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Abstract: The traditional PID controller in quadrotor UAVs has poor performance, a large overshoot,
and a long adjustment time, which limit its stability and accuracy in practical applications. In
order to solve this problem, an improved whale optimization fuzzy PID control strategy based on
CRICLE chaos map initialization is proposed, and a detailed simulation analysis was carried out
using MATLAB software (MATLAB R2022B). Firstly, to more realistically reflect quadrotor UAVs’
flight behavior, a dynamic simulation model was established, and the dynamics and kinematic
characteristics of the aircraft were considered. Then, CRICLE chaotic mapping initialization was
introduced to improve the global search ability of the whale optimization algorithm and to effectively
initialize the parameters of the fuzzy PID controller. This improved initialization method helped to
speed up the convergence process and improve the stability of the control system. In the simulation
experiments, we compared the performance indicators of the improved CRICLE chaotic mapping
initialization whale optimization fuzzy PID controller to the traditional PID and fuzzy PID controllers,
including overshoot, adjustment time, etc. The results show that the proposed control strategy has
better performance than the traditional PID and fuzzy PID controllers, significantly reduces overshoot,
and achieves a significant improvement in adjustment time. Therefore, the improved CRICLE chaotic
mapping initialization whale optimization fuzzy PID control strategy proposed in this study provides
an effective solution for improving the performance of the quadrotor control system and has practical
application potential.

Keywords: fuzzy PID control; whale optimization algorithm; UAV control systems; chaotic mapping
initialization; quadrotor dynamic modeling

1. Introduction

A UAV has a simple structure and strong terrain adaptability, does not need complex
operations to change the circular rotation distance of the rotor, and only requires the speed
of the rotor to be changed to alter the trajectory of the flight. UAVs can also perform a
wide range of movements, giving them a wide range of applications, including precision
agriculture [1], managing forest fires [2], urban transportation [3], crime detection [4],
express delivery [5], etc.

Furthermore, the work by Israel Domínguez et al. [6] demonstrates the development
of a low-cost quadrotor experimental platform, specifically detailing a methodology for
implementing an observer-based Proportional Integral Derivative (PID) controller. This
emphasizes the critical need for practical, real-world testing environments to evaluate
and refine control algorithms, ensuring their reliability under actual operating conditions
despite inherent system nonlinearities and disturbances.

Addressing another sophisticated application, M. Eusebia Guerrero-Sánchez and col-
leagues tackled [7] the challenge of safely and efficiently transporting cable-suspended pay-
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loads with quadrotors. Utilizing an Interconnection and Damping Assignment Passivity-
Based Control (IDA-PBC) approach, they developed a robust control strategy that effectively
attenuates swing, enhancing payload stability during transport. This method showcases
the adaptability of UAVs to complex tasks where dynamic uncertainties and parametric
variability are significant factors.

UAVs are nonlinear systems with complex dynamic behavior, so it is important to
determine how to design the controller and which control strategies can reduce delays,
enhance the vehicle’s robustness, increase the control quality, and reduce the control error.
The existing UAV controllers can be roughly divided into linear robust controllers, nonlin-
ear controllers, and intelligent controllers. Among them, linear robust control technology
is older and more classic, and it has been widely used in many fields due to its simplicity
of implementation and flexibility of parameter adjustment. However, traditional linear
control methods face numerous limitations when dealing with the underactuated nonlinear
characteristics [8] of quadrotor UAVs. In order to overcome these limitations, researchers
have carried out in-depth research and made improvements to this control method. For
example, Ivan Gonzalez-Hernandez et al. [9] proposed an integral-based sliding mode
controller to improve the altitude control performance of quadrotor UAVs; however, it
still belongs to the linear control category. Further advancing UAV control technology,
Roger Miranda-Colorado and Luis T. Aguilar [10] have developed a robust PID control
methodology specifically for quadrotors that not only enhances trajectory tracking and
regulation tasks but also incorporates a power reduction methodology. This novel ap-
proach uses the cuckoo search algorithm for controller-gains tuning and designs trajectories
that minimize jerk, thus reducing power demand even under parametric uncertainty and
aerodynamical disturbances. In addition to enhancing control precision, reducing power
consumption is also critical for improving UAV efficiency and operational longevity. Roger
Miranda-Colorado and colleagues [11] have addressed this by developing a methodol-
ogy that integrates trajectory design with controller-gains tuning using a cuckoo search
algorithm. Their approach, employing a terminal sliding modes controller analyzed via
strict Lyapunov functions, has demonstrated notable reductions in power consumption
while maintaining robust performance against aerodynamic disturbances and parametric
uncertainties, does not thoroughly explore more complex nonlinear control or adaptive
control strategies, and shows obvious limitations when dealing with systems that have
significant nonlinear characteristics and dynamic uncertainties.

