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Abstract: Intelligent scheduling of knitting workshops is the key to realizing knitting intelligent
manufacturing. In view of the uncertainty of the workshop environment, it is difficult for existing
scheduling algorithms to flexibly adjust scheduling strategies. This paper proposes a scheduling
algorithm architecture based on deep reinforcement learning (DRL). First, the scheduling problem of
knitting intelligent workshops is represented by a disjunctive graph, and a mathematical model is
established. Then, a multi-proximal strategy (multi-PPO) optimization training algorithm is designed
to obtain the optimal strategy, and the job selection strategy and machine selection strategy are trained
at the same time. Finally, a knitting intelligent workshop scheduling experimental platform is built,
and the algorithm proposed in this paper is compared with common heuristic rules and metaheuristic
algorithms for experimental testing. The results show that the algorithm proposed in this paper is
superior to heuristic rules in solving the knitting workshop scheduling problem, and can achieve
the accuracy of the metaheuristic algorithm. In addition, the response speed of the algorithm in this
paper is excellent, which meets the production scheduling needs of knitting intelligent workshops
and has a good guiding significance for promoting knitting intelligent manufacturing.

Keywords: knitting workshop scheduling; deep reinforcement learning; multi-proximal policy
optimization; flexible job-shop scheduling problem; intelligent manufacturing

1. Introduction

Digitalization, networking, and intelligence have become the main development lines
of knitting [1]. With the development of emerging technologies such as the Internet of
Things, artificial intelligence, and cyber-physical systems, the knitting industry has also
begun to transform towards intelligence, and the production model of enterprises has
also evolved from the original assembly line production to multi-variety, small batch, and
customized production [2]. Traditional centralized and static scheduling algorithms can no
longer meet the high flexibility and reconfigurability requirements of production.

In a knitting intelligent workshop, the processes of order production, fabric cutting,
fabric dropping, fabric transportation, and fabric inspection are completed by the work-
shop management system according to the process flow. Therefore, the knitting workshop
scheduling problem belongs to the typical flexible job-shop scheduling problem (FJSP), in
which at least one process has multiple parallel machines that can be processed simultane-
ously, and it has been proved to be an NP-hard combinatorial optimization problem [3]. In
FJSP, a job consists of a series of specific continuous operations, in which each operation is
assigned to a machine in a group of parallel machines to optimize one or more objectives,
such as operation time, average completion time, maximum flow time, and total delay
time [4]. Compared with the traditional job shop scheduling problem, the flexible job shop
scheduling problem is more difficult to solve and has higher engineering application value.

Currently, existing methods for solving NP-hard combinatorial optimization problems
can be classified into two categories: exact methods and approximate methods. Exact
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optimization algorithms, such as mathematical solutions and integer linear programming,
search for the optimal solution in the entire solution space. These methods are not suitable
for solving large scheduling problems within a reasonable time [5]. Therefore, more and
more approximate optimization algorithms, including heuristic methods, meta-heuristic
methods, and machine learning, have been developed to solve practical problems. In
particular, swarm intelligence (SI) and evolutionary algorithms (EAs), such as genetic
algorithms (GAs) [6,7], particle swarm optimization (PSO) [8,9], and the firefly algorithm
(FA) [10], have shown outstanding advantages in solving FJSP instances.

Although SI and EAs can solve FJSP in a reasonable time compared with the exact
mathematical optimization methods, they are not applicable in the actual knitting produc-
tion scheduling because the algorithm iterations require a lot of iterative computing time
to obtain a satisfactory solution. In general, the scheduling rules used to solve FJSP can
be divided into two categories: job selection rules and machine selection rules. Efficient
scheduling rules require a lot of domain expertise and trial and error, and cannot guarantee
local optimality. Deep reinforcement learning (DRL) algorithms provide a scalable method
for solving scheduling problems with common characteristics. This motivates us to use
reinforcement learning-based methods for FJSP.

