

To develop a recommendation system using the collaborative filtering method, the
following methodological steps, as illustrated in Figure 5, should be followed.

3.1. Data Collection
3.1.1. Repair Data

This dataset was obtained through failure analysis (FA), focusing on positions that
consistently experience failures. The dataset includes the component serial numbers,
specific positions within the components, and the corresponding actions taken for each
component. The data span from 23 January to 1 June 2023 and comprise 326 samples used
to train machine learning models. The frequency of each action is illustrated in Figure 6.

3.1.2. Blade Testing Data

After the components are repaired, they must undergo testing in the electrical test (ET)
process. If the components pass the ET, they are sent to run in the Amber testing machine.
This indicates that the system can effectively recommend the appropriate positions to
technicians. This dataset includes the component serial numbers and their ET statuses.
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Figure 5. Operation workflow.
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3.1.3. Blade Runtime Data

To monitor component operation, we can evaluate the looping issue status using
runtime data. Based on these data, we established criteria indicating that, if the operation
time is less than 6 h and the components fail with the same error, these components are
classified as having a looping issue.

3.2. Data Preprocessing

Before creating the recommendation system, we need to prepare the data. They are
prepared by following the subsequently listed steps.

3.2.1. Cleaning Data

To utilize the action data effectively, it is necessary to address any missing or incom-
plete entries. Specifically, rows without a component serial number should be discarded.
Additionally, any typographical errors must be corrected. Subsequently, we need to identify
and manage data entries that lack an action or contain incorrect action information.

3.2.2. Data Transformation

The recommendation system employing a collaborative filtering technique typically
relies on a rating score provided directly by the user. However, in the absence of explicit
rating data, this project substitutes the rating score with an implicit rating. The implicit
rating is derived from historical data or past actions associated with each blade. The
operation steps are outlined as follows:

First, using the historical data presented in Table 1, the total number of actions for
each blade is counted and summarized in Table 2.

Table 1. Example of historical data.

Blade_SN Action Quantity
4121 TYPE B 1
4121 TYPE C 1
4121 TYPE C 1
10001 TYPE A 1
10001 TYPE A 1

Table 2. Example of counting the total number of actions for each component.

Blade_SN Action Quantity
4121 TYPE B 1
4121 TYPE C 2
10001 TYPE A 2

To calculate the implicit rating, the rating score is interpreted on a scale ranging from
0 to 10. In this context, a score of 0 indicates that the component has a minimal likelihood
of undergoing a specific repair, whereas a score of 10 signifies that the component has the
highest probability of undertaking the action. The function to determine the implicit rating
is defined as follows:
Quantity of action i

Implicit Rating Functi i) = 10 7
mplicit Rating Function (u1.) Quantity of transactions for user u . @

where

u = the user or component.
i = the item or action.

After the calculation, the number of ratings will start from 0 and reach a maximum of
10, as outlined in Table 3.
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Table 3. An example of the implicit rating score is provided.

Blade_SN Action Rating
4121 TYPE B 2.5
4121 TYPE C 5.0
10001 TYPE A 5.0

3.3. Recommendation System

This project developed a recommendation system for two scenarios: component mem-
bers (components that have previously undergone FA) and new components (components
that have never undergone FA), following the workflow in Figure 7.

/

Member: user-base
collaborative
filtering

Gathering data

Create
recommendation
system

-

New blade: item-
based collaborative

Tra ininh

recommendation
system

Production

Model

~—
API I lSend back
 ——

User Interface

[

|

recommended

filtering

positions

Automatic

 r Feedback
training system

Figure 7. Recommendation system workflow.

3.3.1. Recommendation System for Blade Members

In creating the system for blade members using a collaborative filtering technique, the
following procedures were implemented:

Data Splitting: The preprocessed data were divided into two sets: one for training and
one for testing. Specifically, 80% of the data were allocated for training, while the remaining
20% were reserved for testing.

Applying User-Based Collaborative Filtering: To develop the recommendation system
for blade members, this project proposed utilizing an artificial neural network (ANN) with
an autoencoder method. According to existing research, using an ANN for collaborative
filtering provides superior performance than using traditional collaborative filtering tech-
niques. The mean squared error and mean absolute error were employed as loss functions,
with the root mean squared error being calculated to evaluate the system’s performance.

Autoencoder Models: This project developed nine models with varying bottleneck
sizes and epochs for comparison, as outlined in Table 4.
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Table 4. Experimental training with different parameters.

Bottleneck Epoch Activation
5 100 Sigmoid
10 100 Sigmoid
20 100 Sigmoid
5 200 Sigmoid
10 200 Sigmoid
20 200 Sigmoid
5 300 Sigmoid
10 300 Sigmoid
20 300 Sigmoid

3.3.2. Recommendation System for New Blade

For new components, the project employed item-based filtering and cosine similarity.
Due to the absence of historical data for new components, the top action—identified as
the action with the highest likelihood of occurrence and popularity trend—was selected.
Cosine similarity was then calculated, and the similarity scores were sorted to identify the
actions most similar to the top action.

