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Abstract: Addressing the current issue of limited control methods for badminton serving devices,
this paper proposes a vision-based multimodal control system and method for badminton serving.
The system integrates computer vision recognition technology with traditional control methods for
badminton serving devices. By installing vision capture devices on the serving device, the system
identifies various human body postures. Based on the content of posture information, corresponding
control signals are sent to adjust parameters such as launch angle and speed, enabling multiple modes
of serving. Firstly, the hardware design for the badminton serving device is presented, including the
design of the actuator module through 3D modeling. Simultaneously, an embedded development
board circuit is designed to meet the requirements of multimodal control. Secondly, in the aspect
of visual perception for human body recognition, an improved BlazePose candidate region posture
recognition algorithm is proposed based on existing posture recognition algorithms. Furthermore,
mappings between posture information and hand information are established to facilitate parameter
conversion for the serving device under different postures. Finally, extensive experiments validate
the feasibility and stability of the developed system and method.

Keywords: visual perception; badminton serving device; embedded control; posture recognition;
multimodal control

1. Introduction

With the enhancement of individuals’ material living standards, an increasing number
of people are directing their attention toward the holistic development of physical and
mental well-being [1]. Badminton, being an exceptionally dynamic and competitive sport,
demands athletes to possess advanced serving skills, and the capability to serve with
precision and variety is pivotal for securing an advantage on the court [2,3]. In conventional
training methods, coaches are required to repeatedly demonstrate various serve techniques
over an extended period. As time progresses, the physical fatigue experienced by training
coaches may result in the deformation of technical movements. This, in turn, contributes to a
decline in serving accuracy and a gradual increase in ineffective feeds, thereby diminishing
the overall training effectiveness [4].

The introduction of badminton serving devices offers an effective solution to address
the challenges associated with unstable play and insufficient technical proficiency among
training coaches. This, in turn, mitigates the limited effectiveness of training and brings
about a notable enhancement in training methodologies [5]. The use of badminton serving
devices can provide a controlled and adaptable practice environment for athletes, enabling
them to fine-tune their serving technique and improve their overall level.
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The serving method, serving as the focal point in the design of badminton serving de-
vices, has been a predominant research focus for scholars globally. Currently, two primary
mainstream serving modes exist. The first is founded on the fixed-position badminton
serving method, wherein trainers modify the hardware structure and placement position
of the serving device to alter the serving angle and achieve varying serve distances [6].
This method boasts a relatively uncomplicated mechanical mechanism, facilitating straight-
forward daily maintenance. However, its drawbacks are conspicuous: each transition to
a different serve mode necessitates manual adjustments to the structure, resulting in a
singular serve mode with lower precision.

The second approach involves the serving method based on an embedded control
system, wherein an embedded control system is integrated into the traditional serving
device. Trainers can adjust serving parameters in response to training requirements, and
the serving device, in turn, modifies its hardware structure based on these parameters,
enabling fully automated serving [7,8]. Prior literature introduces a Badminton Shuttlecock
Feeding Machine that employs trajectory simulation to derive initial parameters, saving
them within the Feeding Machine for the automatic launch of four distinct types of initial
balls [9]. Prior literature [10] proposes a design of a high-speed, lightweight humanoid
badminton robot. Its structure integrates a pneumatic actuator and non-interference multi-
degree-of-freedom joint to achieve high-precision motion control. In contrast to the first
method, this approach utilizes an embedded system to govern the mechanical structure of
the ball-launching device, significantly enhancing launch accuracy. The method can also
store different parameters of the ball launching patterns, providing trainers with a variety
of launching methods. However, a drawback lies in the need for manual adjustment of the
embedded system when altering the serve mode, the lack of automatic remote adjustment,
and the need for further enhancement in terms of intelligence.

