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P.; Lakatos, I. Self-Diagnostic

Opportunities for Battery Systems in

Electric and Hybrid Vehicles. Machines

2024, 12, 324. https://doi.org/

10.3390/machines12050324

Academic Editor: Dan Zhang

Received: 12 March 2024

Revised: 26 April 2024

Accepted: 29 April 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Self-Diagnostic Opportunities for Battery Systems in Electric and
Hybrid Vehicles
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Abstract: The number of battery systems is also growing significantly along with the rise in electric
and hybrid car sales. Different vehicles use different types and numbers of batteries. Furthermore, the
layout and operation of the control and protection electronics units may also differ. The research aims
to develop an approach that can autonomously detect and localize the weakest cells. The method was
validated by testing the battery systems of three different VW e-Golf electric vehicles. A wide-range
discharge test was performed to examine the condition assessment and select the appropriate state
of charge (SoC) for all three vehicles. On the one hand, the analysis investigated the cell voltage
deviations from the average; the tests cover deviations of 0 mV, 12 mV, 60 mV, 120 mV, and 240 mV.
On the other hand, the mean value calculation was used to filter out possible erroneous values.
Another important aspect was examining the relationship between the state of charges (SoC) and
the deviations. Therefore, the 10% step changes were tested to see which SoC level exhibited more
significant voltage deviations. Based on the results, it was observed that there are differences between
the cases, and the critical range is not necessarily at the lowest SoC level. Furthermore, the load
rate (current) and time of its occurrence play an important role in the search for a faulty cell. An
additional advantage of this approach is that the process currently being tested on the VW e-Golf can
be relatively simply transferred to other types of vehicles. It can also be a very useful addition for
autonomous vehicles, as it can self-test the cells in the system at low power consumption.

Keywords: battery system; SoC; dynamic testing; fault location algorithm; autonomous fault detection

1. Introduction

Recently, there has been an apparent increase in the use of electric vehicles in land, air,
and water transport. This is mainly driven by global efforts to reduce carbon emissions
and mitigate the effects of climate change. Government initiatives such as green treaties
and sustainability legislation play a key role in this process [1]. This growth is partly due
to advanced battery technology, the expansion of charging infrastructure, and increased
consumer awareness of electric vehicles [2,3]. The significant change in air transport due to
the increased use of Unmanned Aerial Vehicles (UAVs) covers a wide range of applications,
including commercial photography, agricultural surveys, and disaster relief [4–6]. The pro-
liferation of electric propulsion in waterborne transport, particularly for inland waterways
and short-sea shipping, has been identified as a sustainable alternative to conventional
systems. Introducing such systems can significantly reduce the environmental impact
while increasing the efficiency of maritime transport operations [7–9]. Battery systems play
a crucial role in the energy storage of electric vehicles (EVs), whether used for land, air,
or water transport. The differences in battery systems between these transport modes are
significant and tailored to each vehicle type’s specific requirements and applications [10].
The automotive industry continuously develops lithium-ion batteries to increase range, re-
duce charging time, and improve battery safety [11]. Electric aircraft also use lithium-based
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batteries, with even greater emphasis on energy density and weight reduction [12]. Electric
watercraft often use larger, more massive battery systems that can provide power for more
extended periods of time [13].

The energetics of autonomous vehicles may differ from conventional vehicles in many
ways, as their design and operation present new challenges in terms of energy efficiency
and energy management. The integration of various electronic systems, such as edge
computing, artificial intelligence (AI), and advanced driver assistance systems (ADAS),
significantly affects the power consumption and overall energy efficiency of autonomous
vehicles [14,15]. In addition, deploying numerous sensors and computing resources on
board autonomous vehicles significantly increases the continuous vehicle load, resulting
in higher power consumption [16]. Furthermore, using deep learning approaches in
autonomous vehicles introduces high computational complexity and power consumption,
which may affect the driving range of these vehicles [15,17]. In addition, integrating
electronic components in autonomous vehicles has implications for fuel consumption and
environmental sustainability. Studies have shown that autonomous vehicles have the
potential to reduce fuel consumption by reducing traffic congestion and improving road
safety, thereby contributing to energy efficiency and environmental protection [18,19]. From
the diagnostic point of view of autonomous vehicles, the integrated self-diagnostic systems
(ISS) built for this purpose are based on the Internet of Things (IoT). The system collects
information from the autonomous vehicle’s sensors and uses deep learning to inform the
driver of relevant results, thereby increasing operational safety [20].