3.4. Automatic Training System

Given the current amount of data available at this stage of the project and to enhance
the model’s performance over time, an automatic training system is necessary. This system
will monitor data increments and, upon detecting an increase, trigger the retraining of the
recommendation system.

3.5. Simulation Situation

In this project, a web application was developed to serve as the user interface (UI) for
the system. Users are required to input the component serial number and select the error
code in the UL Upon clicking the send button, the system will display the recommendations.
The Ul is depicted in Figure 8.

\\ SDET Blade Prediction ®om Ooon £ recister +* LocouT 2 quesmonnare = racking

Conponent SN:
Error Category:
Error Code: @

Previous Action:

None

Recommended Position:
r Previous Error:

Run Time:

Looping blade status:

Actual Action:
TYPEE
LY a—
! ] E—)
TreED ["sove

TYPEG TYPED

L

Figure 8. User interface for the recommendation system.
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The recommendation

ecommendatios

Action Type C fails? —No—b[Send to ET process (100)]—> -yes >| Send to Machine A \

In the application of the recommendation system within the production line, merely
presenting the recommendations is inadequate. It is necessary to incorporate additional
features to inform users of the precise actions required and the destination of the blades.
Furthermore, the recommendations need to be dynamically adjusted if the same blade
is ejected with an identical error. This phase of the implementation is supported by an
operational flowchart, as depicted in Figure 9. Given the inherent variability of the pro-
duction line environment, it is crucial to simulate various scenarios, as specified in Table 5,
to ensure comprehensive system testing. Successfully covering all designed scenarios in
the simulation will provide confidence that the system will function correctly under actual
production conditions.

Component is ejected N

No

system

Show

= I
Send to process 93

Figure 9. Flowchart for applying the recommendation system.

Table 5. Simulation situation.

No. Blade Serial Number Situation Looping
1 10000 Normal No
2 10000 Normal Yes
3 10021 Action C fails No
4 10021 ET fails No

Due to the inability of the production line to control certain situations and outcomes,
merely displaying the recommendations is insufficient. Therefore, it was necessary to
incorporate additional operational features as illustrated in Figure 9. We also developed a
simulation environment to test all the scenarios we designed. These scenarios included (1)
a normal situation, (2) a looping issue entering the system, (3) a particular action failure,
and (4) an ET test failure.

3.6. Verification

Based on the flowchart of the repair process, the repaired component will undergo
testing in the ET process before being sent back to the Amber testing machine, as depicted
in Figure 10. Consequently, we designed the validation plan by referencing this workflow.
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(Process 120)

Machine A

Component was ejected
from Machine A

Repair process [¢——No—

ET testing
(process 100)

Figure 10. Flowchart of repairing process.

Yes

This project necessitates system validation through testing with real data. The valida-
tion plan was designed in two phases. The first phase was to validate the operation of the
recommender system, which can be accomplished through the ET process. After repair,
if the component passes the ET process, the system can recommend appropriate actions.
The second phase was to validate the solution for the looping issue. After the ET process,
if the repaired component can operate in the Amber testing machine for more than 6 h or
fails with a different error, it can be concluded that the component does not have a looping

issue. The schematic for the validation plan is shown in Figure 11.

Phase 1
Apply
recommendation
system
Repair Component No

~ Eject with

Testing Component at ET hours?

process before sending

Run Component
in Machine A

the same error within 6

—Yes

7

)

Figure 11. Schematic of validation plan.

4. Result

The results for each part of this project are discussed here.
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4.1. Recommendation System for Component Members

This project created nine models (From Table 4) for different parameters, and the
results are shown in Table 6. We obtained the best model at bottleneck = 20 and number of
epochs = 300; it provided MAE = 0.8434, MSE = 3.3293, and RMSE = 1.8246. Additionally,
the results are shown in Appendix A (Figures A1-A3).

Table 6. Result of autoencoder with different parameters.

Epoch: 100 Epoch: 200 Epoch: 300
Bottleneck
MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE
5 0.9540 3.5467 1.8830 0.8729 3.3834 1.8394 0.8519 3.4148 1.8480
10 0.9116 3.4815 1.8659 0.8614 3.3540 1.8314 0.8542 3.3399 1.8375
20 0.9129 3.4591 1.8599 0.8543 3.3669 1.8349 0.8434 3.3293 1.8246
4.2. Recommendation System for a New Component
We set the top action, TYPE B, as a reference and calculated the cosine similarity scores
for other actions. We found that TYPE C had the highest similarity score, followed by TYPE
D and TYPE A, respectively.
4.3. Automatic System
To improve the model’s performance, we included an automatic training facility that
activates whenever new data are received. As the data volume increases, performance is
expected to improve. Using only the first-period data to train the autoencoder resulted
in a mean absolute error (MAE) of 0.9301. After appending second-period data, the MAE
decreased to 0.8434. This reduction in MAE indicates that an increase in the data volume
leads to better performance.
4.4. Applying the Recommendation System
From simulated scenarios, we conducted experiments and observed that the system
operated correctly and provided comprehensive recommendations across all situations.
These findings are summarized in Table 7.
Table 7. Results of simulation situations.
No. Component Serial Number Situation Looping Result
1 10000 Normal No Pass
2 10000 Normal Yes Pass
3 10021 TYPE C fails No Pass
4 10021 ET fails No Pass