In recent years, with the advancing capabilities of computer vision technology, schol-
ars have progressively integrated computer vision into badminton serving devices [11].
Prior literature [12] explores a badminton serving robot that employs visual recognition
technology to identify badminton balls released by the ball feeding mechanism. The robot
is equipped with a badminton racket attached to its arm, allowing it to strike the balls with
the racket to perform the serving action. Another work [13] introduces a badminton-hitting
robot featuring a distance image sensor. This robot detects the flight trajectory of the
badminton ball through the sensor, predicts the landing point based on the distance image,
and adjusts its position accordingly to strike the ball back with the racket. Additionally,
prior literature [14] presents a badminton robot that captures and analyzes athletes’ batting
videos using a camera on the serving device, thereby enhancing the serving device’s intelli-
gence. However, despite these advancements in integrating computer vision technology
with badminton serving devices, the method of serving the badminton serving device
has not been modified, and the type of serving is still changed by manually adjusting the
embedded system.

To address the challenges encountered by existing badminton serving devices, such
as the necessity for manual adjustment of the embedded system’s serving mode and the
lack of automatic adaptation to the player’s state, this paper proposes a design method
for a badminton serving device based on visual perception and multimodal control. This
method involves acquiring the player’s posture image through the posture recognition
module installed on the badminton ball serving device. The collected image undergoes
posture recognition, and the signal control module is then manipulated to adjust the serving
device’s angle, speed, and serve count based on the recognition results. Alternatively, the
angle, speed, and serve count can be modified using the self-developed upper computer
module that governs the signal control module. Consequently, this method empowers
athletes to practice various strokes within the hitting zone.

In this paper, computer vision’s posture recognition technology is seamlessly inte-
grated with the badminton serving device, effectively enhancing the automation and
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intelligence of the existing system. In comparison to prior research, this paper distinguishes
itself in two crucial aspects:

(1) This paper pioneers the utilization of human posture information as the primary
control signal for a badminton serve device. Throughout its usage, the serve device
dynamically adjusts the equipment’s height, speed, and angle based on the user’s
distinct posture signals, facilitating a non-contact and automated service mode. This
innovative approach not only enhances user experience but also streamlines the
process of delivering services, promising significant advancements in the realm of
badminton training and gameplay.

(2) This paper introduces an innovative posture detection process. In contrast to the
benchmark detection process, the key point information identified in the image serves
as feedback for the subsequent frame’s key point detection process. This approach
reduces redundant posture mapping, thereby enhancing posture recognition speed.

The structure of the remaining sections in the paper is as follows: Section 2 describes
the system design of the badminton serving device. Section 3 describes the overall hardware
design of badminton serving device. Section 4 describes the vision based human posture
recognition method. Section 5 describes the real serve test conducted to verify the accuracy
and reliability of the serve device. Section 6 provides concluding remarks.

2. System Design

The system design and operation flow of the badminton serving device, based on
visual perception and multimodal control as proposed in the paper, is depicted in Figure 1.
The system comprises several key components, including the upper computer module, the
posture recognition module, the signal control module, and the execution module. The
upper computer module consists of both software and hardware components. The software
component is a self-developed system responsible for selecting the posture recognition
type and transmitting service signals to the signal control module. The posture recognition
module is composed of a vision module and a microprocessor module. The vision module
captures images of the human body posture, while the microprocessor module executes
the posture recognition method to identify the posture, subsequently outputting the corre-
sponding signal to the signal control module. The signal control module, in turn, receives
signals from both the upper computer module and the posture recognition module. Its
primary function is to direct the execution module in adjusting the mechanical structure of
the ball-serving device. The execution module comprises a launch structure, a ball-plucking
structure, and an angle adjustment structure. Upon receiving a control signal from the
signal control module, the execution module dynamically adjusts each of these structures,
culminating in the launch of the badminton ball.

