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Abstract: Four-bar linkages are critical fundamental elements of many mechanical systems, and their
design synthesis is often mathematically complicated with iterative numerical solutions. Analytical
methods based on Fourier coefficients can circumvent these difficulties but have issues with time
parameters assignment for path generation without prescribed time in previous studies. In this paper,
an improved Fourier-based point-to-point combination method is presented, which generates more
points by Fourier approximation and assigns the time parameters to the given points while allowing
discarding solutions with order defects. This method relies on the Fourier coefficients, improving
the accuracy of synthesis solutions, and simplifying the computational procedure. Time parameters
are assigned directly to the given points, which avoids the complex calculations to find intersection
points in the given path, eliminates combinations that would lead to solutions with order defects, and
simplifies the assessment process of synthesis results. The parameters obtained by the point-to-point
combination method can be used as the parameters of the input dyad, skipping the first set of design
equations for faster calculation. Several examples are presented to demonstrate the advantages of the
proposed synthesis method, which is easy-understanding, computationally efficient, and yields more
accurate solutions than available synthesis methods.

Keywords: kinematic synthesis; planar four-bar linkages; path generation; Fourier series

1. Introduction

Dimensional synthesis, which determines the dimensions of the mechanism to satisfy
specific motion characteristics, plays an important role in engineering design. It can be
classified into three categories: function generation, path generation, and motion generation,
depending on the goal of the mechanism. Planar four-bar linkage is one of the simplest
mechanisms, and its synthesis is thus a vital kinematics problem to address.

Path generation ensures that a point on the coupler link can move along a desired path.
Solving path synthesis problems requires minimizing the differences between the generated
and desired path [1]. Three types of approaches are usually employed for this problem:
graphical, analytical, and optimization methods. Graphical methods [2] are simple and
intuitive but lack accuracy. Analytical methods [3–5] are accurate and easy to understand,
but they are only applicable to paths with a few numbers of precision points, and their
complexity increases significantly with the number of precision points. Optimization meth-
ods [6–9] overcome the limitation of analytical methods with accurate solutions but suffer
from slow optimization, difficulty in determining suitable initial guesses, and possibly re-
sulting in non-convergence of the iterative solutions. Researchers are continuously making
efforts to improve these methods.

Numerical atlas methods, as developed by graphical methods with advances in com-
puter graphics, compile and collect a large number of coupler curves and generate linkages
by comparing the similarity of the curves [10]. In building up a numerical atlas database,
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different methods are used to extract the feature information of the coupler curves [10],
including the coupler-angle function curve [11], Fourier descriptors [12–17], wavelet trans-
forms [10,18], and cumulative angular function or curvature [19,20]. Analytical methods
are mathematically complicated for the equations to be solved. For path synthesis of planar
four-bar linkages based on loop closure equations, the number of precision points is nine,
which is limited to matching a number of design variables [21]. The equations can be
solved in closed form without iteration for up to 5 precision points and using iterative
methods for 6 to 9 precision points [22]. Another analytical method, the coupler curve
equation method that traces a continuous path using an algebraic coupler curve equation
proposed by Blechschmidt and Uicker [23] and extended by Ananthasuresh and Kota [24],
was once considered as over-determined without analytical solutions [25]. However, Bai
and Angeles [26] demonstrated the existence of exact solutions for the equations. This
research was followed up by Bai [27] and Wu et al. [21]. Li et al. [28,29] introduced Fourier
coefficients to the analytical method for a novel approach for function, path, and mo-
tion generation of four-bar linkages. This method obtains approximate solutions based
on loop closure equations. Optimization methods are used by most of the literature for
solving path generation problems [30]. Research relating to optimization methods can
be classified into two types [31]: the former is research that focuses on the description
of the optimization problem [1,31–36], and the latter concentrates on modifications to
optimization techniques [9,37,38]. Commonly used optimization methods are traditional
gradient-based [35,39] and metaheuristic methods [31,37,40–43]. Among all these methods,
the Fourier-based analytical method overcomes the limitation of precision point numbers
and reduces computation time by avoiding building databases and iterative calculations.
The method is easy to understand and ready for programming. However, there remains
scope for further improvement of this method.

In the works of Yu [11] and Li et al. [29], a two-DOF mechanism is used to establish
the relationships between the given points and the input angles (i.e., the time parameters).
However, this method requires complex calculations to identify intersection points along
the given path with the floating link of the auxiliary mechanism. Furthermore, it may result
in solutions with order defects. Assessing the accuracy of the generated results can also be
challenging, as it requires finding the closest coordinates to the given points in the generated
path. The objective of this paper is to improve the time parameter assignment process.
Firstly, Fourier approximation is used instead of spline interpolation to better capture the
curve of the given points, improving the accuracy of the synthesis, and simplifying the
computational procedure at the programming level. Secondly, time parameters are assigned
directly to the given points to avoid complex calculations. Decision conditions are proposed
to find valid sets of point-to-point combinations, ensuring discarding combinations that
lead to solutions with order defects and simplifying the accuracy evaluation process without
seeking the corresponding generated path point for the given points. Additionally, the
parameters obtained by the point-to-point combination method are used as the parameters
of the input dyad to skip the first set of design equations for faster calculation.