Electric autonomous vehicles require complex diagnostics and self-diagnostics to
ensure battery system safety and longevity. Implementing a real-time fault diagnosis and
protection system is crucial for operational safety and performance. Fault diagnosis is often
performed by monitoring the SoC to provide the necessary protection and self-healing
operations [21]. Different methods have been analyzed for estimating SoC, technical state,
and operational state by various authors and researchers [22]. Accurate state estimation
and reliable prediction of remaining useful life (RUL) are critical issues [23–25]. Therefore,
new data-driven techniques, including machine learning algorithms, are being applied in
vehicle onboard diagnostic systems [26]. Developing and searching for diagnostic methods
for SoH indicators is an important research area for optimizing battery management
and energy efficiency [27]. To ensure smooth operation and monitoring of processes, an
intelligent battery management system (BMS) is required to ensure that the battery has
sufficient energy even in critical situations [28]. The BMS is essential for the safe and
reliable operation of batteries in electric and hybrid electric vehicles. The BMS monitors
the battery’s state, including its SoC, health, and life, and controls charging and cell
balancing. The performance of a battery can vary significantly under different operating
and environmental conditions, which presents challenges for the implementation of the
BMS [29].

During vehicle operation, some cells age faster than others, compromising the battery
pack’s capacity and lifetime [30]. One way to investigate cell degradation is to monitor
the increase in internal resistance. This can be carried out using a model that includes
parameters that depend on the degradation [31]. In the model, the degradation index can
be determined from the value of the internal resistance corrected (e.g., for battery temper-
ature) [32–34]. In addition, research is also being conducted to compare OBD methods
with measurements taken directly on batteries, which can provide further insight into the
efficiency and accuracy of diagnostic processes [35]. Specifically, based on communication
via the OBD port, diagnostic analyses on an e-Golf vehicle were performed to identify and
localize weak battery cells. This approach combines degradation modeling and real-time
diagnostics [36].

Several fault diagnosis techniques have been proposed, including real-time voltage
analysis [37], entropy-based approaches [38], and statistical distribution models [39]. These
methods use advanced technologies such as artificial intelligence, statistical analysis, and
entropy calculations to identify anomalies and faults in battery systems. In addition, fault
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detection methods based on big data analysis have been explored to improve the accuracy
of battery fault diagnosis in EVs [40].

Some battery diagnostic methods use a cyber-physical approach to detect vehicle
anomalies with an efficiency of around 86%, but increasing cyber components also introduce
new risks, leading to recalls [41]. Early prediction of battery thermal catastrophe and
ignition can also be made using data-driven methods that characterize internal parameters
and detect faults by analyzing each cell’s real-time state. These methods can accurately
identify faulty cells, detect problems early, and provide early warning of the risk of thermal
disaster [32,42].

When electric vehicles are used, vibrations can cause insulation failures, which can
endanger the safety of drivers and passengers. Therefore, it is important to check the real-
time condition of the insulation between high voltage and ground for safe operation [43].

Monitoring and diagnosing battery conditions are essential to maximizing optimal
performance and uptime. This becomes even more important for autonomous vehicles, as
the vehicle needs to be able to make autonomous decisions that directly affect safety and
efficiency. In our research, identifying faulty cells is a crucial aspect of battery diagnostics.

The tests aimed to use the faulty (weaker) cell search algorithm over a wide range
of SoCs. The research aims not to implement or create a new battery model but rather to
develop a diagnostic method that will allow the weak cells in the system to be located
without having to disassemble the vehicle, thus avoiding the loss of warranty. The approach
is currently being tested on electric vehicles, aiming to develop a method that can be applied
to autonomous vehicles, that is as easy as possible to adopt, and that can even be operated
as a stand-alone unit. The research focuses on diagnosing energy efficiency and battery
conditions without directly affecting the vehicle’s control system. The method is intended to
reduce the computational requirements, which could positively impact energy management
and, thus, the range of vehicles.

The initial discharge level ranged from 95% to 84% in the tests, and the lower discharge
threshold was 10%. The tests were analyzed in five tests on three different vehicles.

On the one hand, deviations in the cell voltages from the average were analyzed, with
tests covering deviations of 0 mV, 12 mV, 60 mV, 120 mV, and 240 mV. Another important
aspect was the analyses as a function of charge level, where the perimeter was analyzed to
see how the deviations were related to the SoC.

Performing continuous cell-level diagnostics can require large computing power.
However, an autonomous vehicle can run self-diagnostics at specific intervals to assess the
cells’ status. To run the process faster, running the test at the SoC level makes sense, where
there is a higher probability of significant cell voltage deviations. In our paper, we focus on
defining this range.

However, it is important to note that the tests have been carried out on battery systems
(vehicles) in good condition and that faulty systems (cells) are not included in the analyses.
Currently, research is not investigating large cell voltage deviations; instead, the focus is on
detecting smaller deviations. In the case of larger deviations, the operation of the vehicle’s
internal diagnostics is currently the guiding principle.

The second section describes the main parameters to be measured and the test proce-
dure. The third section presents the evaluation of the results and the results obtained from
the different measurements. The fourth section presents the conclusions and applicability
of the results and their limitations.