When the serving device is in use, it can be controlled either by the posture recognition
module based on the user’s posture or directly by the upper computer module. In the
posture recognition mode, upon posture detection selection, the user’s posture image is
initially transmitted from the vision module to the microprocessor module. Subsequently,
the microprocessor module conveys the recognized posture signals to the signal control
module. Ultimately, control signals are dispatched through the signal control module to
regulate the mechanical structures of the execution module. Alternatively, in the event the
user opts for the upper computer control mode, the initial step involves initiating the upper
computer system. Following this, a communication connection must be established with
the signal control module through the system interface. Subsequently, the user is required
to configure the relevant parameters of the ball-launching device. Upon completing this
setup, the badminton launching information is transmitted to the signal control module,
allowing the badminton serving device to launch badminton at varying angles and speeds.
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3. Overall Hardware Design
3.1. Mechanical Design of Actuator Modules

The design of the mechanical structure for the executive module of the badminton
serving device is illustrated in Figure 2. The module comprises key components: a ball stor-
age structure, a ball plucking structure, a launch structure, an angle adjustment structure,
and a support structure. The ball storage structure is tasked with housing the badminton
balls and is composed of a cylindrical storage container. The ball-plucking structure extracts
badminton balls from the storage cylinder to the ball rest using a configuration primarily
comprising a pair of rubber paddles, DC motors, and gears. The launch structure is de-
signed to propel the badminton balls, primarily employing friction wheels, DC motors,
and protective shells.

The angle adjustment structure facilitates the adjustment of the badminton serving
device’s angle in both horizontal and pitching directions. It comprises the horizontal
rotation structure and the pitch adjustment structure.

The horizontal rotation structure comprises a bearing, a baseplate, a rotary plate, and
a stepper motor; among them, the four columns on the turntable form an integral structure
with the turntable, sharing the weight of the launch platform. The pitch adjustment
structure includes a gear strip, a stepper motor, and a putter with a pulley. The support
structure is tasked with providing support to the aforementioned four structures and is
composed of a tripod.
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Figure 2. Structure of the actuator module of the teeing device.

The mechanical structure of the badminton serving devices operates on the principle
that the launch angle requires adjustment before ball release. Horizontal angle adjustments
are accomplished by a stepper motor that drives the rotary table to rotate horizontally.
Furthermore, pitch angle adjustment is facilitated by an additional stepper motor driving
the gear strip. This enables the push putter to move back and forth, thereby adjusting the
pitch angle of the launch platform. Following the adjustment of the launch angle, it is
essential to refine the initial speed of badminton release. This is achieved by modifying the
rotation speed of the motor within the launch structure. Subsequently, the rubber paddle
is propelled by the rotation of the paddle motor, extracting the badminton ball from the
ball storage structure and placing it in the ball holder. Finally, the friction wheel within the
launch structure propels the badminton balls.

3.2. Embedded Development Board Circuit Design

To address the functional requirements of the signal control module, this paper de-
signs an embedded development board, the circuitry of which is illustrated in Figure 3.
The development board employs the STM32F103C8T6 chip as the main control chip and
incorporates A4988 and A4950 chips as motor driver chips.
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To accommodate the varied power supply voltages of the motor driver chip and
the main control chip, a step-down circuit located on the left side of the development
board. The circuit employs the MP4462DN chip along with a low dropout linear regulator.
This combination, coupled with a multilayer ceramic capacitor and a low electromagnetic
interference capacitor, effectively divides the input voltage to supply 5 V and 3.3 V outputs.

The embedded development board shown in Figure 3 serves as the signal processing
module in Figure 1, which is connected to the attitude recognition module through the
serial port one, and then connected to the host computer module through the WIFI module
or the Bluetooth module, realizing the interaction between the attitude information and the
control information. Meanwhile, the pivoting structure, launching structure, and rotating
structure of the actuator module in Figure 3 can be adjusted through the interface motor
interface (stepper motor interface and DC motor interface) on it.