This paper is organized as follows. Section 2 provides background concepts and the
loop closure equations, from which the design equations are derived for the planar four-bar
linkages. Section 3 presents the numerical procedure to obtain the Fourier coefficients for
three types of paths, i.e., paths with uniform spacing time, non-uniform spacing time, and
without prescribed time. An improved method to obtain the Fourier coefficients for path
generation without prescribed time is proposed. Section 4 presents the synthesis procedure
and criteria to assess the accuracy of the synthesis results. Three numerical examples are
presented in Section 5 to demonstrate the advantages of the proposed methodology. The
conclusions of this work are summarized in Section 6.
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2. Planar Four-Bar Linkage Kinematic Formulation
2.1. Fourier Representation for Path Generation

A planar four-bar linkage for path generation is illustrated in Figure 1, where P is
a coupler point fixed in the coupler link BC. The coupler link dimensions PB and PC are
denoted as f and g, and the angle between PB and BC is α. The length of each link is
denoted as a, b, c, and d for the input link AB, the coupler link BC, the output link CD,
and the fixed link AD, respectively. rA, µ, and β describe the position of the fixed link AD
relative to the coordinate origin. The input rotation angle is φ with φ0 as the initial input
angle. θ and ψ are the angles links. Path generation is defined to ensure that the coupler
point P can move along a desired curve. Assume that the input link AB rotates at a constant
speed ω. The curve traced by P can be represented in rectangular notation as:

rp(t) = x(t) + iy(t) (1)
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The exponential form of the Fourier series of rp(t) is given by:

rp(t) = ∑+∞
n=−∞ cneinωt = ∑+∞

n=−∞ cneinφ (2)

where the Fourier coefficients cn are:

cn =
1
T

∫ T

0
(x(t) + iy(t))e−inφdt(n = 0,±1,±2,±3 . . .) (3)

where c0 is the coefficient of the fundamental harmonic, cn and c−n are the Fourier coeffi-
cients of the n-th harmonic.

As shown in Figure 1, The coupler curve rp can be expressed using phasor notation as:

rp = rAeiµ + aei(φ0+φ) + f ei(α+β)eiθ (4)

where eiθ relates the relative motion between the input angle φ and coupler angle θ with a
period T = 2π/ω, the exponential form of the Fourier series of which is given by:

eiθ = ∑+∞
n=−∞ c′neinωt = ∑+∞

n=−∞ c′neinφ (5)
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Substituting Equations (2) and (5) into Equation (4) and expanding it according to
einφ yields:

∑+∞
n=−∞ cneinωt = rAeiµ + c′0 f ei(α+β) + (aeiφ0 + c′1 f ei(α+β))eiφ + ∑n ̸=0,1 c′n f ei(α+β)e

inφ
(6)

This gives the relationships between cn and c′n as follows:

c′0 = c0−rAeiµ

f ei(α+β) = c0−rAeiµ

f e−i(α+β)

c′1 = c1−aeiφ0

f ei(α+β) = c1−aeiφ0

f e−i(α+β)

c′n(n ̸= 0, 1) = cn
f ei(α+β) =

cn
f e−i(α+β)

(7)

2.2. Design Equations for the Input Dyad of Path Generation

A planar four-bar linkage for path generation is made of two dyads, of which the
input dyad is illustrated in Figure 2. The input dyad involves five design variables
(rA, µ, a, φ0, f ). Design equations to solve these variables can be obtained based on
the loop closure equation of this dyad.

Machines 2024, 12, x FOR PEER REVIEW 4 of 19 
 

 

∑ 𝑐 𝑒 𝑟 𝑒 𝑐 𝑓𝑒 𝑎𝑒 𝑐 𝑓𝑒 𝑒∑ 𝑐 𝑓𝑒 𝑒,   (6)

This gives the relationships between 𝑐  and 𝑐  as follows: 𝑐 𝑐 − 𝑟 𝑒𝑓𝑒 𝑐 − 𝑟 𝑒𝑓 𝑒
𝑐 𝑐 − 𝑎𝑒𝑓𝑒 𝑐 − 𝑎𝑒𝑓 𝑒𝑐 𝑛 ≠ 0,1 𝑐𝑓𝑒 𝑐𝑓 𝑒

 (7)

2.2. Design Equations for the Input Dyad of Path Generation 
A planar four-bar linkage for path generation is made of two dyads, of which the 

input dyad is illustrated in Figure 2. The input dyad involves five design variables 𝑟 , 𝜇,𝑎,𝜑 , 𝑓 . Design equations to solve these variables can be obtained based on the loop 
closure equation of this dyad. 