For the production scheduling problem of knitting intelligent workshops, this paper
considers this problem as a combinatorial optimization problem and optimally arranges
production orders by allocating machines and equipment to satisfy the production require-
ments. Usually in DRL, the agent interacts with the environment according to the following
behavior: the agent first accepts the state st, and selects the action at according to the state
of each step, then obtains the reward rt, and moves to the next state st+1. In DRL, the action
at is selected from the action space. However, the action space in the knitting intelligent
workshop scheduling problem is constructed by the job operation action space and the
machine action space. In order to solve this problem, the DRL architecture agent in this
paper will first select an operation action from the job operation space, and then select a
machine action from the machine space for the selected job operation action. The main
contributions of this paper are as follows:

A deep reinforcement learning model applied to knitting intelligent workshops is
designed, and multi-action space is introduced into the Markov decision process represen-
tation, the disjunctive graph representation of the knitting intelligent workshop scheduling
problem is introduced, and the graph neural network is embedded in the local state.

The multi-proximal policy optimization (multi-PPO) algorithm is used to train the job
operation action strategy and machine action strategy of knitting smart workshop schedul-
ing. The effectiveness of the algorithm framework is verified by orders in actual production.

The paper is organized as follows: Section 2 describes the related work of knitting
intelligent workshop scheduling solution. Section 3 explains the mathematical model of
knitting intelligent workshop production scheduling. Section 4 proposes a DRL algorithm
framework through a multi-strategy algorithm. Section 5 builds a knitting intelligent pro-
duction experimental platform to compare and validate the algorithm. Section 6 introduces
the conclusion.

2. Literature Review

When solving the flexible job-shop scheduling problem, exact methods based on math-
ematical solutions have been applied to find small FJSP instances. Initially, Shapiro [11]
proposed a mathematical programming model and solution method. Özgüven [12] devel-
oped a mixed integer linear programming model (MILP-1) and improved MILP-1, which
improved the solution time of the model. Meng [13] established a mixed integer linear
programming (MILP) model to solve the FJSP-SDST-T energy minimization problem. Al-
though the medium-scale solution efficiency is high, the running memory requirements are
relatively high and the solution time is relatively long. Although various exact methods
have been successful, they are not suitable for solving large FJSP instances due to the
NP-hardness of FJSP.
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In recent years, approximate solutions such as SI and EAs are usually used to solve
scheduling problems. Although the computation time of SI and EA methods is less than
that of exact solutions, they are not competent in real-time scheduling environments. In
order to solve scheduling problems in practice, a series of scheduling rules have been
designed. Yang [14] proposed an improved dragonfly algorithm (DA), which adopts a
dynamic reverse learning strategy to improve the search ability of DAs. Sun [15] improved
the genetic algorithm by using a variable neighborhood search algorithm, which improves
the local search ability of the algorithm and accelerates the convergence speed of the
algorithm. However, the algorithm only considered the influence of crossover probability
and mutation probability on the performance of the algorithm. Pan [16] considered energy
saving, proposed a dual-population evolutionary algorithm with feedback, and conducted
a large number of experiments to verify the superiority of the evolutionary algorithm with
feedback. As the scale of FJSP instances increases, the meta-heuristic algorithm needs to go
through a large number of iterations and consumes more computing time. Therefore, the
computational complexity of the meta-heuristic algorithm is an obvious limiting factor.

Meanwhile, some reinforcement learning algorithms have achieved remarkable results
in board and video games [17], especially successful examples of DRL from simulations
to the real world [18], which have become another option for solving FJSP. Shang [19]
proposed a combination of deep learning network LSTM and genetic algorithms, and
experiments show that the algorithm significantly improves the utilization of equipment,
but the predictive processing level of the algorithm is insufficient. Wang [20] proposed
a dynamic scheduling method based on DRL, which uses proximal policy optimization
(PPO) to find the optimal scheduling policy, which reduces the complexity and the solution
results are better than heuristic rules and meta-heuristics algorithm.