Upon establishing a wireless connection (WiFi or Bluetooth) between the upper com-
puter module and the development board or when the posture recognition module inter-
faces through the serial port 1 interface (U12), the master control chip receives signals. The
signals can originate either from the upper computer module through serial ports 3 or 2,
alternatively, from the posture recognition module through serial port 1. After receiving the
signals, the main control chip controls the operation of the two stepper motors (STEPING
MOTOR1 and STEPING MOTOR2) in the angle adjustment module, utilizing timer TIM2
channels 1 and 2. Simultaneously, it regulates the two DC motors (U8 and U7) that are
associated with the toggle and launching mechanisms using timer TIM3 channels 1 and 2.
Ultimately, this leads to the execution of the serve.

4. Posture Recognition Methods
4.1. Posture Detection Principle

Detecting body postures poses a formidable challenge owing to the intricate nature of
the human form [15]. In contrast to rigid objects, the human body consists of numerous
joints and displays a wide range of degrees of freedom in its limbs [16]. Moreover, human
postures exhibit high variability, and human limbs are particularly prone to occlusion and
self-occlusion [17].

BlazePose [18] utilizes a detector-tracker setup to extract key point information about
human body poses. The detector-tracker is composed of a body posture detector and a
posture tracker; when there is an image input, the tracker predicts keypoint coordinates, and
when the tracker indicates that there is no human present, re-run the detector network on
the next frame. This method effectively improves the accuracy of the recognition of human
body poses, and it is currently one of the most widely used methods [19,20]. Although this
method can accurately identify information about the human body’s pose, the recognition
process is run repeatedly for the same posture, resulting in a large computational burden
and making it difficult to deploy on embedded computers. Therefore, in this paper, based
on the original algorithm, We introduce a posture information comparison process and
propose an improved Blazepose algorithm.
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As illustrated in Figure 4, the flowchart depicts the improved BlazePose algorithm. The
process initiates with the user choosing between body detection or gesture detection. Upon
inputting the first frame, it undergoes processing through the target detection model (palm
detector or face detector). If target features, such as a face or palm, are present, a candidate
region for the target location is generated. Then, keypoint detection is performed, where
posture key points are detected by running a keypoint detection model (hand landmark
model or pose landmark model) on the candidate region. After successfully detecting
posture key points, the corresponding key point information is obtained. Ultimately, action
signals are outputted following the matching of posture mapping information.
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For the second frame input, the target detection process is skipped. Instead, the
candidate region for the target position from the previous frame is extended to facilitate
key point detection. If the extended candidate region fails to detect the target, the target
detection model is reactivated. After obtaining key point detection information for the
second frame, a pairwise comparison is initiated with the key point information from the
previous frame. If the deviation in the comparison falls below a predefined threshold,
it indicates a duplication of the posture action from the previous frame. As a result, the
system directly outputs the same posture action as the previous frame without the need
for matching the posture mapping information. Alternatively, if the comparison deviation
exceeds the threshold, the system proceeds to match the posture mapping information
and outputs the corresponding action signal. It is worth noting that in this paper, the
target detection model and keypoint detection model are imported through the mediapipe
library on Python(The version of Python is 3.7.3), and since this paper mainly addresses
the problem of repeated recognition of the same posture, therefore, in this paper, the neural
network is not trained and its parameters are not modified.

4.2. Attitude Mapping Creation

The key point information acquired through the aforementioned image key point
detection process comprises the two-dimensional coordinates of each key point. Following
the processing of the two-dimensional coordinates, they are compared with a pre-set
posture action. If the comparison yields a match, the system outputs the action signal
corresponding to the key point mapping.

Consider the human body posture of the “cross hand” action in Figure 5 as an example.
The posture can be recognized when the keypoint information satisfies the following four
conditions or when it satisfies conditions (3) and (4) of higher priority: (1) dx < threshold
θ2; (2) dy < threshold θ3; (3) x20 > x19; (4) x13 > x14. In this context, the posture is identified
as a “cross hand”. Here, dx and dy are given by:

dx = x15 − x16 (1)

dy = y15−y16 (2)
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In the gesture detection segment, upon acquiring the coordinate information of the
hand’s key points, the system calculates the distance between the key points and the joint
curvature of a single finger. Subsequently, customized semantic judgment is applied to
recognize the gesture, achieving system-wide gesture recognition.