Xiao Liang et al. [12] proposed a novel nonlinear control method based on backward
control, which was specially designed for the transportation system of quadrotor UAVs;
it not only considers the nonlinear characteristics of the system but also addresses the
challenges caused by external interference and the internal dynamic uncertainty of the
system. However, it does not adapt well to unforeseen changes in system dynamics or
external disturbances.

Roger Miranda-Colorado et al. [13] discussed a variable-gain sliding mode control
strategy based on Lyapunov’s theory to improve the robustness of the quadcopter to
external disturbances and changes in internal parameters. However, nonlinear controllers
are less flexible when it comes to modeling inaccurate or unforeseen changes in system
dynamics. In contrast to intelligent or adaptive controllers, it is not suitable for systems
with high uncertainty or rapidly changing conditions.

Muhammad Awais Sattar and Abdulla Ismail [14] proposed an adaptive fuzzy PID
control method that combines PID control, fuzzy logic, and an adaptive control strategy to
improve the adaptability and control performance of quadrotor UAVs in complex dynamic
environments. The basic motion of the quadrotor UAV was controlled, and the effectiveness
of the proposed control strategy was verified via a simulation.

In the Adaptive Dynamic Reconfiguration Control (ADRC) framework, the tuning
of the extended state observer (ESO) parameters and the nonlinear state error feedback
(NLSEF) control law is critical. Due to the complexity of these adjustments, a range
of optimization techniques are essential for their precise calibration. Therefore, to fine-
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tune these parameters effectively, it is essential to integrate the fuzzy predictions, rules,
and strategies of adaptation optimization methods. Researchers have adopted different
strategies to enhance the performance of PID controllers. To achieve accurate control,
one researcher implemented an auto-coupling PID controller (SC-PID) by constructing
a nonlinear mathematical model and deriving the transfer function of each channel of
the attitude loop. On the other hand, some researchers rely on the deep knowledge base
and rule set of the expert system to optimize the parameters of PID controllers. Based
on a comprehensive analysis of system performance and response, this method enables
the dynamic adjustment of PID parameters to adapt to changing flight environments and
conditions, aiming to improve the accuracy and robustness of controllers. In intelligent
controllers, there are many algorithms inspired by nature that employ adaptive parameters,
such as PID algorithms based on neural networks [15], genetic algorithms [16–19], hybrid
genetic algorithms [20], etc.

To optimize their systems control effect, Li Wei et al. [21] proposed an improved
particle swarm optimization algorithm to imitate the social behavior of bird hunting and
fish swimming. In addition, many scientists have used this algorithm for the optimization
of drone controllers [22–31]. Tri Kuntoro Priyambodo et al. [32] explored a method for
finding the input parameters of a PID control system through an ant colony optimization
algorithm that finds the shortest path from the nest to food based on the colony’s ability.
Using a multi-objective variant of the bat algorithm, Nitish Katal and Parvesh Kumar [33]
designed a fractional-order PID controller for the robust flight control of unmanned aerial
vehicles (UAVs). The optimization function was formulated as a mixed sensitivity problem
to ensure robust behavior. Its controller ensured a good tracking and robustness margin,
ensuring a robust response in the presence of uncertainty.

Therefore, an optimization algorithm based on animal behavior has the advantages
of strong global search ability, high robustness, easy implementation and parallelization,
adaptability, and a wide application range. Compared to the above-mentioned optimization
algorithms, the whale optimization algorithm (WOA) provides a novel search strategy that
simulates the encirclement, spiral, and fast dash mechanisms in whale predation behavior
and has the advantages of simple operation and fewer control parameter requirements,
especially when dealing with the optimization problems of high-complexity systems such
as quadrotor UAVs.

However, the whale algorithm suffers from the problem of early convergence, which
means that the population converges to a disadvantaged maximum. In particular, due
to the low initial population diversity, the algorithm can easily fall into the local optimal
solution such that the global optimal solution of the problem cannot be reached.