2. Materials and Methods

The Volkswagen e-Golf second-generation battery system used for the tests has a
total capacity of 35.8 kWh. The Samsung SDI-equipped lithium–nickel–manganese–cobalt
(NMC) cells have a nominal voltage of 3.665 V. The e-Golf has two different modules,
consisting of 6 and 12 cells. Cells are connected in triples in parallel, and such units are
connected in series. The smaller module has a nominal voltage of 2 × 3.665 = 7.33 V, and
the larger module has a nominal voltage of 4 × 3.665 = 14.67 V. The ten smaller modules
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are in the middle of the battery pack, and the 17 large modules are at the edges. The total
battery pack, therefore, has a total voltage of 325 V (88s3p configuration) when the 88 triple
blocks are connected in series. The following diagram (Figure 1) shows the battery system
of the e-Golf:
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Figure 1. Volkswagen e-Golf battery system. Figure 1 (a) shows the schematic diagram of the
Volkswagen e-Golf battery pack (b) shows the vehicle’s battery system.

2.1. Measuring Instruments and Data Extraction Method

During the diagnostic measurements, it is possible to save 120 different signals related
to the e-Golf’s high-voltage battery from the vehicle’s CAN communication network, which
is: system voltage [V]; system current [A]; 88 cell voltages [V]; 27 module temperatures
[◦C]; charge level [%]; vehicle speed [km/h]; GPS speed [km/h].

Data will be collected from the CAN communication network using a dedicated CAN
protocol-based measurement system based on Kvaser Memorator R SemiPro CAN USB
interface (Mölndal, Sweden); AEM 30-2206 VDM GPS and accelerometer sensor (Hawtrone,
CA, USA); 120 Ω resistors (Palmdale, CA, USA); ELM-327 OBDII connector socket (London,
ON, Canada).

Figure 2 shows the assembled CAN protocol-based measurement system. It can be
sampled at the standard bitrate available on the vehicle communication network at a bus
speed of 500 kbit/s.

A serial query structure is used for data collection, meaning a response code is received
from the ECU via a request code. It is important to consider the time elapsed between
messages, as the ECU may ignore a query that arrives too frequently, causing data loss.
Based on preliminary tests, 0.01 s is sufficient, but for safety reasons, it is better to leave
0.012 s between each message so that the maximum achievable sampling rate is 100 Hz.
The process is shown in the flowchart in Figure 3.

According to Figure 3, the raw data are sorted and then grouped with the correspond-
ing electric vehicle. This is followed by filtering and cleaning processes using a decoding
file to process the CAN messages. After processing the data, the following values are
available: system and cell voltage, current, temperature, and speed. Cell voltage deviations
are determined in the evaluation phase. In the last step, the deviations are assigned to the
SoC level.
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2.2. Test Process

The performed tests included five different vehicle battery diagnostic tests for
3 Volkswagen e-Golfs. Tests 1-2 (Test_01) and 3-4 (Test_02) were performed in pairs for
better comparability, while test case 5 (Test_03) was selected in a platooning measurement
with the comparison of other models. The identifiers of the cars included in the test are
given in the following table (Table 1).

Table 1. Vehicles involved in tests.

Serial Number Battery Capacity Test Days

e-Golf_1 35.8 kWh Test_01, Test_02, Test_03

e-Golf_2 35.8 kWh Test_01

e-Golf_3 35.8 kWh Test_02

During the T1 test day, it started when the e-Golf_1 and e-Golf_2 passenger cars
were at a high state of charge. The measurement system set-up and values recorded were
identical for both cars, as shown in Figure 2. The measurements were run on a section
of the ZalaZONE Automotive Test Track-Rural Road (Figure 4 marked in blue), where
different speed limits are in force due to different environmental elements, thus simulating
real road traffic. On the Rural Road element of the test track, the maximum speed limits of
each section have been pre-recorded and are linked to the track regulations and the current
level of safety training, as shown in Figure 4.

The length of the 2 × 1 lane element is 2500 m, while the 2 × 2 lane part is 500 m long.
The following sections were used in our measurements: 90–70, 90, 60, 110, and 90 km/h.
During the process, the two electric vehicles followed each other, keeping some distance
between them. After completing a few laps, the cars swapped positions to prevent any
wind shadow from influencing the measurement outcomes. The vehicles were driven at
the maximum allowed speed, with A/C set at 20 ◦C and ventilation level two. The tests
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were run until the vehicle’s computer indicated it was fully discharged, which was 10%
SoC level.
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On the T2 test day, the full immersion tests were performed on the e-Golf_1 and
e-Golf_3 passenger cars on the ZalaZONE-Handling track (Figure 4 marked in red), again
in a paired configuration. In preparation for the measurement procedure, approximately
identical SoCs based on the onboard computer were placed on the vehicles. The track
element is 2000 m long and 12 m wide, with varying topography. This allows for easy
reproduction of a discharge test. The component allows for various standard measurements
to be carried out, with a maximum speed of 150 km/h. The two vehicles followed each other
on the handling track element and changed position in 15 min cycles. No air conditioning
or heating was used during the measurements, with one person in the e-Golf_1 vehicle and
two in the e-Golf_3 vehicle.