The thumb joint nodes 1-2-3-4 are depicted in Figure 6. With the known coordinates of
key points 2, 3, and 4, the angle α1 between and is determined using spatial distance, vector
dot product, and the inverse trigonometric function. The formulas for these calculations
are presented in Equations (3)–(5).

L =

√
(x1 − x2)

2 + (y1 − y2)
2 (3)

dot_product = (x3 − x2)× (x4 − x3) + (y3 − y2)× (y4 − y3) (4)

α1 = arcos(
dot_product

L12 × L23
) (5)
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If α1 exceeds the threshold value, the joint is categorized as “straight”; conversely, if α1
is below the threshold value, the joint is labeled as “bent”. Applying the same methodology,
the angle α2 for the key nodes 1-2-3 can be calculated. If α2 is less than the threshold
value, it denotes the bending of joint 2. Additionally, if all other joints are “straight”
simultaneously, the recognized gesture action is identified as “gesture 4”.

Practical scenarios involving the badminton serving device frequently require the
execution of actions like continuous ball serving, serving a near netball, serving a mid-
court ball, serving a high long ball, and others. In alignment with the previously outlined
principles, the design includes control interaction instructions illustrated in Figures 7 and 8.
Figure 7 shows the body posture, which includes four actions, namely raising the right
hand (a), the left hand (b), raising both hands (c) and crossing the hands (d), and Figure 8
shows the gesture actions, which we defined a total of nine groups of actions, in addition to
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the most common 1, 2, 3, 4, 5, 6 actions, adding the thumb action (g), then the gun action (h),
and then the heart action (i). These different motions represent different control commands;
for example, for the high ball command, there is the raising both hands (c) and the gun
action (h), etc.
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right 15 degrees; (c) H3: Serve a single ball; (d) H4: Tilted down 5 degrees; (e) H5: Tilted up 5 degrees;
(f) H6: Launch the near netball; (g) H7: Launch the mid-court ball; (h) H8: Launch the high long ball;
(i) H9: Continuous launch badminton.

4.3. Posture Recognition Accuracy Evaluation

To validate the effectiveness and accuracy of the posture recognition method in this pa-
per, recognition tests were conducted on the defined action commands. Ten experimenters
in a badminton court participated in a recognition test for body posture instructions, with
each experimenter performing single posture recognition 30 times. To simulate stadium
usage, 15 instances involved detecting partial masking of the target, resulting in a total of
300 tests for each posture type and 2900 samples tested overall.

The confusion matrix, based on the test results, is presented in Figure 9. In the matrix,
“TIME OUT” denotes results not recognized for more than 2 s. The labels B1–B4 and H1–
H9 represent control interaction instructions. The proposed posture recognition method
successfully identifies B1, B4, H2, H5, H6, and H8 300 times, showcasing commendable
recognition accuracy. However, challenges arise with misrecognition and recognition
timeouts during the identification of B2 and B3.
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To further assess the method’s strengths and weaknesses, three metrics—precision
rate of detection (Pr), recall rate (Re), and accuracy rate (Ac) are applied to the statistical
results of the confusion matrix, providing a more standardized measure [21].

Pr denotes the precision rate of recognition, i.e., the ratio of the number of correct
recognition to the total number of recognition in each type of posture action recognition [22].

Pr =
TP

TP + FP
(6)

TP denotes the number of times the posture action was correctly recognized in this pos-
ture action recognition; FP denotes the number of times the posture action was recognized
as the posture action in other posture action recognition.

Re denotes the recall of recognition, i.e., the ratio of the number of correctly recognized
posture actions to the number of times the posture action is recognized.

