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Abstract: Calculating the service life of gears under variable loads requires a description of the
load-carrying capacity. The current standard for this is the use of the S/N curve. International
standards such as ISO 6336 stipulate the use of this approach for the calculation of the service of
gears under variable loads. In this paper, five new approaches are developed and evaluated to
describe the load-carrying capacity of gears in the load range of finite life. Four methods are based on
machine learning, and one uses mathematical regression. To validate the new approaches, the results
of an experimental study investigating the service life of gears under variable loads are presented.
These results form the basis for the conducted study, which compares the five new methods with the
existing approach. The comparison focuses on the ability of the load-carrying capacity descriptions
to provide an accurate calculation of the service life and to reduce scattering as much as possible. The
results of the study show significant potential for the new methods, especially the one based on a
neural network.

Keywords: fatigue life analysis; gears; damage accumulation; machine learning; machine elements

1. Introduction

Gearboxes are an essential part of many machines, such as electric cars, robots, ships,
or aircraft. At the heart of the gearbox are, in most cases, the gears. Gears are one of the most
common machine elements used to transmit and convert rotational movement [1]. In order
to dimension these machine elements according to the load occurring during operation, a
description of the load-carrying capacity is essential. The load-carrying capacity of gears
depends on the load and must, therefore, be described as a function of the occurring loads.
The accepted mathematical approach for this is based on a publication by Basquin [2]
dating back to 1910. For instance, ISO 6336 [3,4] specifies this concept for the load-carrying
capacity of gears. The approach to describing the load-carrying capacity of gears based on
the concept of Basquin allows for a relatively simple procedure for testing and calculation
and has proven to be applicable and reliable for gears.

Since the publication of this approach back in 1910, the possibilities for data analysis
have changed fundamentally. In particular, the advent of computers opened up new poten-
tial. In addition, recent developments in the field of machine learning have created new
options for analyzing and describing data. In many fields of engineering, the application of
machine learning enabled significant advancements, for example, in the field of condition
monitoring [5–7]. The scope of this paper is to evaluate these methods for the description
of the load-carrying capacity of gears. More precisely, this paper investigates various
alternatives for the description of the load-carrying capacity in the load range of finite
service life. The main question of this study is whether it is possible to reduce the scattering
of the calculation results for the service life of gears under variable loads by applying one
of the developed approaches compared to the results based on the approach, according
to Basquin.
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First, a brief summary of the state of knowledge regarding the load-carrying capacity
of gears is presented. In this context, the above-mentioned approach, according to Basquin,
is introduced. This is followed by a description of the new approaches investigated to
describe the load-carrying capacity of gears. These approaches are based on mathematical
data analysis and machine learning. To validate the suitability of the presented approaches,
an experimental study was conducted at FZG. The results are presented in this paper.
Finally, the paper compares the newly presented methods with the common approach
based on Basquin’s publication. The scope of this comparison is the assessment of the
accuracy of the calculation of the service life of gears under variable loads.

2. Load-Carrying Capacity of Gears

The load-carrying capacity of gears is usually described using the S/N curve [8,9]. The
S/N curve was developed by the German engineer August Wöhler [10] and is, therefore,
also known as the “Woehler” curve. A schematic S/N curve is presented in Figure 1. The
S/N curve divides the loads into three ranges:

• Loads greater than the static strength cannot be tolerated for a relevant number of
load cycles (red area in Figure 1).

• Loads less than the endurance limit can be tolerated for an infinite number of load
cycles (green area in Figure 1).

• Loads between these two characteristic values can be tolerated for a limited number
of load cycles (yellow area in Figure 1).
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Figure 1. Schematic presentation of a S/N curve.

In the load range of finite life, the correlation between the load L and the number of
endurable load cycles N is non-linear and based on the Basquin equation [2]. Due to the
logarithmic scale of both axes of the S/N diagram, the correlation appears linear in Figure 1.
The Basquin equation [2] is shown in Equation (1).