There are more and more related studies on workshop production scheduling in the
fields of manufacturing, production planning, and logistics [18]. Methods based on mathe-
matical solutions and metaheuristics cannot be applied due to the complexity of large FJSP
problems. Many researchers have solved combinatorial optimization problems through
DRL and achieved good results, but the scheduling of knitting intelligent workshops has
received less attention. Most of the methods for solving FJSP based on DRL choose com-
posite scheduling rules instead of directly finding scheduling solutions. The performance
of the selected composite scheduling rules depends on the design of the scheduling rules.
The literature shows that there are few studies on solving knitting intelligent workshop
scheduling through a multi-action DRL framework without predetermined scheduling
rules. To this end, this paper designs a DRL framework based on the multi-PPO algorithm
to solve the knitting intelligent workshop scheduling problem. It can be directly trained to
find the optimal strategy, and the effectiveness of the algorithm architecture is verified.

3. Mathematical Modeling of Production Scheduling Problem in Knitting Workshop
3.1. System Model

In this section, the knitting intelligent workshop production scheduling problem is
defined as a flexible job shop scheduling problem, which can be described as follows: given
a set J = {J1, J2, · · · , Jn} consisting of n jobs and a set M = {M1, M2, · · · , Mm} consisting
of m machines, each job contains one or more processes, and the order of the processes
is predetermined. Each process can be processed on multiple parallel machines, and the
processing time of the process varies with the processing machines. In addition, in order
to satisfy the actual production requirements, this problem needs to meet the following
constraints:

1. The same machine can only process a maximum of one workpiece at a given time;
2. The same job can only be processed by one machine at the same time in the same process;
3. Each process of each job cannot be interrupted once it starts (that is, each process is

considered to be non-preemptive);
4. Different artifacts have the same priority;
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5. There are no priority constraints between the processes for different jobs, but there are
sequential constraints between processes for the same job;

6. All jobs and machines are available within the dispatch scope until the dispatch is
completed, regardless of equipment failures.

In the knitting intelligent workshop model scheduling problem, the optimization
objective is to assign job operations to machines for processing and to determine the
operation sequence on the machines to minimize the completion time makespan Cmax,
which is expressed by Equation (1), where Cini represents the completion time of job i.

Cmax = max
{

Cini

}
, i ∈ {1, 2, · · · , n} (1)

3.2. Problem Formulation

In the production scheduling problem of knitting intelligent workshops, the goal
of scheduling is to select the most suitable machine for each process, and determine the
optimal processing sequence and start time of each process on each machine, so that certain
performance indicators of the entire system can be optimized. Therefore, this knitting
intelligent production scheduling problem contains two sub-problems: determining the
processing machine for each job (machine selection sub-problem) and determining the pro-
cessing sequence on each machine (process sequencing sub-problem). For the convenience
of the following description, the variable symbols of the knitting shop scheduling model
are defined as shown in Table 1:

Table 1. Mathematical symbol definition table.

Symbol Definition

n Total number of jobs
m Total number of machines
i Machine number, i = 1,2,3,· · · , m
j Job number, j = 1,2,3,· · · , n

hj Number of processes for job j
h Process number, h = 1,2,3,· · · , hj

Mjh The set of optional processing machines for process h of job j
mjh The number of optional processing machines for process h of job j
Ojh The process h for job j
Pijh The process h of job j is processed on machine i
Tijh The processing time on machine i for process h of job j
STjh The processing start time of process h of job j
ETjh The processing completion time of process h of job j
Etj The processing completion time of job j

Cmax The maximum completion time
NO The total number of processes for all jobs, NO = ∑n

j=1 hj

xijh xijh =

{
1 if machine i is selected for operation Ojh
0 otherwise

The processing time, i.e., the total time required to complete all production jobs, is
used as a measure of the quality of the scheduling algorithm. Mathematically, we define
the knitting intelligent workshop production scheduling problem to satisfy the following
constraints:

STjh + xijh × Tijh ≤ ETjh (2)

ETjh ≤ STj(h+1) (3)

Etj ≤ Cmax (4)

STjh ≤ ST(j+1)h (5)

ETjh ≤ STj(h+1) (6)
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mjh

∑
i=1

xijh = 1 (7)

STjh ≥ 0, ETjh ≥ 0 (8)

Among them, constraints (2) and (3) represent the sequence constraints of the processes
of each job; constraint (4) represents the completion time constraint of the job (that is, the
completion time of each job does not exceed the total completion time); constraints (5)
and (6) represent that only one process can be processed by the same machine at the same
moment; constraint (7) represents the machine constraint (that is, the same process can
only be processed by one machine at the same moment); and constraint (8) represents the
processing condition constraint (that is, the processing parameter variables of each job must
be positive numbers).

The knitting intelligent workshop scheduling problem can be represented by a dis-
junctive graph G = (O, C, D), where O =

{
Ojh

}
; C represents the processing priority

constraints between different processes of the same job, which is a set of connecting arcs;
and D is a set of disjunctive arcs, in which the processes connected by each arc are processed
by the same machine equipment. Taking the 3 × 3 FJSP as an example as shown in Figure 1,
the upper part of the figure is a disjunctive graph, and the lower part is a set of feasible
solutions. The black line represents the connecting arc, the colored line represents the
non-connecting arc, and the colored line with the arrow represents the processing order of
the assigned machine.
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4. DRL Architecture for the Knitting Workshop Production Scheduling Problem

Reinforcement learning is one of the most powerful tools for solving sequential de-
cision problems. In this section, the knitting intelligent workshop scheduling process
is conceptualized as a multi-action reinforcement learning task, which is defined as a
multi-Markov decision process (MMDP). Therefore, we propose a multi-pointer graph
network (MPGN) algorithm [21] based on Graph Neural Networks (GNNs), and train the
MPGN through a multi-proximal strategy optimization (multi-PPO) algorithm with an
actor-critic architecture to solve multi-task combinatorial optimization problems such as
knitting intelligent workshop scheduling.
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Standard reinforcement learning based on Markov decision process (MDP) is described
by a tuple ⟨S, A, P, R,γ⟩, where S is a finite set of states; A is a finite set of actions; P is the
state transition probability; R is the reward function; and γ is a discount factor, which is
used to calculate the cumulative return. The agent interacts with the environment at each
discrete time step. At time step t, the agent accepts state st from the state space S and takes
action at from the action space A. Then, the agent receives a reward rt from the environment
and enters the next state st+1 according to the transition probability distribution P and
st and at. The policy function π:S×A→[0,1] is defined as a probability density function,
where π(a|s) = P(A = a|S = s) is the probability of choosing action a given state s. The
goal of reinforcement learning is to learn a strategy that maximizes the expected return
R(π) = Eπ[∑t γ

trt], where γ ∈ [0,1] is the discount factor.

4.1. Problem Setting

The core of the knitting intelligent workshop scheduling problem is to guide the
production order sequencing and processing machine selection in the knitting intelligent
workshop through a reasonable job action policy and machine action policy. The multi-task
scheduling diagram is shown in Figure 2. This section regards the scheduling process
as a sequential decision task. The agent controls multiple actions at the same time to
realize the scheduling of the knitting intelligent workshop. This multi-task reinforcement
learning problem is an MMDP defined by a tuple ⟨S, A, P, R,γ⟩. In this section, the knitting
intelligent workshop scheduling process is modeled by MMDP, and then the policy network
is constructed.
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States: The scheduling state at a certain moment is approximately described by extract-
ing important features of the scheduling process. The state of the workshop scheduling
environment at time t is represented by St. The workshop environment includes jobs and
machines, so this paper also divides the state space into two categories, sj

t and sm
t . After

being represented by a disjunctive graph, each operation Ojh ∈ O at a time includes two

features
[
LBt

(
Ojh

)
, It

(
Ojh

)]
, where LBt

(
Ojh

)
is the prediction of the minimum comple-

tion time of the processing operation Ojh, and It

(
Ojh

)
is a one-dimensional feature. If Ojh

is scheduled to a machine, It

(
Ojh

)
is 1, otherwise it is 0.