Re =
TP

TP + FN
(7)

FN denotes the number of times other posture actions are recognized in that posture
action recognition.

Ac denotes the accuracy of recognition, i.e., the total number of all actions correctly
recognized as a percentage of the total number of tests.

Ac =
TP + TN

TP + TN + FP + FN
(8)

TN denotes the number of times a posture action is correctly recognized among other
posture action recognition.

The accuracy indices for posture action detection are presented in Table 1. From the
table, it can be seen that: the average recognition precision Pr of the nine gesture actions
is 97.68%, the recall Re is 98.66%, and the accuracy Ac is 99.59%; the average recognition
precision Pr of the four body postures is 98.01%, the recall Re is 98.34%, and the accuracy Ac
is 99.08%. In summary, the values of the above three performance evaluation indexes are all
above 97%, thus indicating that the method has a good recognition effect. However, when
the posture actions are H1, H5, H8 and B4, the accuracy of the above posture actions is lower
compared to other actions, and from the aspect of recall, the recall of posture actions H3, H7
and B3 is low, The analysis is due to the detection model in the background environment is
complex, the human body or palm segmentation is not accurate and similar action between
the discrimination is inaccurate; in addition, the current recognition methods and vision
module on the acquisition of action information frame rate is not high and caused by the
recognition process of some of the semantic information is lost, resulting in the recognition
of inaccurate or recognition of overtime problems, and ultimately will affect the above
evaluation indexes.
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Table 1. Accurate metrics for human posture detection.

Posture
Action TP FP TN FN Pr% Re% Ac%

H1 295 13 2387 5 95.78 98.33 99.33
H2 300 4 2396 0 98.68 100.00 99.85
H3 285 1 2399 8 99.65 97.27 99.67
H4 294 2 2398 2 99.32 99.32 99.85
H5 300 21 2379 0 93.46 100.00 99.22
H6 300 3 2397 0 99.01 100.00 99.89
H7 283 13 2398 17 99.30 94.33 99.30
H8 300 13 2387 0 95.85 100.00 99.52
H9 298 0 2400 0 100.00 100.00 100.00

Haverage 295 7 2393 4 97.68 98.66 99.59
B1 300 0 900 0 100.00 100.00 100.00
B2 293 6 894 7 97.99 97.67 98.92
B3 289 4 896 11 98.63 96.33 98.75
B4 300 15 885 0 95.24 100.00 98.75

Baverage 296 6 894 5 98.01 98.34 99.08

5. Experiment
5.1. Experimental Materials and Methods

Prior to conducting experiments with the proposed badminton serving device, it is
crucial to complete the module and hardware selection, assemble the mechanical structure,
and arrange the experimental site. Table 2 provides a detailed account of the names and
parameters of the selected equipment. Noteworthy, the microprocessor module employs
the Raspberry Pi 4B; its CPU contains four cores, each with a primary frequency of 1.5 GHz,
which allows Raspberry Pi 4B to complete the task of image attitude recognition faster. The
vision module employs the Raspberry Pi Camera Module V2; It can capture the image with
a maximum resolution of 3280 × 2464 pixels, meeting the pixel requirements of attitude
images in the process of attitude recognition. The signal control module incorporates the
embedded development board developed; the development board not only has the motor
interface in the execution module but also integrates Bluetooth and WiFi modules to realize
wireless communication. In addition, the 1.8 Degree Step Angle of the stepper motor, with
high precision characteristics, is suitable for accurate Angle control of the serve.

Table 2. Equipment information sheet.