In the Test_03 case, only the e-Golf_1 underwent a full immersion test, which was
conducted alongside other car types as part of a platooning test. About the measurement, a
position change was performed every 15 min in the sequence of the four vehicles tested,
with air conditioning at 22 ◦C. In this case, three persons were in the vehicle. The track
element used was Rural Road (Figure 4 marked in blue), which was defined similarly to
Test_01, with the total discharge in this case also up to 10% SoC.

It is important to note that the method has been tested on an automotive test track.
The study does not include investigating cell rebalancing strategy during charging. Fur-
thermore, the tests do not directly interfere with the vehicle BMS equalization process
or strategy.

2.3. Calculation Method

After processing and cleaning the data, it was necessary to examine the results of each
test separately. The aim was to develop an algorithm capable of detecting and locating
the weakest cell from the system voltages. For this purpose, a voltage deviation-based
solution was developed. Based on the number and strength of the voltage deviations,
the battery system is analyzed, and the critical cells are identified. The first step in the
evaluation is determining the average voltage at each instant. This is followed by a cell-by-
cell analysis, during which the deviations from the mean of 0 mV, 12 mV, 60 mV, 120 mV,
and 240 mV are aggregated. Deviations with higher voltage have a higher weighting factor
in the aggregation. A weighted deviation analysis method was therefore used for the
implementation. Two approaches were implemented: average voltage calculation (AVC)
and moving average voltage calculation (MAVC).
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According to the first approach (average voltage calculation), for each measurement
time point t, calculate the average voltage Vt across N cells as follows:

Vt =
1
N ∑N

i=1 Vit (1)

where Vit is the voltage of the i-th cell at time t. Reduce the average voltage by predefined
∆V values (e.g., 0.012 V, 0.060 V, 0.120 V, 0.240 V) and evaluate the deviations from the
new average:

V′
t = Vt − ∆V (2)

where is the reduced threshold voltage value V′
t. Deviations are reevaluated based on the

reduced simple average:

Dit =

{
1, i f

∣∣∣Vit − V′
t

∣∣∣ > 0
0, otherwise

(3)

where Dit is a binary value and 1 for deviation from the mean. The second approach
was to adjust for possible erroneous sample values. The moving average for each time
point t is calculated by taking the simple average of the preceding, current, and following
time points:

MAt =
1
3
(
Vt−1 + Vt + Vt+1

)
(4)

where MAt is the cell voltage value used, which depends on the previous, current, and
following voltage values. Deviations are reevaluated based on the difference between the
cell voltage and the moving average, considering the reduced simple average:

Dit =

{
1, i f |Vit − MAt| >

∣∣∣V′
t − MAt

∣∣∣
0, otherwise

(5)

where Dit is a binary value and 1 for deviation from the mean. It is important to note that
two methods were processed and evaluated in parallel.

The next step in the analysis was to determine the weight values. Square root transfor-
mation weighting was employed to analyze voltage deviations in batteries. Different devia-
tions need not be weighted in equal proportion when selecting weights. More significant
deviations were assigned greater weights but were not allowed to dominate excessively.

The first step involved defining the range of investigation and the magnitude of
deviations. The total range under examination was between 4.2 V and 3 V, with deviations
being 0 mV (0%), 12 mV (1%), 60 mV (5%), 120 mV (10%), and 240 mV (20%). The next step
was to determine the transformed weights using the following formula:

ω(Vdi f f ) =
√

Vdi f f + 1 (6)

where Vdi f f is the voltage deviation (in mV), and adding 1 (minimum value addition)
ensures a weight value even for a 0 mV deviation. The calculation of weights based on this
was as follows:

ω(0 mV) =
√

0 + 1 = 1 (7)

ω(12 mV) =
√

12 + 1 ≈ 3.606 (8)

ω(60 mV) =
√

60 + 1 ≈ 7.810 (9)

ω(120 mV) =
√

120 + 1 ≈ 11 (10)

ω(240 mV) =
√

240 + 1 ≈ 15.524 (11)
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These weights were then re-normalized considering the following:

ωnorm(V) =
ω(V)

∑ ω(V)
(12)

where ω(V) are the individual transformed weights, and ∑ ω(V) is the sum of the weights.
Figure 5 displays the final weight values.
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Based on Figure 5, it is evident that the larger the voltage deviation, the greater the
weight value it is assigned from the perspective of the analysis.

The deviations are separately summed for each ∆V value, applying appropriate
weights (ω∆V). The weighted sum for each cell i and deviation ∆V is calculated using the
following formula:

Si∆V = ∑t ω∆V ·Dit (13)

where ω∆V is the weight associated with the given ∆V value (e.g., 0.026, 0.093, 0.201, 0.282,
and 0.399).

3. Results and Discussion

During the tests, the battery system of Volkswagen e-Golf vehicles was tested across a
large SoC range. Three vehicles were used for this purpose and tested over five complete
discharge cycles. The deviations from the average voltages of each cell were analyzed,
where 0 mV, 12 mV, 60 mV, 120 mV, and the range of 240 mV were determined. Another
important aspect was the detection of voltage deviations as a function of charge levels,
where the aim was to determine the coupling between voltage deviations and SoC. The
following table shows the main benchmarks obtained in the tests performed.