Action: Action refers to the decision made by the agent based on the current state. The
action at time t also consists of job action aj ∈ Aj and machine action am ∈Am. At time t,
the set of all job actions is recorded as Aj, and the set of all machine actions is recorded as
Am. Therefore, Aj is the set of all jobs that meet the processing conditions, and Am is the
set of machines that can be processed by action aj.

State transition: State transition is the process of the agent transferring from the current
state st at time t to the state st+1 at the next time t + 1. The agent updates the direction
of the non-connected arc based on the current job action aj and machine action am, and
generates a new disjunctive graph as the new state space, as shown in Figure 1.



Machines 2024, 12, 579 7 of 14

Reward: Reward is the evaluation value returned to the agent by the environment after
the agent performs an action. Through rewards, an optimal scheduling policy is learned
to minimize the total processing time. To this end, this paper predicts the remaining
processing operation time q̂ = max

{
LBt+1

(
Ojh

)}
− max

{
LBt

(
Ojh

)}
at the current time

t and time t + 1, and defines the negative value of the difference q̂ as the reward, that is,
r
(
st, aj, am

)
= −q̂.

4.2. Multi-Proximal Policy Optimization

In order to deal with the multi-action reinforcement learning problem in the knitting
intelligent workshop, the MPGN algorithm architecture is adopted, which includes two
parts: a job operation action policy and a machine selection action policy. The algorithm
architecture is shown in Figure 3. The decoders of the two parts based on multi-layer
perceptron (MLP) have the same network structure, but do not share data. The job operation
action encodes the disjunctive graph through the L layer graph isomorphism network (GIN).
After MLP decoding, the action decision of the non-connected arc in the disjunctive graph
is obtained. As shown in Figure 3, at time t = 1, the job operation may execute O11, O21, O31
processes, and the agent chooses to execute O11 operation through the job operation action
policy. There is no graph structure in machine selection, so we use a fully connected layer
to encode. Similarly, as shown in Figure 3, at time t = 1, the execution of O11 operation
may be processed by M1,M2, and the agent chooses M2 processing through the machine
selection decision.
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The proximal policy optimization (PPO) algorithm is a very popular reinforcement
learning algorithm based on the actor-critic architecture and is widely used in continuous
action space problems. In this paper, the multi-proximal policy optimization (multi-PPO)
algorithm is used to learn two sub-policies, namely, the job operation policy πθj

(
aj
∣∣s)

selects the job operation action aj, and the machine selection policy πθm(am|s) selects the
machine selection action am. Through this algorithm, the action of the agent is represented
by a tuple

(
aj, am

)
. In multi-PPO, the state value function depends on both the current

state st and the parameter θ of the policy network π. That is, the better the current state st
and the better the policy network π, the greater the expected state value. The advantage
function Ât is estimated by Equation (9).

Ât = ∑t′>t γ
t′>trt′ − V∅(St) (9)

where γ is the reward discount factor and V∅(St) is the value function of the current state.
In the knitting intelligent workshop scheduling, the job operation action policy πθj and

the machine selection action policy πθm are both discrete. Therefore, the output of the multi-
PPO actor network is the probability distribution on the job operation action space and the
machine selection action space. Then, the job operation and machine selection actions are
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selected on the generated probability distribution by random sampling or greedy decoding.
During the policy network training process, the training experience samples are collected
through the actor network to update the two policies πθj and πθm , as shown in Figure 4.
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The objective of both sub-policies is to find a policy π′θ that is better than the original
policy πθ. This paper directly clips the objective function used for policy gradient to obtain
a more conservative update. We define ρt

(
θ′
)

to represent the ratio of the two policies
π′

θ(at|st)
πθ(at|st)

. The objective function is shown in Equation (10), which allows the policy gradient
method to have stable learning performance.