4.5. Validation

The recommendation system selected 102 components to be rerun in the Amber testing
machine, while 104 components remained fixed. We discovered that 13 components failed
during the ET process for unrecoverable reasons. Additionally, out of the 21 components
experiencing the looping issue, only 5 were fixed using the recommendation system again.
Two components did not experience the looping problem, whereas three components did.

It can be concluded that product component A experienced the looping problem with
error code A occurring at a rate of 20.59%. This is a reduction of 13.41% when compared
to the original problem statement, which reported a looping rate of 34%. The technicians
followed specific recommendations and actions regarding the five components in which
the looping problem persisted.

In Table 8, it is shown that component 8864 performed no action the second time
around but did not experience the looping problem. Component 9512 performed a different
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action the second time around and also did not experience the looping problem. Finally,
component 7477 was repaired three times consecutively but still experienced the looping
problem each time despite being checked in all positions.

Table 8. Results of looping issues repaired using the recommendation system.

Component SN Recommendations Action Looping Status
8864 TYPE BD//TR{};%CA/TYPE TYPE C FAIL
8864 TYPE II:_I/;F\I{)IEE(?E/TYPE No problem PASS
9512 TYPE BD//F{K{I;}]EEEA/TYPE TYPE D/TYPE A FAIL
9512 TYPE gf,gfI;EE(EC/TYPE TYPE C PASS
7477 TYPE 1;//?31’3]]55 E/TYPE TYPE E FAIL
7477 TYPE ];//Tf?;% 21/ TYPE No problem FAIL
7477 - Send to process 93 FAIL

5. Conclusions

The objective of this project was to develop a recommendation system aimed at
reducing the incidence of looping issues, defined as a component failing with the same
fault within 6 h, by addressing two scenarios: existing component members and new
components. For existing components in the FA list, a user-based collaborative filtering
approach with implicit ratings was employed, while new components were managed using
an item-based collaborative filtering technique with cosine similarity scores. Through the
implementation of user-based filtering across nine models with varying parameters, the
optimal model was identified after overcoming 20 bottlenecks and completing 300 epochs,
yielding a mean absolute error of 0.8434 and a root mean square error of 1.8246. The system
provided an action list recommendation for new components, including options such as
TYPE A, TYPE B, TYPE C, and TYPE D. Upon deployment in a manufacturing line, the
system reduced the looping rate of component Product A with fault code A from 34% to
20.59%, a reduction of 13.41%. However, among the components that continued to face
looping issues after repair, two did not loop after a second repair, while three continued
to loop despite thorough examination in all positions. These findings suggest that, while
the system effectively reduces looping issues, further investigation is necessary to identify
the root cause, potentially involving the interaction between the existing system and the
Amber testing machine. Future research should focus on applying supervised machine
learning techniques with expanded data collection and root cause analysis to ascertain the
direct origin of component failures.

Suggestion

This project is focused on developing a recommendation system, rather than a pre-
dictive model. Consequently, the recommended actions may not always be accurate or
comprehensive. Additionally, the dataset used to train the recommendation system is rela-
tively small, which limits the system’s effectiveness. To enhance efficiency, it is necessary to
collect more data. As the dataset grows, the system’s performance is expected to improve.
Furthermore, incorporating additional error codes into the system would better support
the operations of technicians.

Regarding the looping blade issue, it is crucial to identify the exact root cause. Under-
standing the specific problem allows for the exploration of various alternative solutions.
The recommended actions should ideally be derived from predictions based on supervised
machine learning. By identifying signals that clearly indicate potential failures at specific
positions, the system could provide technicians with precise locations for repair. However,
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it is essential to have a thorough understanding of the data or to collect data directly related
to the blades, preferably through automated sensors rather than through manual input.
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Appendix A

Based on the above analysis, we can compare the results of the models using MAE
and RMSE, as illustrated in Figures A1l and A2, respectively. Since the optimal model is
identified at a bottleneck size of 20, we can further evaluate its performance by plot-
ting the MAE and MSE for both the training and validation datasets, as depicted in
Figures A3 and A4, respectively.
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Figure A1. Mean absolute error for different bottlenecks.
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