To address this issue, chaotic mapping is introduced to compensate for the shortcom-
ings of the standard whale optimization algorithm. Combined with fuzzy forecasting,
this not only fully leverages fuzzy logic to manage the complexity and uncertainties of
quadrotor UAV systems but also employs chaotic sequences from chaotic systems to en-
hance search space diversity and accelerate convergence. By applying chaos to the swarm’s
historical optima, it assists in escaping local optima, thereby improving the algorithm’s
global search capability. The automatic adjustment of PID controller parameters via the
whale optimization algorithm enables dynamic optimal parameter selection, and the in-
tegration of fuzzy control and convergence speed enhances the controller’s adaptability,
boosting the system’s overall performance. This novel intelligent controller is better suited
for navigating systems with complex variations and changing environments.

The innovative aspects of this study include the following:
To address the low convergence accuracy and slow convergence speed issues asso-

ciated with the traditional whale optimization algorithm (WOA), an initial population
diversity strategy combining logical chaos mapping and skewed tent mapping is proposed.

The CRICLE modification enhances the conventional whale algorithm. By utilizing
the whale algorithm to optimize the fuzzy PID in comparison to the conventional PID,
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it was discovered that the chaotic whale optimization algorithm’s fuzzy PID controller
exhibits superior performance.

2. Quadrotor Dynamic Equation
2.1. Preliminary Definition of the Controller

Despite its symmetrical appearance, a drone is a nonlinear dynamic system with four
inputs and six outputs. A competent controller should ensure that the drone stabilizes
quickly upon reaching its predetermined position. Quadcopters are composed of four
rotors placed at 90-degree intervals, achieving balance by rotating two rotors clockwise and
the other two counter-clockwise. This configuration is crucial for maintaining balance and
control during flight.

2.2. Definition of a Mixed-Coordinate System

At present, the mainstream research divides the body structure of UAVs into “+”-
shaped and “X”-shaped, which present different aerodynamics and control dynamics and
have a significant impact on their performance and application applicability. The “+”
configuration features arms aligned with the drone’s frontal axis, facilitating intuitive yaw
adjustment as the thrust is directly aligned with the drone’s direction. This setup improves
forward flight efficiency by reducing air resistance, which is critical for linear trajectory
missions. However, it complicates roll and pitch maneuvers, requiring different thrusts on
the motors diagonally opposite each other, which may limit the UAV’s maneuverability.

On the contrary, the X configuration has arms in a diagonal direction, ensuring bal-
anced maneuverability on all flight axes (yaw, pitch, and roll), which is attributed to the
symmetrical distribution of propulsion. This layout not only supports agile and stable
flight dynamics but also optimizes payload distribution and sensor placement, providing
an unobstructed forward view that is critical for surveillance and FPV flight. The inherent
design of the X configuration, despite slightly increasing the complexity of yaw control,
significantly enhances the overall agility and application versatility of the quadcopter.

Our UAVs use a “+” configuration due to its wide applicability and inherent advan-
tages in solving specific control system challenges, despite obvious difficulties, such as
delayed control responses and the robustness of control strategies under variable flight
conditions. These challenges are exacerbated by the unique dynamic nature of the + con-
figuration, but our chaos whale optimization algorithm fuzzy PID controller overcomes
them with propellers that are directly aligned with the drone’s fuselage axis, introducing
complexity in achieving the precise control of yaw, pitch, and roll motion. This complexity
requires the development of advanced control algorithms that are able to compensate
for the inherent time delay and ensure the stability of the drone in different operating
scenarios and its responsiveness to control inputs. Our novel controller aims to address
these nuanced control issues, leveraging the configuration’s simple design to innovate
powerful control solutions. Our choice is driven by the potential to enhance drone perfor-
mance through customized control strategies designed to address specific aerodynamic
and control dynamic issues within the “+ configuration.”

Subsequently, we establish a coordinate system (Figure 1) and formulate a dynamic
equation, making the following assumptions:

1. The drone’s center of mass and body origin coincide at one point in the coordinate
system.

2. The drone’s mass is uniformly distributed, with perfect structural symmetry, exclud-
ing elastic variations.

3. Gyroscopic effects and friction forces acting on the drone’s body are ignored.
4. The Earth’s curvature is disregarded, and a flat Earth surface is assumed to simplify

the model.
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Given the strong coupling and underactuated nature of UAVs, modeling necessitates
the initial determination of coordinate systems, including both the body and geographic
coordinate systems.