L
(
π′θ

)
= Eπθ

[
min

{
ρt
(
θ′
)
Ât, clip

(
ρt
(
θ′
)
, 1 − ε, 1 + ε

)
Ât

}]
(10)

where clip(x, 1 − ε, 1 + ε) means truncating x in [1 − ε,1 + ε] to ensure that πθ and π′θ
are similar. Finally, the smaller of the truncated objective function and the untruncated
objective function is taken as the final objective function of the learning. The algorithm is
described in Algorithm 1.

Algorithm 1 Multi-PPO Algorithm

000Parameters: Truncated factorization ε, number of sub-iterations M, B
000Input: Initial policy function parameters θ, initial value function parameters ∅.
000Output: Optimal solution s
000Begin
000000for k = 0, 1, 2, · · · , do
000000000Execute the policy πθ in the environment and save the trajectory set Dk = {τi}.
000000000Calculate the reward r̂t.
000000000Based on the current value function V∅, calculate the advantage function Ât
000000000for m ∈ {1,· · · , M} do
000000000000ρt

(
θ′
)
=

π′
θ(at|st)

πθ(at|st)

000000000000The Adam stochastic gradient ascent algorithm is used to maximize the objective
000000000000function of PPO-Clip to update the policy:

000000000000θk+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T
∑

t=0
min

{
ρt(θ′)Ât, clip(ρt(θ′), 1 − ε, 1 + ε)Ât

}
000000000end for
000000000for b ∈ {1,· · · , B} do
000000000000The value function is learned by minimizing the mean square error using the
000000000000gradient descent algorithm:

000000000000∅k+1 = arg max
θ

1
|Dk|T ∑

τ∈Dk

T
∑

t=0
(V∅(St)− r̂t)

2

000000000end for
000000end for
000End
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5. Simulation Result and Analysis

In this section, we evaluate the performance of the knitting intelligent workshop
production scheduling algorithm based on reinforcement learning through experimental
simulation. First, we train it through publicly available small and medium-sized FJSP
benchmark Hurink instances. Secondly, a real knitting intelligent production platform is
built, and a batch of order information actually produced in the workshop is used as a test
instance. The effectiveness of the proposed algorithm is demonstrated by comparing it
with commonly used heuristic rules and meta-heuristic algorithms.

5.1. Parameters and Training

In this paper, the reinforcement learning model is built with PyTorch, and the code
is implemented in Python 3.10. The hardware system configuration is Intel(R) Core(TM)
i7 processor and NVIDIA GeForce RTX 3060 Laptop GPU. For the job action policy and
machine action policy, this paper uses the MPGN algorithm architecture with GIN layers.
In each GIN layer, the MLP includes two hidden layers with a dimension of 128. In the
multi-PPO algorithm, the clipping coefficient is 0.2, the loss coefficient of the Critic is 1, the
loss coefficient of the policy is 2, and the entropy loss coefficient is 0.01.

First, we use the examples in Hurink for training and verification. The experimental
verification shows that the algorithm has good convergence during the training process.
The training process and makespan change curve are shown in Figure 5.
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5.2. System Validation Parameters

The experimental verification data intercepts a batch of actual production order in-
formation from the workshop management system. Each production order is divided
into four processing procedures: knitting production, fabric roller handling, fabric inspec-
tion, and fabric handling. Knitting production can be processed by any circular knitting
machine, and the production parameters of the circular knitting machine equipment that
can be processed are known, meaning that the processing and production time of each
production order on each circular knitting machine equipment has been determined. The
fabric roller handling and fabric handling processes are completed by an automated guided
vehicle(AGV). In actual production, the configurations of the two AGVs are the same,
and the process duration of the AGV has also been determined. The fabric inspection
process can be completed automatically by any fabric inspection machine, and the process
duration has been determined. For the convenience of description, the orders, processing
procedures, and equipment are numbered. The 20 orders are numbered from Job 1 to Job
20, the four processing procedures are numbered from Process 1 to Process 4, the eight
circular knitting machines are numbered from M1 to M8, and the two AGVs are numbered
M9 and M10. The five fabric inspection machines are numbered from M11 to M15. The
optional mechanical equipment for each production order is shown in Table 2, and the
production and processing time of each process of the production order is shown in Table 3.
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Table 2. List of optional machines and equipment for processing operations.