 
Figure 2. The input dyad of a planar four-bar linkage. 

As shown in Figure 2, the vector loop closure equation can be written as: 𝒓𝑨 𝒂 𝒇 𝒓𝒑 (8)

Using phasor notation and rearranging, Equation (8) can be presented as: 𝒓𝒑 − 𝑟 𝑒 −  𝑎𝑒 𝑓𝑒  (9)

The variable 𝛼, 𝛽, and 𝜃 can be eliminated by multiplying Equation (9) by its con-
jugate equation to yield: 𝒓𝒑𝒓𝒑 − 𝒓𝒑�̅� − 𝒓𝒑𝑦𝑒 − 𝒓𝒑𝑥 𝑥�̅� 𝑥𝑦𝑒 − 𝒓𝒑𝑦𝑒 �̅�𝑦𝑒 𝑦𝑦 − 𝑓 0 (10)

where 𝑥 𝑟 𝑒  , 𝑦 𝑎𝑒  . By introducing the Fourier series with harmonics 𝒓𝒑∑ 𝑐 𝑒  and 𝒓𝒑 ∑ 𝑐 𝑒 , the loop closure equation in the form of complex 
numbers can be represented in the following form: ∑ 𝐻 𝑒 0  (11)
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As shown in Figure 2, the vector loop closure equation can be written as:

rA + a + f = rp (8)

Using phasor notation and rearranging, Equation (8) can be presented as:

rp − rAeiµ − aei(φ0+φ) = f ei(α+β+θ) (9)

The variable α, β, and θ can be eliminated by multiplying Equation (9) by its conjugate
equation to yield:

rprp − rpx − rpye−iφ − rpx + xx + xye−iφ − rpyeiφ + xyeiφ + yy − f 2 = 0 (10)
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where x = rAeiµ, y = aeiφ0 . By introducing the Fourier series with harmonics
rp = ∑+∞

n=−∞ cneinφ and rp = ∑+∞
n=−∞ cne−inφ, the loop closure equation in the form of

complex numbers can be represented in the following form:

∑+∞
n=−∞ Hneinφ = 0 (11)

where:
H−1 = xc−1 + yc0 + xc1 + yc2 − xy − k−1

H0 = xc0 + yc1 + xc0 + yc1 + f 2 − xx − yy − k0
H1 = xc1 + yc2 + xc−1 + yc0 − xy − k1
Hn = xcn + ycn+1 + xc−n + yc−n+1 − kn (n = 0, ±1)

and:

kn =
+∞

∑
m=0

cmcm−n

Applying the orthogonality condition of the harmonics, i.e., Equation (11) is satisfied
if Hn = 0, and considering n = 0, ±1, ±2 harmonics, the following five design equations
are obtained to solve for (rA, µ, a, φ0, f ):

H−2 = xc−2 + yc−1 + xc2 + yc3 − k−2 = 0
H−1 = xc−1 + yc0 + xc1 + yc2 − xy − k−1 = 0

H0 = xc0 + yc1 + xc0 + yc1 + f 2 − xx − yy − k0 = 0
H1 = xc1 + yc2 + xc−1 + yc0 − xy − k1 = 0

H2 = xc2 + yc3 + xc−2 + yc−1 − k2 = 0

(12)

2.3. Design Equations for Variables (b, c, d, α, β)

As shown in Figure 1, the vector loop closure equation of the four-bar linkage in the
Cartesian coordinate system x′o′y′ can be expressed as:

a + b = d + c (13)

Using phasor notation and rearranging, Equation (13) can be represented as:

ei(φ0+φ−β) + beiθ − d = ceiψ (14)

The variable ψ can be eliminated by multiplying Equation (14) by its conjugate equa-
tion to yield:

h−3e−iθ + h−2e−iθeiφ + h−1e−iφ + h0 + h1eiφ + h2eiθe−iφ + h3eiθ = 0 (15)

where h−3 = −bd, h−2 = abei(φ0−β), h−1 = −ade−i(φ0−β), h0 = a2 + b2 + d2 − c2,
h1 = −adei(φ0−β), h2 = abe−i(φ0−β), and h3 = −bd. By introducing the Fourier series
with harmonics eiθ = ∑+∞

n=−∞ c′neinωt and e−iθ& = ∑+∞
n=−∞ c′ne−inωt, the loop closure equa-

tion in the form of complex numbers can be represented in the following form:

∑+∞
n=−∞ H′

neinφ = 0 (16)

where:
H′

n = h−3c′−k + h−2c′−k+1 + h2c′k+1 + h3c′k (n ̸= 0,±1)
H′

n = h−3c′−k + h−2c′−k+1 + h2c′k+1 + h3c′k + hn (n = 0,±1)
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Applying the orthogonality condition of the harmonics, i.e., Equation (16) is satisfied
if Hn = 0, and considering n = 0, ±1, ±2 harmonics, five design equations to solve
(b, c, d, α, β) can be obtained by introducing Equation (7) as follows:

−uvc2 + uyc3 + uyc−1 − uvc−2 = 0
−uv(c1 − y) + uyc2 + uy(c0 − x)− uvc−1 − vy f = 0

−uv(c0 − x) + uy(c1 − y) + uy(c1 − y)− uv(c0 − x) +
(
yy + uu + vv − c2) f = 0

−uvc−1 + u(c0 − x) + uyc2 − uv(c1 − y)− vy f = 0
−uvc−2 + uyc−1 + uyc3 − uvc2 = 0

(17)

where u = beiα, v = deiβ.

3. Numerical Procedure to Obtain the Fourier Coefficients

A numerical procedure must be applied to evaluate the Fourier coefficients, cn, in
Equations (12) and (17). The desired path for path generation is usually given as a sequence
of points, with or without prescribed timing. In cases where the timing is not prescribed,
time parameters should be assigned to the given points along the path to obtain the
Fourier coefficients.

3.1. For Path Generation with Prescribed Timing

There are two types of paths with prescribed time: those with uniform spacing timing
and those with non-uniform spacing timing. The Fourier coefficients can be directly
calculated using Equation (3) for paths with uniform spacing timing. However, for paths
with non-uniform spacing timing, a method based on the complex least-square method is
adopted [44]. Assuming the number of the given paths is M and the order of the Fourier
coefficients to be obtained is N. The method is as follows:

C =
(
XX

)TXTY (18)

where C = [co, c1, c−1, . . . , cN , c−N ]
T is a (2N + 1) × 1 column matrix of the Fourier

coefficients of the given path, Y = [x1 + iy1, x2 + iy2, . . . , xM + iyM]T is a M × 1 column
matrix of the given path that represented in rectangular notation, and X is a (2N + 1)× M
matrix denoted as follows:

X =


1 eiφ1 e−iφ1 . . . eiNφ1 e−iNφ1

1 eiφ2 e−iφ2 . . . eiNφ2 e−iNφ2

...
...

...
. . .

...
...

1 eiφM e−iφM . . . eiNφM e−iNφM


The Fourier coefficients can be obtained by Equation (18) for any given path of M

points with non-uniform spacing timing.

3.2. For Path Generation without Prescribed Timing

As was found by McGarva and Mullineux [12], different time parametrization can
result in different Fourier coefficients, it is crucial to select appropriate time parameters for
path generation synthesis. A two-DOF auxiliary mechanism, proposed by Yu. et al. [11] to
transform the given path to a coupler-angle curve, is used and improved to assign time
parameters to the given points.

An auxiliary mechanism, ABP, is illustrated in Figure 3. The input link AB acts as a
crank, and the input angle is denoted as φ. The floating link BP moves accordingly when
link AB rotates, with point P following the given path, and point P completes a closed
trajectory as the input link rotates a whole circuit around point A. Crank AB is colinear
with the floating link BP twice, extended or overlapping, during the rotating. The furthest
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and the closest distance between point A and the given path are denoted as lmax and lmin
for lAPi and lAPj , satisfying the following conditions:

lBP + lAB = lmax
lBP − lAP = lmin

(19)
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To find the coordinates of point A, which is the intersection of the two normal lines
passing through points Pi and Pj to the path, a point-to-point combination method is
utilized. The following are the steps:

1. Generate points along the given path.
2. Choose any two points (Pi and Pj) on the given path and note the intersection of their

normal lines as point E.
3. Calculate the distance between point E and the remaining points noted as Pk(k ̸= i, j)

on the given path.
4. Check if the calculated distance satisfies the condition lEPj < lEPk < lEPi . If it does,

then select point E as the crank center A. If not, re-select the combination of points Pi
and Pj.