N = C × L−k (1)

The Basquin equation uses only the slope k and the constant C to determine the S/N
curve. Therefore, the ability to adapt the equation to describe the load-carrying capacity
of a particular machine element or gear is limited. On the other hand, this significantly
reduces the amount of data required to determine the S/N curve. Figure 2 shows three
different examples of S/N curves. On the left-hand side, the curves according to the
Basquin equation are shown with logarithmic scaling of both axes. On the right-hand side,
both axes are scaled linearly. The slope k and constant C can be used to adjust the S/N
curve, but the general shape and mathematical formula are fixed by the Basquin equation.
The three exemplary S/N curves shown in Figure 2 are based on unique combinations of
the slope k and constant C. This example is intended to show that the general shape cannot
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be influenced by choosing different values for the parameters, and, therefore, the possibility
of adaption is limited.
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The application of the Basquin equation to describe the load-carrying capacity is the
state of knowledge for gears [8] and is stipulated by standards [9,11].

The procedure for the experimental determination of the S/N curve for gears is
described in the FVA Guideline 563/I [9]. It is divided into two parts:

• The determination of the endurance limit of the gear;
• The specification of the S/N curve in the load range of limited service life.

The data for the S/N curve are generated using single load tests only. Gears are tested
under a constant load until either the gears fail or the number of load cycles exceeds a
certain threshold. If the latter occurs, the test run is classified as a runout. The two parts of
the test procedure are separate and usually do not share any data points. To determine the
endurance limit, both failures and runouts are required within the set of evaluated data
points. Failures are the only valid basis for determining the S/N curve in the load range of
limited service life.

The endurance limit can be determined using one of two approaches:

• The horizon method uses a certain number of stress levels, which must be determined
by the user. At every load level, a certain number of test points are conducted. This
basis is used to calculate the endurance limit.

• The staircase procedure includes a certain number of test runs. The load level of each
test run is determined by the result of the previous test run. If a failure occurs, the next
test will be performed at a lower load level. On the other hand, if a runout is observed,
the next test run applies a higher load. The endurance limit is usually calculated using
the method according to Hück [12]. Additional information about this method and its
accuracy can be found in [13].

To define the parameters of the Basquin equation, which describes the number of
endurable load cycles for loads above the endurance limit, two data points on the S/N curve
must be determined. These two points are a combination of a load and the corresponding
number of endurable load cycles. Since gear failure is subject to scattering, it is common to
perform several test runs at both load levels and use the average number of load cycles
N50%,n according to Equation (2) [9]. Where Ni is the respective number of load cycles at
failure for each one of the n test runs.

log10 N50%,n =
1
n

n

∑
i=1

log10 Ni (2)
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Typically, the total number of test runs conducted for gears is in the range of 20
to 40 [9]. Finally, based on the results, it is possible to determine the number of load cycles
at the knee point of the S/N curve ND. This point is the intersection of the sloped part of
the S/N curve and the horizontal line representing the endurance limit.

3. Basics of Machine Learning and Application in the Field of Fatigue Life Analysis

Machine learning methods enable computers to solve problems without being specifi-
cally programmed for their solution. These methods rely on data to learn the correlation
between the input and the output of a problem and, therefore, do not require a ridged
algorithm specified by the user [14]. Especially in very complex cases with a lot of data,
machine learning may provide a solution for a problem that otherwise may not have been
solvable using traditional approaches. Machine learning can be classified into supervised
and unsupervised learning. In the case of unsupervised learning, the algorithm only re-
ceives a set of input data and tries to find the best possible correlation between the data
points. In the case of supervised learning, the output data are also provided, and therefore,
the learning process can rely on these data to find the best possible solution for the problem.
Later, the trained algorithm can then be used to provide the answer for new input data.

This paper investigates the potential of replacing the Basquin equation as a description
of the load-carrying capacity with a machine learning-based model. For the implementation
of this approach, a machine learning model solving a regression problem first has to be
trained; for this, different methods of machine learning can be applied. The selection of the
methods considered within this paper is based on the results and findings of publications
in the field of fatigue life analysis. Three commonly used machine learning methods in the
field of fatigue life analysis are neural network, support vector machine, and random forest.
He et al. [15], for instance, applied all three methods for the estimation of the S/N curve of
three different steels. Zhan and Li [16] utilized the neural network and the random forest
approach to estimate the service life of aluminum parts.

Mudabbir and Mosavi [17] presented a review of the use of machine learning for the
modeling of service life. They include 29 publications and conclude that neural network,
support vector machine, and random forest are most commonly used within this field.

Another often-used method is the Gaussian process regression. In [18,19], this machine
learning method was applied to estimate the state of damage of an off-shore wind turbine.
In [20], the service life under multiaxial loading was predicted based on the Gaussian
process regression.

Based on the presented results and publications, the following machine learning
methods are applied within this paper:

• Neural network (NN);
• Support vector machine/support vector regression (SVR);
• Random forest (RF);
• Gaussian process regression (GPR).