In Table 2, the basic values necessary for the evaluation of the five tests can be observed.
It can be seen that three different vehicles have been used for the tests (the number, e.g.,
e-Golf_1, can identify them). The results of Tests 1 to 5 are referenced below. Cases 1, 2,
and 5 had a higher baseline charge level (approximately 95%), with average speeds of
~68 km/h in three cases and ~74 km/h in two cases. Comparing Test_01 and Test_02 in
pairs, under approximately identical conditions, in a test performed simultaneously, the
time spent on the course was more with the vehicle used in Test_02. This may be because
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although the cars were purchased (bought) almost the same way, the vehicles used during
Test_01 have more mileage (more kilometers used).

Table 2. Baseline values according to tests.

Vehicle SOC_Start [%] Speed_AVR [km/h] Time [s] Energy [Wh]

e-Golf_1 94.00 68.48 8897 24,897

e-Golf_2 94.80 68.37 8178 34,039

e-Golf_1 86.00 75.33 5170 24,897

e-Golf_3 83.60 73.81 5235 22,835

e-Golf_1 95.20 68.16 8548 27,843

Taking the Test_03 and Test_04 pairs (the measurement was performed at the same
time), the average speed in this case was higher than in the first pair of measurements. At
the time of the test, it can be observed that although Test_4 lasted longer, the energy used
was less. This is because, at the end of the test, the vehicle used for Test_4 slowed down
(slower lap times), which is also shown in the average speed.

The Test_05, Test_01, and Test_03 tests were carried out with the same vehicle. The
available energy was larger, but the measurement started from a higher SoC level. Com-
pared to the other cases, the energy discharged was approximately proportional to the
charge level and the average load.

Figure 6 shows the SoC and system voltage change of the different measurements.
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Figure 6a shows the vehicles’ charge level as a time function. Test_01, Test_02, and
Test_05 had a higher SoC level at baseline, which resulted in a more extended test time.
A dynamic change is observed at system voltage (b), caused by continuous acceleration
and deceleration.

3.1. Detecting and Locating a Faulty Cell in the Battery System

An approach to search for weaker cells in the Volkswagen e-Golf has already been
developed in a previous publication and extended to several vehicles for the full charge
range [33]. The approach has been presented in Section 2.3, with a flowchart shown in
Figure 3. In the procedure, all serially connected cells in the system are monitored. The
weakest cells are selected based on the voltage deviations during different loads. After
the measurements were taken and processed, the next step was the evaluation, where
the first step was to analyze the deviation of the cells from the average voltage: 0 mV,
12 mV, 60 mV, 120 mV, and 240 mV. It is important to note that all five measurements were
tested during the analysis, and all 88 cells were calculated equally. Table 3 shows the cell
voltage differences.

Table 3. Deviations of different measurements from the average voltage.

DIFF Test_01 Test_02 Test_03 Test_04 Test_05

0mV_AVC 282.060 257.785 124.328 1.063.835 287.607

0mV_MAVC 282.060 257.438 124.485 1.082.770 284.751

12mV_AVC 135.753 112.844 56.394 698.301 108.992

12mV_MAVC 116.865 112.502 44.281 125.641 95.146

60mV_AVC 30.587 17.482 9.120 34.768 8708

60mV_MAVC 22.927 17.140 4.116 28.082 6054

120mV_AVC 7.146 3.960 2.019 7.733 703

120mV_MAVC 4.167 3.618 638 5.293 310

240mV_AVC 259 796 115 1.099 8

240mV_MAVC 84 454 16 218 2

Table 3 shows the total number of deviations tested at the different cut-off points
for all measurements. The first column shows the test criteria. Columns two, three, four,
and five show the values of the different tests. The rows in the table show the number of
deviations. The rows where the MAVC value is shown in the first column use the moving
average method; otherwise, the deviation from the mean is applied. Comparisons between
measurements one and five are most relevant, starting from similar SoC levels, and the
vehicle was the same. In the 0 mV case, the number of deviations was almost the same, but
at 12 mV, it was observed that there were fewer in the fifth test. For 60 mV, 120 mV, and
240 mV, much smaller values are observed in the fifth test than in the first. To determine
the difference, it is possible to consider the current profile between the two measurements,
which can be observed in Figure 7.

In Figure 7, the current variations in Test 1 (red) have a wider amplitude and are more
frequent, while in Test 5 (blue), current variations are less frequent and have a smaller am-
plitude. Table 4 summarizes the values of the current changes and their standard deviation.

The current variations in Test_01 are more significant on average and variable, as
reflected by the higher mean and standard deviation of the current variations. Test_05
showed more minor mean and max-average current variations. This suggests that the
vehicle was subjected to more dynamic loading (more significant load fluctuations) in
Test_01. The less dynamic measurement in Test_05 is also because the test was a platooning
test, so no significant acceleration and deceleration were applied.
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Table 4. Current variation values for e-Golf_1 during measurements one and five.