However, it is essential to note that the location of point A can only be determined
with sufficient accuracy as there are enough points on the given path. Spline interpolation
is used by Yu [11] and Peng and Sodhi [45] to refine the path with additional points for
problems with a limited number of points that form a given path by inserting points
between neighboring points. In this paper, Fourier approximation is used to refine the path
to more points. The time parameters are not considered as the generated points are not
used to calculate the mechanism parameters in subsequence steps. This method relies on
the Fourier coefficients instead of spline interpolation, resulting in improved accuracy of
synthesis solutions and simplified computational procedure at the programming level. A
comparison between these two point-generating methods is presented later in the paper by
example 1 in Section 5. Once the position of point A has been determined, lmax and lmin are
obtained, from which the lAB and lBP variables of the auxiliary mechanism are calculated
as follows: lAB = (lmax−lmin)

2 , lBP = (lmax+lmin)
2 .
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Once the parameters of the auxiliary mechanism are obtained, the relationship between
the points on the given path and time parameters can be established. The method used
by Yu [11] and Li et al. [29] involves generating new points while rotating the crank AB
counterclockwise at an interval of a certain constant angle to make point P pass through
the given path in one direction. However, this approach presents two issues. Firstly, it is
difficult to find the point of intersection between the floating link BP and the given path.
Secondly, assessing the accuracy of the generated results is challenging since it requires
finding the closest coordinates to the given path in the generated path. To address these
issues, a method is proposed that directly assigns the time parameters to the given points
by calculating the corresponding value of φ for each point.

Assuming that the number of points for the given paths is M and the given points are
noted as Pdi(i = 1, 2, . . . , M). As illustrated in Figure 4, the intersection points of the circle
with radius lAB at point A, and the circle with radius lBP at point Pdi are denoted as Bdi1 and
Bdi2. One of these points is the proper Bdi that corresponds to Pdi, and the angle of the vector
→

ABdi represents the corresponding time parameter. To ensure the appropriate selection of
Bdi, the following conditions must be met: if Pdi lies between Pj and Pi, then the link ABdi
should be positioned in the counterclockwise interval of APj and APi, and vice versa. By
satisfying these conditions, M number of Bdi can be obtained. If the series of Bdi obtained
do not rotate counterclockwise, discard this set of Pi, Pj point combination. Otherwise, the
time parameters are successfully assigned to the given points, and the Fourier coefficients
can be obtained using Equation (18).
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Figure 5 shows the flowchart for calculating the Fourier coefficients for path generation
without prescribed timing presented in this section. According to this process, multiple sets
of Fourier coefficients can be obtained along with the parameters (xA, yA, lAB, lBP) of the
auxiliary mechanism in correspondence. This paper presents an improved method upon
the work of Yu [11] and Li [29]. Rather than using point interpolation, the proposed method
employs Fourier to obtain more accurate points along the given path. Moreover, time
parameters are assigned directly to the given points, which avoids the need for complex
calculations to find points in the given path and eliminates combinations that would lead
to solutions with order defect. This method simplifies the whole synthesis procedure at the
programming level by avoiding complex computation procedures in point generation and
time parameter assignment. Additionally, it offers more accurate solutions.
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4. Synthesis Procedure for Path Generation of Planar Four-Bar Linkages

The problem of path generation synthesis for four-bar linkages can be simplified into
a problem of solving two polynomial equations, as explained in Section 2. For paths with
prescribed timing, the synthesis procedure is straightforward. It involves obtaining Fourier
coefficients, solving two sets of design equations (Equations (12) and (17)), and verifying
results in kinematic analysis.

However, for paths without prescribed timing, the Fourier coefficients are obtained
following the procedure in Figure 5, together with the parameters of the corresponding
auxiliary mechanism. This auxiliary mechanism is part of the desired four-bar linkage [11],
which means that the parameters of the input dyad are already obtained. Therefore, the
calculation of the design equations Equation (12) can be skipped for faster calculation speed.
The flowchart of the synthesis procedure is shown in Figure 6. The synthesis procedure is
performed in MATLAB R2020a in Microsoft Windows 10 on an Intel Core i7-7500U CPU at
2.70 GHz.
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The comparison between the proposed synthesis procedure and the one that does not
consider auxiliary mechanism parameters and adopts the Fourier coefficients obtained by
the auxiliary mechanism to follow the exact procedure as paths with prescribed timing is
presented in Section 5.

To quantify the accuracy of the synthesis results, TE (tracking error) is used as follows:

TE =
1
M∑M

i=1

√
(xi − xdi)

2 + (yi − ydi)
2 (20)

where (xdi, ydi) are the given points and (xdi, ydi) are the generated points of the synthe-
sized linkage corresponding with the prescribed time or the assigned time. The tracking
error is the mean of the Euclidean distances for all given and generated points.

5. Applications and Discussions
5.1. Example 1: An Ellipse of 10 Points without Prescribed Timing

In this example, the desired path is an ellipse with 10 given points without prescribed
timing. It was first presented and solved by Acharyya et al. [46] using evolutionary
algorithms. This problem has been studied by many researchers using various methods
since then. The coordinates of the given points are listed in Table 1.

Table 1. Coordinates of the given points for example 1.