Part Name Optional Equipment Name Specification

Stepper Motor 42 Stepper Motors 1.8 Degree Step Angle

Signal Control Module Self-Designed Embedded
Development Board

Chip: STM32F103C8T6, A4988 and A4950
Wireless Communication Module: ESP8266

and HC-08

Microprocessor Module Raspberry Pi 4B CPU: Cortex A72 architecture 64-bit 1.5 HGz
quad-core

DC Motor DC Geared Motor with Encoder Idling speed 330 rpm
Maximum torque 3.1

DC Battery 2200 Mah Battery Pack 12 V, 3 A

Vision Module Raspberry Pi Camera Module v2 OV5647 Sensor SCI Interface Capture up to
3280 × 2464 Images

Once the badminton serving device and hardware devices were identified, the overall
mechanical structure of the Badminton serving device was assembled using the previously
selected modules and hardware. The assembled device is depicted in Figure 10, where
the vision module (1) is positioned directly above the device, the signal control module
(2) is situated on the horizontal turntable, and the microprocessor module (4) is located at
the rear.
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Figure 10. Diagram of the location of each piece of equipment in the badminton serving device
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As presented in Table 3, the detailed size parameters of the badminton serve device are
provided. The height of the badminton serve device ranges from 179 cm to 219 cm, with a
maximum height of 219 cm achieved through the extension of the tripod. Additionally, it’s
important to highlight that the maximum capacity of 45 balls corresponds to the combined
maximum capacity of two assembled ball barrels.

Table 3. Equipment parameters of badminton serving device.

Part Name Parameters

Height of serving device 179–219 cm
The maximum number of storage balls 45

Width of serving device 24 cm
Size of the storage tank R: 8 cm; H: 44 cm
Size of friction wheel R: 4 cm; H: 1.8 cm

The accuracy of the ball served by the badminton serving device proposed in this paper,
in accordance with the user’s posture, is a crucial evaluation criterion. Consequently, the
testing protocol involves the evaluation of three types of balls launched by the ball serving
device: the near netball, the mid-court ball, and the high long ball. The experimental
environment shown in Figure 11a, where the badminton court is an indoor standard
badminton court, was used for testing. Three specified drop zones on the badminton court
were employed to document the landing positions of the three aforementioned ball types.
These drop zones, ranging from close to the net to away from the net, served as a testing
ground for the near netball, the mid-court ball, and the high long ball, respectively. Each
drop zone comprises two circles, denoted BC (blue) and RC (red), sharing the same center
and position. The radius of BC is 120 cm, while the radius of RC is 80 cm.
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At the outset, we utilized the upper computer module to associate the following three
types of balls with specific postures: (1) executing the B3 “hands above the head” action
representing instructions for the high long ball, (2) performing the H7 “thumbs up” gesture
representing instructions for the mid-court ball, and (3) executing the H6 “six” gesture
representing instructions for the near netball.

The experimenter proceeds to conduct the experiment after defining the serving
postures. As depicted in Figure 11b, when the experimenter performs the corresponding
postures directly in front of the badminton serving device, the device serves the ball based
on the associated serving type. Afterward, the recording personnel documented the details
of Badminton landing positions. If the badminton ball fails to land within the specified
drop zone, it is categorized as a “miss”; conversely, if it lands within the zone, it is labeled
as a “hit”. Alongside documenting the hit or miss status of each ball, the deviation Xi
(where i represents the i-th ball dispatched by the serving device) is recorded, representing
the distance between the drop point and the center of the drop zone.

In accordance with the previously outlined experimental methodology, ten groups
were subjected to experimentation for each serve type, launching 16 balls in each group and
totaling 160 balls for each serve type, resulting in an overall count of 480 balls. Figure 12
displays a set of landing points for near net balls, mid-court balls, and high long balls
launched by the badminton serving device.
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Figure 12. Three types of ball drop point diagrams (a) The near net ball experimental diagram; (b) The
mid-court ball data diagram; (c) The high long ball experimental diagram; (d) The near net ball data
diagram; (e) The mid-court ball data diagram; (f) The high long ball data diagram.