In the following, the four machine learning methods applied in this paper are in-
troduced in a compact manner. This paper only uses supervised learning. Additional
information about machine learning can be found in the relevant literature [14].

3.1. Support Vector Machine

The support vector machine (SVM) is a machine learning method that was originally
designed for classification. Classification is a kind of problem where input data have
to be divided into two or more classes, for instance, if a picture shows a human or an
animal. Further developments to the method enabled the application for regression [14].
Regression is the prediction of a floating output value based on the input, for instance,
which air pressure can be expected in a certain area based on the current weather data.
The SVM is based on the so-called kernel trick that uses a transformation of the data into
higher mathematical dimensions to solve the problem, which could not have been solved
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in its original dimension. The SVM requires little input data and computational power
compared to other methods of machine learning [21].

3.2. Random Forest

The random forest approach is, per se, not an original machine learning method. It can
be allocated to the field of ensemble learning. Ensemble learning is the approach to combin-
ing several methods or several trained models of one method to solve a
problem [14]. The random forest approach combines several decision trees, which are,
per se, a machine learning method. Software tools like MATLAB (version 2023b) [22] can
be used to automatically train and combine decision trees to build a random forest and
solve the problem based on this approach. In the cases of the software MATLAB [22], 100
decision trees are combined for the solution of the regression problem [23].

3.3. Neural Network

The neural network is a machine learning method that uses a structure in the style of
the human brain. The network is composed of layers consisting of single neurons. These
neurons are linked to each other and, therefore, enable the transfer of data from the input
to the output side of the network. During the training process, the weighting of the single
neurons and the functions activating each one is determined to fit the data best [14]. Neural
networks are part of the field of deep learning, which enabled many of the remarkable
results achieved with machine learning in the past years. Neural networks can be scaled to
solve very complex problems but, in general, require more input data and computational
power compared to other methods of machine learning like the SVM [21].

Within this paper, a feedforward, fully connected neural network designed for regres-
sion is applied. Additional information about the used approach can be found in [24].

3.4. Gaussian Process Regression

The Gaussian process regression is commonly used to solve regression problems [25].
The process enables inter- and extrapolation based on data. The approach is capable
of performing well with a relatively small database. Additional information about the
Gaussian process regression can be found in [25].

4. Experimental Data for the Determination of the S/N Curve

This paper uses data derived from tooth root breakage tests of spur gears. The tests
are a continuation of the results presented by the authors in [26]. The data on the gears
used are presented in Table 1. The gear geometry was developed at FZG, especially for
the application as test gear regarding the tooth root carrying capacity at a pulsator test rig,
and was used before in serval research projects at FZG [27,28]. The pulsator used for the
experiments is shown in Figure 3, and a detailed description of this test rig is presented
in [27,29]. The data generated using a pulsator test rig cannot be directly applied to the real
operating conditions of gears; instead, an additional conversion has to be conducted. This
is due to differences regarding loading conditions and statistics. Additional information on
this topic can be found in [30]. This does not affect the validity of the results presented in
this paper. All compared data and results originate from the same experimental setup, and
therefore, a direct application of the test data is possible.

Table 1. Basic test gear data.

Gear Spur Gear

Normal module mn 5 mm
Number of teeth 24

Face width b 20 mm
Machining Milling and grinding

Material Steel 18CrNiMo7-6
Heat treatment Case-hardened
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The results of the tests are presented in Figure 4, together with the resulting S/N
curve. The endurance limit is determined using the staircase procedure, according to
Hück [12]. The sloped section of the S/N curve is based on the results of the test using
the load levels corresponding to 70 and 80 kN of pulsator force, respectively. All data
points marked in blue are included in the determination of the S/N curve. To create an
advanced database, additional test runs were conducted. These test runs would not have
been required to determine the S/N curve but are used as an extended basis for the new
approaches presented in this paper. The results of the additional runs are marked in orange
and are not included in the presented S/N curve.
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The data presented within this paper refer to the nominal tooth root stress σF0. The
nominal tooth root stress caused by the applied pulsator force F is calculated according to
ISO 6336-3 [31] standard and is based on Equation (3).

σF0 =
F

b ∗ mn
× Ys × YF (3)

The stress correction factor Ys and the form factor YF are determined based on geometry
data of the actual tooth root of the gears. Therefore, the tooth root curve is measured at FZG
using a CNC-controlled precision measuring center by manufacturer Klingelnberg. These
data are then used to determine the factors by applying an iterative calculation process.