Point Number, i 1 2 3 5 6 7 8 9 10

xdi 20 17.66 11.736 5 0.60307 0.60307 5 11.736 17.66
ydi 10 15.142 17.878 16.928 12.736 7.2638 3.0718 2.1215 4.8577

The example is solved with and without considering time parameters to demonstrate
the importance of time parameter assignment. The given path is refined to 100 points using
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Fourier approximation and spline interpolation to determine the auxiliary mechanism.
When disregarding time parameter, a valid solution and its cognate are obtained and are
listed in Table 2. The generated path does not fit the given points well. By considering non-
uniform time parameters, 100 generated points result in 4950 point-to-point combinations
for finding potential auxiliary mechanisms. In this example, we only consider reaching the
farthest point first, while the auxiliary mechanism reaching the closest point first will be
discussed in example 2. Using spline interpolation, 597 sets of point-to-point combinations
are obtained, of which 273 sets are valid for generating given points counterclockwise.
Among these sets, 111 sets have a point A outside the path, while 162 have it inside.
Similarly, using Fourier approximation, 629 sets of combinations are obtained, of which
283 sets are valid, with 112 having a point A outside of the path and 171 sets having it
inside. For comparison, the combination that can best perform a Fourier approximation
to the given points is made from the valid sets of point-to-point combinations of each
method for path synthesis. The synthesis results and corresponding time parameters using
the proposed method are presented in Tables 2 and 3, respectively. Despite both methods
yielding two solutions of high accuracy, it should be noted that using Fourier approximation
results in a tracking error that is almost ten times smaller than that of spline interpolation.

Table 2. Synthesis results for example 1.

Design Variables Solution 1 1 Solution 1
Cognate 1 Solution 1 2 Solution 2 2 Solution 1 3 Solution 2 3

a 8.9999 9.9998 8.0283 8.0283 9.2163 9.2163
b 9.0008 60,385.8909 104.9061 107.5520 296.7365 315.8426
c 54,347.8187 10.0008 88.0198 96.7131 278.4022 359.2052
d 54,347.8182 60,385.8903 167.1844 178.8989 489.2287 592.9863

rA 14.1419 6028.0809 17.5653 17.5653 60.3629 60.3629
f 1.0000 6038.0722 22.5292 22.5292 57.5619 57.5619
µ 0.7854 3.1399 −0.7829 −0.7829 −0.4673 −0.4673
α 3.1415 0.0000 2.8611 −2.3222 −1.7631 −0.7260
β 0.0000 0.0000 −0.7099 −2.7514 −1.5479 2.6307

TE 0.5690 0.5690 0.0038 0.0021 0.0005 0.0003
Conf. crossed open crossed open crossed open

1 Solutions obtained disregarding time parameters. 2 Solutions obtained considering time parameters using spline
interpolation. 3 Solutions obtained considering time parameters using Fourier approximation.

Table 3. Time parameters for example 1.

Point Number, i 1 2 3 5 6 7 8 9 10

φi 1 −0.0168 0.6766 1.3661 2.0585 2.7542 3.4555 4.1600 4.8648 5.5677
φi 2 −0.1107 0.5873 1.2870 1.9876 2.6880 3.3872 4.0847 4.7807 5.4763

1 Time parameters obtained using spline interpolation. 2 Time parameters obtained using Fourier approximation.

The synthesis results with time parameters in Table 2 are calculated using the pro-
posed method based on considering the auxiliary mechanism as the exact input dyad for
synthesis solutions. The solutions are achieved by solving only one set of design equations
(Equation (17)). In comparison, the method that requires solving two sets of design equa-
tions (Equations (12) and (17)) without considering the auxiliary mechanism parameters
is also presented. Six solutions are obtained, including three solutions and their cognates.
The results are listed in Table 4, where the two solutions (solution 1 cognate and solution 3)
are the same as those obtained in Table 2. The cognate mechanisms share the same tracking
error, i.e., only one more solution can be obtained using this method, but almost 10 times
the computational time is used, as shown in Table 5. Reselecting a set of point-to-point
combinations using the proposed method for more synthesis solutions is the better option
with high efficiency.
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Table 4. Synthesis results for example 1 without considering the auxiliary mechanism.

Design
Variables Solution 1 Solution 2 Solution 1

Cognate Solution 3 Solution 2
Cognate

Solution 3
Cognate

a 9.7177 9.7177 9.2163 9.2163 8.0379 8.0379
b 293.5478 304.9371 296.7365 315.8426 305.7470 313.2784
c 312.8796 369.6413 278.4022 359.2052 252.2273 275.4601
d 515.8436 586.6166 489.2287 592.9863 485.2171 517.1691

rA 41.2041 41.2041 60.3629 60.3629 77.1553 77.1553
f 54.0054 54.0054 57.5619 57.5619 65.4647 65.4647
µ −2.8664 −2.8664 −0.4673 −0.4673 1.3290 1.3290
φ0 0.1816 0.1816 0.0000 0.0000 0.1392 0.1392
α 1.1969 0.1993 −1.7631 −0.7260 −2.8999 2.2764
β −1.3663 0.7777 −1.5479 2.6307 0.7353 2.7699

TE 0.0005 0.0007 0.0005 0.0003 0.0007 0.0003
Conf. open crossed crossed open open crossed

Table 5. Computational time for example 1.