Test Number Average of Current
Changes [A]

Standard Deviation
[A]

Maximum Current
Change [A]

Test_01 33.31 46.68 344.00

Test_05 17.99 21.67 216.25

The next step in the evaluation was to observe each test cell by cell, and the results were
presented in aggregate with weighting. Figure 8 shows the analysis of the first measurement.

Figure 8 shows the weighted average of the results from the first measurement. The
horizontal axis shows the battery ID value, and the vertical axis indicates the number of
deviations. The results are shown in red for the average value summation and green for the
values obtained using moving averaging. The red line in the figure marks the critical values,
defined as 10% of the sampled value per cell. This means that there were approximately
7200 data points from each cell, and if the weighted deviation was 10% off the mean voltage,
it was marked as critical. A horizontal line in blue marked a deviation of 5%. The critical
batteries for the first vehicle are ID 7, ID 11, ID 21, and ID 71. Figure 9 shows the results
from the fourth measurement.

In the fourth test (Test_04), the third vehicle (number: e-Golf_3) was used, and it drove
the most kilometers. The test method and evaluation were the same as in the previous case.
The cell deviations in this case were very similar. The cells with a weighted deviation of
10% are ID 7, ID 11, ID 21, ID 23, ID 37, ID 71, and ID 87. In Table 5, the cells that were
included in the faulty category in any of the five measurements are summarized.



Machines 2024, 12, 324 12 of 18

Machines 2024, 12, x FOR PEER REVIEW 12 of 19 
 

 

amplitude. Table 4 summarizes the values of the current changes and their standard 
deviation. 

Table 4. Current variation values for e-Golf_1 during measurements one and five. 

Test Number 
Average of Current 

Changes [A] 
Standard Deviation 

[A] 
Maximum Current 

Change [A] 
Test_01 33.31 46.68 344.00 
Test_05 17.99 21.67 216.25 

The current variations in Test_01 are more significant on average and variable, as 
reflected by the higher mean and standard deviation of the current variations. Test_05 
showed more minor mean and max-average current variations. This suggests that the 
vehicle was subjected to more dynamic loading (more significant load fluctuations) in 
Test_01. The less dynamic measurement in Test_05 is also because the test was a 
platooning test, so no significant acceleration and deceleration were applied. 

The next step in the evaluation was to observe each test cell by cell, and the results 
were presented in aggregate with weighting. Figure 8 shows the analysis of the first 
measurement. 

 
Figure 8. Weighted results from the first test. 

Figure 8 shows the weighted average of the results from the first measurement. The 
horizontal axis shows the battery ID value, and the vertical axis indicates the number of 
deviations. The results are shown in red for the average value summation and green for 
the values obtained using moving averaging. The red line in the figure marks the critical 
values, defined as 10% of the sampled value per cell. This means that there were 
approximately 7200 data points from each cell, and if the weighted deviation was 10% off 
the mean voltage, it was marked as critical. A horizontal line in blue marked a deviation 
of 5%. The critical batteries for the first vehicle are ID 7, ID 11, ID 21, and ID 71. Figure 9 
shows the results from the fourth measurement. 

In the fourth test (Test_04), the third vehicle (number: e-Golf_3) was used, and it 
drove the most kilometers. The test method and evaluation were the same as in the 
previous case. The cell deviations in this case were very similar. The cells with a weighted 
deviation of 10% are ID 7, ID 11, ID 21, ID 23, ID 37, ID 71, and ID 87. In Table 5, the cells 
that were included in the faulty category in any of the five measurements are summarized. 

Figure 8. Weighted results from the first test.

Machines 2024, 12, x FOR PEER REVIEW 13 of 19 
 

 

Table 5. Identifying and analyzing the critical cells in the five tests. 

Test_NO Method Cell #7 [%] 
Cell #11 

[%] 
Cell #21 

[%] 
Cell #23 

[%] 
Cell #71 

[%] 
Cell #87 

[%] 

Test_1 
AVC 10.32 10.47 11.25 8.74 10.31 7.95 

MAVC 9.95 9.89 10.72 8.13 9.68 7.43 

Test_2 
AVC 8.43 8.82 8.07 8.47 9.67 8.47 

MAVC 8.39 8.76 8.00 8.42 9.61 8.40 

Test_3 
AVC 13.50 11.23 10.70 8.90 13.49 8.34 

MAVC 12.30 10.04 9.33 7.99 12.20 7.34 

Test_4 
AVC 12.63 14.06 12.46 11.07 13.32 11.03 

MAVC 11.90 13.34 11.72 10.47 12.49 10.52 

Test_5 
AVC 6.91 7.83 7.70 6.55 8.43 7.05 

MAVC 6.59 7.37 7.29 6.26 7.93 6.72 

Table 5 shows cells in the possible error region for each measurement. It is important 
to note that data from 3 different condition vehicles are presented, so the comparison is 
more suitable for analyzing the characteristics of the same type. The first column of the 
table shows the number of measurements, and the second column shows the method used 
to investigate the discrepancy, AVC, and MAVC. The following six columns show the 
highlighted cells by ID. The deviations are expressed as a % weighted average and refer 
to the total discharge time. The 10% deviation is a possible error category, and the 5% is 
still an adequate region. This indicates that the cells have not reached the good region. 
However, they do not fall into the faulty region for all cases. The cells most frequently 
included in the incorrect category are ID 7, ID 11, ID 21, and ID 71. 