The numerical values of the S/N curve are listed in Table 2.

Table 2. Data of the S/N curve.

Endurance limit 1375.81 N/mm2

Slope k 6.33
Constant C 6.90 × 1024

5. Methods for the Advanced Description of the Load-Carrying Capacity of Gears

The purpose of this paper is to investigate the possibility of using alternative methods
to describe the load-carrying capacity of gears. Instead of using the Basquin equation,
machine learning and regression using polynomials are applied. All data points represent-
ing a failure are used as the database. Therefore, runouts are not included. In total, the
database consists of 31 data points. Within this paper, only the sloped section of the S/N
curve is described when alternative methods are applied. The endurance limit is set to the
value corresponding to the original S/N curve. Five different approaches are investigated
as possible alternatives to the Basquin equation. Four approaches are based on machine
learning, and one is a polynomial regression. As mentioned, runouts are not included
as data for the presented methods. In this paper, the scope is limited to the failures as a
starting point for the investigation of new approaches. The information provided by the
runouts yields potential for further investigations following this publication.

5.1. Polynomial Regression

The general shape of the curve of the Basquin equation is similar to a third-degree
polynomial. As mentioned before, the Basquin equation has two coefficients to be adapted
to the test data. A third-degree polynomial, on the other hand, has four coefficients c0–c3 to
be adjusted for. The general formula for this polynomial is shown in Equation (4).

L (N) = c3 ∗ N3 + c2 ∗ N2 + c1 ∗ N + c0 (4)

MATLAB (version 2023b) [22] software was used to determine the polynomial from the
test data presented. The coefficients c0–c3 were optimized to represent the test points best.
During the optimization an additional condition was added. To ensure good compatibility
with the endurance limit, the polynomial was optimized to intersect the endurance limit at
the same number of load cycles as the Basquin equation. Therefore, the same number of
load cycles is set at the knee point. The results for the coefficients c0–c3 are presented in
Table 3. The resulting new sections of the S/N curve are presented in Figure 5.

Table 3. Coefficients c0–c3 of the third-degree polynomial.

c0 2274.519
c1 −0.033
c2 4.067 × 10−7

c3 −1.697 × 10−12
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5.2. Approaches Based on Machine Learning

Machine learning allows the user to evaluate data without any additional input other
than the data. For instance, there is no need to choose a specific mathematical approach to
describe the correlations within the data. Therefore, this approach has the advantage of
being highly adaptable to the input data. For a general introduction to the field of machine
learning, this paper refers to the relevant literature [14].

The model based on Gaussian process regression is built using the software MATLAB
(version 2023b) [22]. The same dataset applied to the polynomial regression serves as a
basis. To ensure plausible results, one data point is removed for the Gaussian process
regression. The failure, which occurred at nearly one million load cycles, caused the result
to shift far to the right within the S/N diagram; therefore, this point is not considered for
this method.

For the training of the three remaining machine learning methods, the input data
are divided into 70% training data and 30% test data. The training of the methods is also
conducted in the software MATLAB (version 2023b) [22] and uses the internal optimization
of this tool. Additional information about machine learning with the software MATLAB
can be found in [32]. A specific documentation of the used models and approaches can be
found in [23] for the random forest, in [33] for the Gaussian process regression, in [34] for
the support vector regression, and in [24] for the neural network.

5.3. Overview

The results of all five approaches are presented in Figure 5. Additionally, the S/N
curve based on the Basquin equation is added to each chart for reference.

All five new descriptions of the load-carrying capacity are positioned near the one
based on the Basquin equation within the S/N diagram. In general, the new approaches
exhibit a more complex shape compared to the Basquin equation. The validation of the new
approaches will be conducted within the following chapters using experimental data. At
this point, it is important to mention that it is reasonable to argue about the physical logic
of the shape of the new load-carrying descriptions. Some of them may seem unintuitive to
some. Especially the load-carrying description based on the random forest approach shows
an abnormal shape. Within the scope of this study, the suitability will only be validated by
the results of the following calculations. This is performed with the intention that it may
be possible to increase the calculation accuracy with an approach that seems unintuitive
regarding its shape.