Method Computational Time (s) 1

Method considering the auxiliary mechanism 1.9500
Method without considering the auxiliary mechanism 17.1092

1 The computational time is the average of 100 calculations for each method.

Great efforts have been made to solve path generation problems. Acharyya and
Mandal [46] first solved the problem using evolutionary algorithms, Lin and Hsiao [6]
presented a CMDE (combined-mutation differential evolution), Eqra et al. [47] used adap-
tive PSO (particle swarm optimization), Li et al. [29] presented a novel analytical method,
and Torres-Moreno et al. developed an open-source tool based on NSDVs (normalized
shape-descriptor vectors). Table 6 compares the solutions generated by these approaches,
and the generated paths are shown in Figure 7. Recent studies have addressed this problem
properly. However, the proposed method possesses the most minor tracking error. The
kinematic diagram of the proposed method for example 1 is shown in Figure 8.

Table 6. Comparison of synthesis results for example 1.

Design
Variables

Proposed
Method

Acharyya.
2009 [46]

Lin.
2017 [6]

Eqra.
2018 [47]

Li.
2020 [29]

Moreno.
2022 [1]

a 9.2163 8.6834 8.0457 8.5320 8.8355 8.0700
b 315.8426 34.3186 50.8190 31.4848 109.0051 50.5900
c 359.2052 79.9962 42.2080 33.2131 118.0160 42.0100
d 592.9863 54.3609 80.0000 54.7218 199.3538 79.5700

rA 60.3629 15.5770 8.5286 8.7906 23.4929 8.2257
f 57.5619 1.4653 10.8809 6.0145 20.4649 10.3833
µ −0.4673 0.7909 −0.0890 0.5897 −0.2535 −0.0791
α −0.7260 1.5707 −2.9294 1.5004 −1.0982 −2.9937
β 2.6307 2.1297 3.8892 0.0965 2.8291 3.9300

TE 0.0003 2.3432 0.0051 0.0145 0.0037 0.4490
Conf. open open open crossed open open
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5.2. Example 2: A Teardrop Shape of 25 Points without Prescribed Timing

This example comes in the shape of a teardrop with a cusp and is presented by
McGarva [13] as a path for a particular piece of packaging machine. The coordinates of the
given points are listed in Table 7.

Table 7. Coordinates of the given points for example 2.

Point Number, i 1 2 3 4 5 6 7 8 9 10 11 12 13

xdi 7.03 6.95 6.77 6.4 5.91 5.43 4.93 4.67 4.38 4.04 3.76 3.76 3.76
ydi 5.99 5.45 5.03 4.6 4.03 3.56 2.94 2.6 2.2 1.67 1.22 1.97 2.78

14 15 16 17 18 19 20 21 22 23 24 25
xdi 3.76 3.76 3.76 3.76 3.8 4.07 4.53 5.07 5.45 5.89 6.41 6.92
ydi 3.56 4.34 4.91 5.47 5.98 6.4 6.75 6.85 6.84 6.83 6.8 6.58

For this example, no valid point-to-point combination is obtained considering the
coupler point reaching the farthest point first in the path. However, by considering the
coupler point reaching the closest point first, the parameters assigned to the given points
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are listed in Table 8. The synthesis result is listed in Table 9, and the kinematic diagram is
shown in Figure 9.

Table 8. Time parameters for example 2.

Point Number, i 1 2 3 4 5 6 7 8 9

φi 3.3675 3.6823 3.9022 4.1316 4.3962 4.6129 4.8593 4.9919 5.1496
10 11 12 13 14 15 16 17 18

φi 5.3695 5.6202 0.1458 0.4443 0.7182 0.9979 1.2165 1.4516 1.6822
19 20 21 22 23 24 25

φi 1.9178 2.1792 2.3998 2.5443 2.7071 2.8931 3.1029

Table 9. Synthesis results for example 2.