In Figure 1, the geographical coordinate system is denoted by red lines, while the body
coordinate system is represented by yellow lines. Within the body coordinate system, the
three axes are labeled Xa, Ya, and Za. The system’s origin is positioned at the center of
gravity of the body, with the Xa axis aligned parallel to the body and oriented in the direction
of the body’s motion in the positive direction. The Za axis is perpendicular to the Xa axis
and directed upwards, ensuring that the thrust component F1 along the Za axis is naturally
positive, opposing the direction of gravitational force g. This configuration allows the control
algorithm to directly compare thrust and gravity since both forces have components in the
same direction within the body’s coordinate system. Thus, situated within the body’s vertical
plane of symmetry, the Ya axis is perpendicular to the OXaZa plane.

The inertial frame (I) is defined as the geographical coordinate system with the Earth’s
center as its origin point. The positive direction of the X-axis points eastward from the
origin, while the Y-axis points northward. The Z-axis is perpendicular to the OXY plane,
extending towards the sky.

2.3. The Establishment of the Model Equation

Firstly, we create a mathematical model of the six degrees of freedom and use them to
design the controller for the inner and outer loops:

In order to model the dynamics of the quadrotor UAV, we first consider its six degrees
of freedom. These degrees of freedom describe all the possible motions of the UAV in
space: three translational motions (vertical lift, lateral side-to-side movement, and forward–
backward translation) and three rotational motions (rotation around three main axes, i.e.,
roll, pitch, and yaw). These six degrees of freedom correspond to the six output variables
of the UAV state, which are as follows:

x, y, z: These are the coordinates of the position in the ground coordinate system.
ϕ, θ, ψ: These correspond to the roll, pitch, and yaw angles of the UAV, respectively.
The input variable is the total lift generated by the four rotor blades F1 and three

moments around the body spindle F2, F3, F4. Now, we use the constant of proportionality
KT to represent the thrust–rotor speed (W) relationship and KM to express the relationship
between torque and speed. The moments of inertia are represented by Jx, Jy, and Jz
expression, and the distance from the motor to the center of the body is denoted by d.
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Next, we establish the rotation matrix as the transformation matrix equation between
two coordinate systems. The conversion from the geographic coordinate system to the
body coordinate system V (vehicle frame) can be accomplished through rotation about the
yaw angle. The transformation involving yaw α, pitch β, and roll γ can be represented by
transformation matrix A [34] as follows:

A =

 cos θ cos ψ cos θ sin ψ − sin θ
− cos ϕ sin ψ + sin ϕ sin θ cos ψ cos ϕ cos ψ + sin ϕ sin θ sin ψ sin ϕ cos θ
sin ϕ sin ψ + cos ϕ sin θ cos ψ − sin ϕ cos ψ + cos ϕ sin θ sin ψ cos ϕ cos θ

 (1)

Next, we utilize Newton’s second law to formulate the linear dynamic equations [35,36],
obtaining the acceleration components in each direction.

.
X =

(
T
M

)
(cos(θ) cos(ψ))

.
Y =

(
T
M

)
(cos(θ) sin(ψ))

.
Z =

(
T
M

)
(− sin(θ))− g

(2)

Here, T represents the lift force, and M is the mass of the drone.
Then, by applying Newton’s second law and transforming it through rotation matrix

A, we obtain the linear velocity equations [36,37]. The components of speed in the ground
coordinate system are as follows:

.
X = −1

M (cos(θ) cos(ψ) sin(ϕ) + sin(θ) cos(ϕ))F1
.

Y = −1
M (cos(θ) sin(ψ) sin(ϕ)− sin(θ) sin(ϕ))F1

.
Z = −1

M (cos(θ) cos(ϕ))F1 + G

(3)

.
X

.
Y

.
Z˙represent the speed along the X, Y, and Z axes of the ground coordinate system,

respectively. Ultimately, these speed components will be used to update the drone’s velocity
and position within the ground coordinate system.