6. Experimental Data for Validation

The focus of this publication is to evaluate the accuracy of the service life calculation
under variable loads based on the different approaches for the load-carrying capacity.
Therefore, data about the service life of gears under variable loads are required. These data
are generated using the same experimental setup as described in Section 4. The test rig
offers the possibility to program load sequences and test the gears until failure.

Four different load sequences are designed. The design of the load sequences is mostly
random. The loads are chosen in a reasonable range, and the overall design is chosen in a
way that ensures usable results. For example, high loads are applied for shorter periods of
time to avoid early failures. Each load sequence is used for three runs, resulting in a total of
twelve data points. The results of the experimental study under variable loads are shown
in Figures 6–9. More detailed results can be found in the following chapter.
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not taken into account [37]. The reason for this choice is the design of the new approaches.
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accumulation hypothesis, including loads below the endurance limit, would negatively
affect the comparability of the concepts. The use of this damage accumulation hypothesis
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The use of the S/N curve in combination with a damage accumulation hypothesis is
common for calculating the service life of gears under variable loads [4]. In theory, failure
should occur at a damage sum of D = 1. In reality scattering spreads the damage sum at
failure over a numerical range [41–43]. This poses a challenge for the design of gears. On
the one hand, a certain level of reliability must be ensured [44]. On the other hand, the
design of the gear should be as efficient as possible. Therefore, the calculated service life
should be as accurate as possible, and the scattering range should be as small as possible.
The evaluation of the different approaches considers two ranges of scattering:

• The range of the damage sum at failure of all data points (total scattering);
• The range of the damage sum at failure of the inner 50% of the data points.

For the calculation of the total scattering, one data point is excluded. The correspond-
ing point failed at a damage sum of D = 2.455 according to the DAH Miner original based
on the Basquin equation. This comparatively high damage sum causes a significant increase
in the total scattering and, therefore, causes a less informative result regarding the other
data points. Table 5 shows the results of the damage sums calculated using the different
approaches. The reference for the results is the calculation using the Basquin equation,
which represents the state of knowledge for the service life calculation of gears.

Table 5. Analysis of the results.

Arithmetic
Mean Median Scattering

(Inner 50%)
Total

Scattering

Basquin 1.20 1.08 0.47 Reference 0.77 Reference

Polynomial 1.32 1.21 0.49 +4.26% 0.80 +3.90%

SVR 1.33 1.23 0.54 +14.89% 0.85 +10.39%

RF 1.30 1.20 0.53 +12.77% 0.74 −3.90%

NN 1.29 1.21 0.51 +8.51% 0.72 −6.49%

GPR 1.31 1.19 0.51 +8.51% 0.80 +3.90%

Overall, the results of all five approaches are comparable, and the differences are within
a reasonable range. This corresponds to the expectations since the general shape of all
approaches is similar (see Figure 5). The performance regarding the scattering of the inner
50% of the data points is decreased for all of the new approaches compared to the Basquin
equation. For the total scattering, the Basquin equation is outperformed by the machine
learning approaches using ensemble learning (−3.90%) and a neural network (−6.49%).

All five methods underestimate the average service life of the gears. Both the arithmetic
means and the medians of the damage sum at failure are greater than one. This is not
an unusual phenomenon. The actual damage sum at failure can deviate from one quite
substantially. Therefore, a predicted damage sum at failure or a permissible damage sum
has to be determined for the calculations. This damage sum depends, among other things,
on the applied damage accumulation hypothesis. Through this approach, deviations
within the calculations can be adjusted for. On the other hand, this does not influence the
scattering of the damage sum at failure. For a reliable prediction of the service life of gears,
the scattering should be as minimal as possible. The focus of the following evaluation is
the scattering of the damage sums at failure according to the different approaches for the
description of the load-carrying capacity.

For this evaluation, the data are processed to adjust the arithmetic mean of each
method to one. Therefore, each data point of one method is divided by the arithmetic mean
of all data points of this method. Based on this recalculation, it is possible to assess the
ratio between the arithmetic mean of the damage sum at failure and the scattering of the
damage sum at failure. The recalculated data are presented in Table 6.
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Table 6. Analysis of the relative results.