 
Figure 9. Weighted results from the fourth test. 

3.2. The Relationship between Cell Voltage Deviation and the SoC 
The analysis focused on the correlation between SoC levels and deviations. Total 

discharge tests used a 10% step size. The Figure 10 shows the cell deviations from the 
average voltage of the first measurement (0 mV case). 

The horizontal axis of Figure 10 shows the cell identifiers (ID), and the vertical axis 
shows the deviation number. The first case under investigation deviates from the mean 
value of 0 mV. The cases in the figure refer to different SoC levels. Under_AVR_MIN 

Figure 9. Weighted results from the fourth test.

Table 5. Identifying and analyzing the critical cells in the five tests.

Test_NO Method Cell #7 [%] Cell #11 [%] Cell #21 [%] Cell #23 [%] Cell #71 [%] Cell #87 [%]

Test_1
AVC 10.32 10.47 11.25 8.74 10.31 7.95

MAVC 9.95 9.89 10.72 8.13 9.68 7.43

Test_2
AVC 8.43 8.82 8.07 8.47 9.67 8.47

MAVC 8.39 8.76 8.00 8.42 9.61 8.40

Test_3
AVC 13.50 11.23 10.70 8.90 13.49 8.34

MAVC 12.30 10.04 9.33 7.99 12.20 7.34

Test_4
AVC 12.63 14.06 12.46 11.07 13.32 11.03

MAVC 11.90 13.34 11.72 10.47 12.49 10.52

Test_5
AVC 6.91 7.83 7.70 6.55 8.43 7.05

MAVC 6.59 7.37 7.29 6.26 7.93 6.72
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Table 5 shows cells in the possible error region for each measurement. It is important
to note that data from 3 different condition vehicles are presented, so the comparison is
more suitable for analyzing the characteristics of the same type. The first column of the
table shows the number of measurements, and the second column shows the method used
to investigate the discrepancy, AVC, and MAVC. The following six columns show the
highlighted cells by ID. The deviations are expressed as a % weighted average and refer
to the total discharge time. The 10% deviation is a possible error category, and the 5% is
still an adequate region. This indicates that the cells have not reached the good region.
However, they do not fall into the faulty region for all cases. The cells most frequently
included in the incorrect category are ID 7, ID 11, ID 21, and ID 71.

3.2. The Relationship between Cell Voltage Deviation and the SoC

The analysis focused on the correlation between SoC levels and deviations. Total
discharge tests used a 10% step size. The Figure 10 shows the cell deviations from the
average voltage of the first measurement (0 mV case).
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Figure 10. Deviation of 0 mV in the first measurement as a function of SoC.

The horizontal axis of Figure 10 shows the cell identifiers (ID), and the vertical axis
shows the deviation number. The first case under investigation deviates from the mean
value of 0 mV. The cases in the figure refer to different SoC levels. Under_AVR_MIN indi-
cates the number of deviations observed up to the fully discharged state. Under_AVR_10%
shows the number of deviations up to the last 10%, and Under_AVR_20% is the sum of
cases up to 20%. The values of each deviation are added continuously. Thus, the solid lines
in Figure 11 present the total deviation up to the specified SoC level. In the Figure 11 the
deviations at 60 mV are observed.

The diagram’s structure in Figure 11 is similar to the previous one, and the different
SoC levels are separated. In this case, much smaller values are observed. There are fewer
cases when the average voltage value is reduced to 60 mV. In Figure 12, the outlier was
investigated, where a deviation from 240 mV was monitored.

Figure 12 shows that 240 mV already deviates from a few cells, and not in many cases.
However, it can be seen that this is not occurring at a particular SoC value level. The
additional measurements are shown in a combined form. The analysis covers all five tests,
AVC and MAVC cases, and all ten SOC levels. Figure 13 shows the heat map of the %
deviation from different voltage levels.
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Figure 12. Deviation of 240 mV in the first measurement as a function of SoC.

Figure 13 summarizes all the measurement results, with different parts divided accord-
ing to the degree of deviation. Therefore, in Figure 13, part (A) shows the 0 mV deviations
of all measurements, part (B) shows the 12 mV, and so on. The first column of the heat
map (table) structure in the figure shows the definition of the measurement and evaluation
method. In the table row structure, the same deviation calculations have been associated
with the corresponding deviation calculations of the different measurements, both AVC
and MAVC. In columns 2 to 10 of each heat map, the % SoC for the different measure-
ments is displayed. The data in the rows of the table are presented by total deviation
percentage (each row totals 100%). For example, the second row of the heat map shows the
‘Test_1_AVC’ evaluation, which shows the distribution of charge levels for the analysis at
one voltage deviation level (e.g., (B) 12 mV). Higher deviations are shown in red, while
lower deviations are shown in green on the heat map. Table 6 summarizes the % of all SoCs.
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Table 6. The different deviations are weighted according to the SoC.