5.2. Experimental Results and Analysis

As shown in Table 4, the badminton serve hit data table shows the average number of
hits and the standard deviation of hits for each group. The average number of RC hit is
around 15, while the number of RC hit is also around 12–13; from the standard deviation
value, the standard deviation of the close ball landing in the RC area is the smallest 0.42,
while the standard deviation of the long ball landing in the BC area is the largest 1.20.
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Table 4. The near-net ball hit the data table.

Group Number Number of
Serve

Number of
RC

Number of
BC

RC Hit
Average

BC Hit
Average

RC Hit
Standard
Deviation

BC Hit
Standard
Deviation

The near net ball 160 138 158 13.8 15.8 0.42 1.03
The mid-court ball 160 136 154 13.6 15.4 0.70 0.52
The high long ball 160 129 152 12.9 15.2 0.63 1.20

Illustrated in Figure 13 is the scatter plot depicting the ball drop deviation for the
three types of balls mentioned above. The horizontal coordinate of the graph represents the
number of badminton drop positions, and the vertical coordinate represents the deviation.
The red line represents the RC in the ball drop zone, and the ball falling below the red
line represents the ball falling within the RC. Similarly, the ball falling below the blue line
represents the ball falling within the BC. If the ball falls above the blue line, it means that
the ball does not fall within the drop zone.
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As depicted in Figure 13, the overall deviations in ball drop for the near netball and
the mid-court ball are small, while the deviation for the high long ball, particularly for
lofted balls, is larger. Additionally, fewer balls fall within the 0–10 cm deviation range
compared to the other two types of balls. For a more in-depth analysis of the deviation
data, the deviations for each type of ball were averaged, and standard deviation analysis
was conducted, as indicated by the calculation formulas in Equations (9) and (10).

Aver = ∑|Xi|
n

(9)

Aver represents the average deviation, calculated as the average of the sum of all
deviations. Xi denotes an individual deviation, and n represents the total number of
deviations counted.

S = sqrt(∑
(Xi − Aver)2

n
) (10)

S represents the standard deviation, indicating the dispersion of all deviations from
the mean deviation. Aver is the mean deviation as defined in Equation (9).

Illustrated in Figure 14 are the histograms representing the average deviation and
standard deviation of the falling balls for three types. The figure demonstrates a gradual
increase in the average deviation for all three ball types, with the near netball having the
smallest deviation at 25.60 cm and the high long ball exhibiting the largest deviation at
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33.26 cm. In terms of standard deviation, the mid-court ball displays a larger deviation
of 15.84, while the near-net ball has a smaller deviation of 15.28. This suggests that the
launching device achieves more accuracy when launching the near netball; however, the
launching process is unstable, resulting in a more discrete landing point. The instability is
attributed to the insufficient stability of the friction wheel’s speed during each ball launch
in the ball-serving device.
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6. Conclusions

In this paper, we propose a design method for a badminton serving device based on
visual perception and multimodal control, comprising five modules: the upper computer
module, the posture recognition module, the signal control module, and the execution
module. We individually design the angle adjustment structure, launch structure, and ball
plucking structure of the execution module to meet the specific requirements of the ball
serving device. To address the needs of the signal control module, we independently design
an embedded development board integrating the motor drive chip, wireless communication
module, and step-down circuit. In the posture recognition method section, we introduce
the image posture detection process. The key point information recognized in the previous
frame of the image is input into the detection process of the next frame, preventing the
repeated recognition of the same posture and enhancing the speed of posture recognition.

The experimental tests for the proposed badminton serving device focus on two main
aspects: accuracy in recognizing posture actions and the device’s performance in ball
delivery. Conducted 300 trials for each posture recognition test, achieving a consistently
high posture recognition accuracy exceeding 98%. Conducted 160 launches of each ball
type for evaluation and over 150 hits within the drop zone for all three tested ball types.
In forthcoming endeavors, our focus will be on refining the badminton serving device
through practical usage, which entails upgrades such as replacing the execution module
drive motor and enhancing posture recognition methods. These enhancements are poised
to elevate the device’s performance and user experience to new heights.
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