Workpiece Process 1 Process 2 Process 3 Process 4

Job 1 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 2 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 3 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 4 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 5 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 6 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 7 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 8 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 9 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)

Job 10 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 11 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 12 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 13 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 14 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 15 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 16 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 17 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 18 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 19 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)
Job 20 (M1,M2,M3,M4,M5,M6,M7,M8) (M9,M10) (M11,M12,M13,M14,M15) (M9,M10)

Table 3. List of processing times of corresponding machines and equipment.

Workpiece Process 1
(min)

Process 2
(min)

Process 3
(min)

Process 4
(min)

Job 1 (194,153,174,173,179,163,153,189) (13,13) (10,11,16,16,13) (12,12)
Job 2 (171,143,196,183,153,195,195,170) (12,12) (22,21,14,19,21) (13,12)
Job 3 (183,197,141,166,158,138,157,165) (12,13) (19,15,13,20,12) (15,14)
Job 4 (182,201,173,188,145,173,184,188) (12,12) (20,20,20,22,25) (14,14)
Job 5 (211,208,130,174,214,135,210,151) (11,14) (19,19,14,16,14) (14,15)
Job 6 (201,190,166,182,166,149,205,197) (12,12) (18,23,18,25,14) (12,12)
Job 7 (174,197,150,180,133,154,183,200) (10,12) (16,14,14,20,17) (13,14)
Job 8 (183,163,193,154,156,207,216,179) (14,14) (21,14,20,16,11) (12,10)
Job 9 (104,159,114,191,192,179,117,192) (12,11) (13,15,18,14,20) (11,13)

Job 10 (149,168,152,203,141,193,207,206) (11,12) (13,20,17,18,19) (12,12)
Job 11 (199,209,109,150,179,187,144,146) (13,15) (20,23,20,15,16) (11,11)
Job 12 (123,125,141,199,179,132,192,120) (14,11) (19,19,18,19,20) (10,13)
Job 13 (122,118,122,197,187,127,169,180) (12,13) (14,14,17,16,11) (12,11)
Job 14 (201,200,151,150,169,176,153,201) (13,14) (18,12,19,18,13) (11,11)
Job 15 (164,157,173,194,196,199,150,181) (11,12) (23,20,18,14,12) (11,11)
Job 16 (195,198,148,193,164,143,160,145) (14,15) (13,20,14,15,19) (12,12)
Job 17 (146,193,168,137,189,200,139,139) (12,12) (13,11,11,16,13) (12,13)
Job 18 (208,203,208,152,203,197,137,181) (13,13) (17,15,15,20,16) (11,11)
Job 19 (122,152,143,159,114,189,152,159) (11,12) (22,21,21,20,19) (12,15)
Job 20 (191,188,181,185,181,212,212,161) (12,11) (20,13,19,19,18) (12,12)

5.3. Knitting Intelligent Production Experiment Platform

In order to verify the feasibility and effectiveness of the proposed algorithm through
experiments, a knitting intelligent production platform was built, as shown in Figure 6. The
platform includes eight circular knitting machines, two AGVs, and five fabric inspection
machines. After the circular knitting machines complete the production of product orders,
the fabric transport AGV supplies the full-shaft fabric rolls in the circular knitting ma-
chines to the fabric inspection machines, which then complete the fabric inspection process
for the knitted fabrics, thus realizing unmanned continuous production in the knitting
intelligent workshop.
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5.4. Multi-Proximal Policy Optimization