Test_No MIN 10% 20% 30% 40% 50% 60% 70% 80% 90%
0 mV 6.23 12.53 11.61 11.66 10.73 10.85 11.11 10.93 10.56 3.79

12 mV 4.22 11.30 15.14 12.90 11.88 10.50 12.94 11.33 8.30 1.49

60 mV 1.26 8.06 22.27 16.19 15.63 9.69 12.33 8.97 5.21 0.39

120 mV 2.64 5.70 24.91 20.69 17.36 7.65 9.97 7.75 3.17 0.16

240 mV 21.04 0.12 15.85 25.65 23.98 4.68 4.39 3.99 0.30 0.00

SUM
(Weighted) 9.95 4.65 19.53 20.83 18.99 7.23 8.53 6.92 3.11 0.36

Table 6 shows a summary of the results. In the first column, the size of the deviations
is shown. The following ten columns summarize the % variance across the different SoC
levels. It is important to note that the values in the single rows have been aggregated and
averaged. For example, the values in column MIN in Figure 13A have been averaged. The
values in the last row of the table have been weighted according to the weights shown in
Figure 5 and Formula (13) (Section 2.3 Calculation method). The results show that it is not
at the lowest SoC level that most of the deviation occurs (although this would have been
the expected value). The cells with the highest probability of deviation and weaker cells
are found in the 40–20% range. So, this range is where dynamic measurements should be
taken for short, test-in self-diagnostics. The applicability of the method to autonomous
vehicles can be significantly affected by the potential limitations of dynamic measurements.
Further, continuous human control is recommended during this type of measurement.



Machines 2024, 12, 324 16 of 18

4. Conclusions

This article describes the diagnosis of three different electric vehicle battery systems.
A full immersion test was carried out on all three vehicles to provide an assessment of their
condition. This means that the vehicles started from a high-charged state and were driven
around the test track until the batteries were discharged. A fault detection and localization
algorithm was applied over the entire charge level range for the evaluation. The analyses
examined the deviations of cell voltages from the average, covering 0 mV, 12 mV, 60 mV,
120 mV, and 240 mV. The results were analyzed in detail, and the algorithm was used to
identify cells that appeared to be weaker. It is important to note that three measurements
were carried out with each vehicle, so no accurate conclusions can be reached. However,
these data provide guidance and may be helpful for further diagnostic steps.

In the current measurement, the red line, i.e., the potentially faulty range, was mostly
found to be ID 7, ID 11, ID 21, and ID 71. This does not necessarily indicate a fault; it may
also indicate a weaker or faster aging (more sensitive) battery. To confirm this, further
measurements with more vehicles are required.

An important observation for the battery self-diagnostics of electric and hybrid vehi-
cles (even autonomous) is that the variance is likely related to the degree of load (higher
number of accelerations). Thus, more dynamic tests with more effective search are rec-
ommended (as far as possible during safe autonomous operation). Furthermore, analyses
in the SoC range have shown that performing tests only at the lowest charge level is not
necessarily worthwhile. From a diagnostic point of view, the 40–20% range may be ideal.
Therefore, to perform diagnostics, it is recommended to perform a dynamic test of at least
15 min, starting at 40–30% SoC and ending at around 20%.

Adaptation may not be exactly the same for different vehicle types, as battery systems
may differ. The aim is to develop a simple but efficient approach to perform battery
diagnostics with fewer computational resources. This method may hold potential for
energy management and monitoring the battery condition of vehicles but is currently at the
stage of a research project rather than for industrial-scale maintenance procedures. Safety
critical systems such as BMS control have remained unchanged; the research has focused
on data collection and its analysis. Further work related to battery condition (SoH) and
deviations will require analyzing more data and battery systems in different states.
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Abbreviations

SoC State of Charges
UAV Unmanned Aerial Vehicle
AI Artificial Intelligence
ADAS Advanced Driver Assistance Systems
ISS Integrated Self-diagnostic Systems
IoT Internet of Things
RUL Remaining Useful Life
BMS Battery Management System
OBD Onboard Diagnostics
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NMC Lithium–Nickel–Manganese–Cobalt
AVC Average Voltage Calculation
MAVC Moving Average Voltage Calculation
Test_ AVC The AVC procedure was used to evaluate the test.
Test_ MAVC The MAVC procedure was used to evaluate the test
AVR_X% (ex. AVR_80–70%) Battery SoC level between 80% and 70%
cell ID Number (location) of cells in the battery system
deviations 0 mV (0%) Deviation from the average voltage.
deviations 12 mV (1%) The deviation from the average voltage is 12 mV, which

represents 1% of the voltage range tested.
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