Design
Variables

Proposed
Method

Zhang.
2019 [37]

Li.
2020 [29]

Hernández.
2021 [35]

a 1.7869 1.92715 2.01440 2.44870
b 4.2405 4.65983 5.54970 5.07450
c 4.0146 7.27223 6.71420 6.61420
d 6.2684 10.00000 10.10860 8.18640

rA 10.5236 3.82046 4.54090 2.35603
f 9.2977 8.18655 9.74180 8.53541
µ −0.2698 2.28210 2.64080 2.95265
α 0.1621 0.19171 0.10880 −0.35591
β 2.6661 5.66686 −0.45260 −0.06010

TE 0.0371 0.05201 0.04951 0.05568
Conf. crossed open open open
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the solutions generated by different approaches. Zhang et al. [29] presented an HLIDE 
(Lagrange interpolation differential evolution) algorithm for path synthesis of four-bar 
mechanisms. Hernández et al. [35] reformulated the error function for the gradient 
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This example has been studied by many researchers over the years. Table 9 compares
the solutions generated by different approaches. Zhang et al. [29] presented an HLIDE
(Lagrange interpolation differential evolution) algorithm for path synthesis of four-bar
mechanisms. Hernández et al. [35] reformulated the error function for the gradient method
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for better results. As shown in Table 9, each method demonstrates competitive accuracy, but
the proposed method presents better performance. The comparison of the paths generated
by different approaches is shown in Figure 10 intuitively.
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5.3. Example 3: A Complex Triple Loop Path of 90 Points without Prescribed Timing

This example is a complex triple loop path with two crunodes, presented by Hadizdeh
Kafash and Sahand [48] to test the performance of their method. The given points
are generated by an existing linkage with the following parameters: a = 3.1, b = 5,
c = 8.6, d = 10.4, ra = 0, µ = 0, r f = 0, α = 1, β = 0. The crank rotates counterclockwise
at an interval of 4◦ for generating the points. The generated points are given as a path
synthesis problem without prescribed timing. The solutions obtained with and without
considering time parameters, Hadizdeh Kafash and Sahand’s solution [48], and the pa-
rameters of the original linkage are listed in Table 10. The synthesis results are intuitively
compared in Figure 11.

Table 10. Synthesis results for example 3.

Design Variables Proposed Method Disregarding Time Parameters Hadizdeh Kafash 2017 [48] Original
Linkage

a 3.1609 3.1076 3.1092 3.1
b 5.0157 5.0012 5.0394 5
c 9.3046 8.6050 8.7281 8.6
d 11.0445 10.4199 10.5479 10.4

rA 0.1542 0.0309 0.0488 0
f 5.9161 5.9765 6.0387 6
µ 2.9681 2.4404 −1.4744 0
φ0 0.0000 −0.0030 0.0000 0
α 0.9741 1.0026 0.9993 1
β −0.0256 −0.0019 0.0000 0

TE 0.0125 0.0096 0.0194 0
Conf. open open open open
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These approaches produce solutions with decent accuracy. The method that does not
consider time parameters results in a minimal tracking error because other methods treat
the generated points as a path without prescribed timing, although they are generated using
uniform spacing timing. The proposed method is very effective in solving this problem,
with a smaller tracking error compared to Hadizdeh Kafash and Sahand’s [48] method.
Figure 12 shows the kinematic diagram of the proposed method, which has location and
design parameters that are very similar to those of the original linkage. This example is a
challenging problem as it is a complex path with two crunodes, thus demonstrating the
efficacy of the proposed method.
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6. Conclusions

In this paper, an analytical synthesis method based on the Fourier series for path
generation is improved. Two sets of design equations are generated based on loop closure
equations for the input dyad and the linkage itself, and in solving these equations, the
solutions are obtained. A more practical method to assign time parameters is introduced to
address issues in previous papers for generating paths without prescribed timing. Three
numerical examples are presented to assess the synthesis approach. The approach is easy
to understand and computationally efficient, producing more accurate solutions compared
with other known methods. The contributions of this paper are as follows:

1. Fourier approximation is used instead of spline interpolation to better capture the
curve of the given points, although it does not contain the given points. The synthesis
solutions had improved accuracy compared to those using spline interpolation. In
addition, as the foundation of this analytical synthesis is the Fourier series, using
Fourier approximation, consistent with the foundation, simplifies the computational
procedure at the programming level. It can be concluded that it is computationally
efficient and accurate to generate points readily for the point-to-point combination
method using Fourier approximation.

2. Time parameters are assigned directly to the given points, avoiding complex calcu-
lations to find intersection points along the given path with the floating link of the
auxiliary mechanism. The conditions proposed to find valid sets of point-to-point
combinations whilst discarding combinations that lead to solutions with order defects
before calculating design parameters. In addition, the accuracy evaluation process
is simplified by the fact that the time parameters for the given points are known,
thus eliminating the need to find the corresponding generated path point for the
given points.

3. The parameters obtained by the point-to-point combination method are used as the
parameters of the input dyad, skipping the first set of design equations presented in
Section 2.2 for faster calculation. Examples demonstrate that this method is highly
effective in the synthesis process with competitive accuracy. The computation time is
significantly reduced by one order of magnitude compared to that of solving two sets
of design equations.
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