The actual production data in the knitting workshop (see Tables 2 and 3) are used as
experimental instances to verify the algorithm in this paper, and the resulting Gantt chart
is shown in Figure 7. Taking Job 8 as an example, the first processing step O8,1 of job 8 is
completed by M4, followed by the second processing step O8,2 by M10, and then the third
processing step O8,3 is processed on M15, and the last processing step O8,4 is completed by
M10. At the same time, taking the processing of equipment M2 as an example, equipment
M2 completes the first process O2,1 of Job 2, the first process O12,1 of Job 12, and the first
process O13,1 of Job 13 in sequence.
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It can be clearly seen from the Gantt chart that the production order has completed
the knitting production on the M1~M8 circular knitting machines. After completing the
first process, the AGV transports the fabric roll to the visual fabric inspection machine for
inspection, and then transports the fabric on the visual fabric inspection machine to the
intermediate warehouse. This algorithm is applied to the knitting intelligent experimental
platform. The task scheduling time is compact and the machine can be reasonably scheduled
to meet the production scheduling requirements.

In order to further evaluate the performance of the proposed algorithm, we designed
two groups of comparative experiments, one using Longest Processing Time (LPT), Shortest
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Processing Time (SPT), and First In First Out (FIFO) heuristic rules [22], and the other using
the meta-heuristic algorithm of the genetic algorithm. The two groups of experimental
algorithms were used to solve the knitting intelligent experimental platform data. The
solution results are shown in Table 4.

Table 4. Comparison of experimental solution results.

Experimental
Algorithms

Algorithm Solution
Results

Relative Error
(%)

Running Time
(s)

LPT 462 5.84 0.57
SPT 527 17.46 0.59
FIFO 654 33.49 0.41

Genetic algorithms 437 0.46 6.83
The algorithms in this paper 435 0.00 1.08

As can be seen from Table 4, the solution results of the algorithm in this paper are
smaller than those of the heuristic rule method, and are comparable to the metaheuristic
algorithm. The algorithm in this paper is better than the metaheuristic algorithm as a
whole. In addition, the relative error of the algorithm in this paper is better than that
of the heuristic rule method. When the GA is similar, the proposed algorithm is more
efficient. In summary, the DRL algorithm proposed in this paper can effectively meet the
production scheduling needs of the knitting intelligent workshop and effectively improve
the production and processing efficiency of the workshop.

6. Conclusions

This paper studies the production scheduling problem in knitting intelligent work-
shops and proposes a DRL algorithm framework to train scheduling strategies with the
goal of minimizing completion time. In order to solve the complexity of knitting intel-
ligent workshop scheduling, a disjunctive graph is introduced to represent local states,
and a graph neural network is used to embed local states. At the same time, two neural
networks are designed to train workpiece operation action strategies and machine selec-
tion action strategies, and tested in real workshop examples. Experiments show that the
proposed algorithm is significantly better than the existing heuristic rule algorithm. The
main contributions of this paper are as follows:

(1) A production scheduling model for the knitting intelligent workshop is built to
reasonably schedule knitting intelligent workshop equipment such as circular knitting
machines, AGVs, and visual fabric inspection machines to achieve sustainable production
in the knitting workshop.

(2) A multi-strategy optimization algorithm is designed to train the DRL neural
network, and the DRL algorithm is trained through public instances. A knitting intelligent
workshop experimental platform is built for simulation experiments. The experiments show
that the algorithm can effectively, efficiently, and stably solve the production scheduling
problem of the knitting intelligent workshop.

Many constraints are added during the execution of the knitting intelligent production
platform, such as the processing process cannot be interrupted and equipment failures are
not considered. At the same time, there are still more equipment uncertainties and multiple
goals in solving problems in the actual work of the knitting intelligent workshop, which
are all valuable research directions in the future.
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