Arithmetic
Mean Median Scattering

(Inner 50%)
Total

Scattering

Basquin 1.00 0.90 0.40 Reference 0.65 Reference

Polynomial 1.00 0.92 0.37 −7.50% 0.61 −6.15%

SVR 1.00 0.92 0.40 ±0% 0.64 −1.54%

RF 1.00 0.92 0.41 +2.50% 0.57 −12.31%

NN 1.00 0.94 0.39 −2.50% 0.56 −13.85%

GPR 1.00 0.91 0.39 −2.50% 0.61 −6.15%

When analyzing this interpretation of the data, it is interesting to notice that the
Basquin equation is outperformed by each of the five new approaches in terms of total
scattering. Focusing on the scattering of the inner 50%, the neural network, the third-degree
polynomial, and the Gaussian process regression also result in lower scattering compared
to the results based on the Basquin equation.

This approach to manipulating service life data is uncommon in service life calcula-
tions. It is used in this paper to better understand the differences between the methods.
All five new approaches result in an increase in the average damage sum at failure (see
Table 5). Therefore, these methods are more conservative than the Basquin equation. The
results of the recalculated scattering show an important fact. The new approaches do not
simply scale up the calculated damage sums. The new methods fundamentally change the
weighting of different loads. Although the average damage sum is increased by 7.50% by
using the neural network, the total scattering is decreased by 13.85% in relative terms.

8. Conclusion and Outlook

The scope of this paper was to investigate the potential of new approaches to describe
the load-carrying capacity of gears. The Basquin equation was used as a reference, which is
the state of knowledge for the description of the load-carrying capacity of gears. Five new
methods have been developed within this paper. Four of them are based on machine learn-
ing, and one applies polynomial regression. All five methods produce applicable results.

The scattering of the results is one of the major aspects when evaluating a method
for the service life calculation. With respect to this aspect, none of the new approaches
can outperform the reference set by the Basquin equation. The approaches using support
vector regression and a neural network result in a reduction in the total scattering but in an
increase in the scattering of the inner 50% of the data points. When examining the relative
scattering, the neural network, the third-degree polynomial, and the Gaussian process
regression are able to outperform the Basquin equation.

This is quite an impressive result, considering that the database of only 31 points
is quite small for the application of machine learning and that the evaluation of the per-
formance was conducted with a different dataset. The training of the method was based
on single load tests, and the validation was based on variable load tests. An alternative
approach for the description of the load-carrying capacity would be the use of variable load
data as training data for machine learning. Due to the increased requirements regarding
the amount of data, this approach has not yet been successfully implemented. Another
important step in proceeding with the research regarding this will be the application of
the methods for real-world data on gears. Currently, the research focuses on test rig data
because this type of data is more suitable for the investigation of the general suitability
and the potential of the methods. This is due to the reduced number of influences on the
service life and load-carrying capacity compared to real-world operating conditions.

The results of this paper show that there is potential for new approaches to describe
the load-carrying capacity of gears. The ability of the presented approaches to better fit
the experimental data is potentially beneficial for the service life calculation. Even a small
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increase in accuracy has the potential to increase the efficiency of the dimensioning of gears.
This could result in overall cost savings and a reduction in the carbon footprint.

The potential of the presented methods goes far beyond the presented results. Increas-
ing the amount of training data could improve the performance even more. In addition, it
is possible to expand the methods to include variable load test data in the determination of
an alternative S/N curve.

The potential reduction in the scattering of the calculated damage sum at failure
can be especially significant for applications in the field of engineering. One example is
the prediction of the remaining service life of gearboxes based on damage accumulation,
as suggested by Foulard et al. [45,46]. For this prediction, the damage sum at failure
has to be assumed by the engineer. The remaining service life is then calculated based
on the ratio of the current damage sum and the assumed damage sum at failure. The
scattering of the actual damage sum at failure decreases the accuracy of the prediction
significantly. Therefore, the presented approaches create a potential for engineers to increase
the accuracy of their service life calculations and predictions without being much more
complex compared to the established approach.

The application of approaches based on machine learning and mathematical regression
may seem more complex compared to the Basquin equation at first, but it is possible to
create an automated program for the training and validation of different methods for the
load-carrying capacity description. The user only needs to input the test data. Therefore, it
is possible to implement the presented methods with the same or even less effort required
by the engineer compared to the traditional approach.
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Nomenclature

Unit
b Face width mm
C Constant of the S/N curve -
c Coefficients of the polynomial -
D Damage sum -
F Pulsator force N
k Slope of the S/N curve -
L Load N/mm2 or N
mn Normal module mm
N Number of endurable load cycles -
ND Number of load cycles at the knee point of the S/N curve -
YF Form factor -
YS Stress correction factor -
σF0 Tooth root stress N/mm2
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