Next, we represent the drone’s angular dynamics using the Euler equations of mo-
tion [38]:

Jx
.
γ =

(
Jy − Jz

)
βα + dF2

Jy
.
β = (Jz − Jx)γα + dF3

Jz
.
α =

(
Jx − Jy

)
γβ + dF4

(4)

Here,
.
α

.
β

.
γ represent the angular velocities around the X, Y, and Z axes, respectively.

Since the equations obtained above are nonlinear and interdependent, numerical methods
such as the Euler method or the Runge–Kutta method can be used to approximate the
integration of these equations at each time step ∆t.

We choose the Euler method for numerical integration.

γn+1 = γn +
.
γn∆t

βn+1 = βn +
.
βn∆t

αn+1 = αn +
.
αn∆t

(5)

Here γn, βn, and αn are the angular velocities at the current time step, while γn+1,
βn+1, and αn+1 are the angular velocities at the next time step. This process is repeated
throughout the simulation time, resulting in a time series of angular velocities.
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Finally, we establish a nonlinear dynamic model [39,40]. Since the state equations
describe all the dynamic behaviors of the drone, including linear dynamics (position and
velocity) and angular dynamics (attitude and angular velocity), by combining the previous
equations, we obtain the linear state equations and angular dynamic state equations.

Based on Newton’s laws of mechanics and the laws of rotational dynamics, we can
construct a mathematical model describing the motion of a quadrotor drone:

.
X = −(cos θ cos ψ sin ϕ + sin θ cos ϕ) F1

M
.

Y = −(cos θ sin ψ sin ϕ − sin θ sin ϕ) F1
M

.
Z = G − (cos θ cos ϕ) F1

M

(6)
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α
(

Jy−Jz
Jx

)
+ d

Jx
F2
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In the equation of linear velocity (Equation (6)),
.

X,
.

Y,
.
Z represent the rate of change of

the position vector (X, Y, Z) in the ground coordinate system; Φ, θ, and ψ are Euler angles,
representing roll, pitch, and yaw, respectively; F1 is the total lift produced by the rotors; M
is the mass of the quadrotor drone; and G is the acceleration due to gravity.

For the equation of angular velocity (Equation (7)), ˙α˙, ˙β˙, and ˙γ˙ represent the rate
of change of the yaw, pitch, and roll angular velocities, respectively; Jx, Jy, and Jz are the
moments of inertia about the body’s X, Y, and Z axes, respectively; d is the distance from
the motor to the body center; and F2, F3, and F4 are the distances from the motor to the
body center.

2.4. Parameter Determination

In the process of deduction and refinement for learning, significant experimentation is
required to ascertain the values of the model parameters. Given that the control system
demands lower resources at this stage, the choice of fuzzy logic for the control system is
deemed reasonable. Notably, the thrust function determined through this experimental
mechanism aligns more closely with a cubic function derived from parabolic trajectory
analyses. The parameters extracted from this identification process are as follows:

Below is how each parameter is obtained and their role in computations and
the program:

The way M is obtained is “Measured using a scale”. In the dynamic model in MATLAB,
mass plays a vital role in calculating the thrust required for lift and maneuvering through
the thrust equation. It directly affects the calculation of acceleration in translational motion
equations and impacts the controller’s compensation for gravity.

L is derived from measurements of the physical UAV. It is crucial in the controller’s
calculation of torques generated by the motors, which decides the quadrotor’s rotation and
stability. It is used to calculate the moments for pitch, roll, and yaw adjustments in the
rotational dynamics equations.

J_x, J_y, J_z are obtained using bifilar pendulum tests. These parameters are used to
determine the angular accelerations in the simulation’s Euler equations of motion. They are
critical for accurately modeling the UAV’s rotational dynamics and for the PID controller
to stabilize angular motions.

D is measured from the UAV’s structure. It impacts the calculation of moments and
thus the control inputs needed for attitude control. It is used in torque calculations where
longer lever arms equate to greater turning forces for the same amount of motor torque.
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KT is determined through thrust tests with a dynamometer. It allows the conversion
of motor RPM into physical thrust values in the simulation model, which is used by the
optimization algorithm to adjust the PID gains for precise altitude control.

KM, similar to KT, is discovered through motion testing. It helps in adjusting
motor control inputs within the whale optimization algorithm to fine-tune the PID
controller’s performance.

G is the acceleration due to gravity. It is a fixed input in the control system equations,
factored into the lift force calculations to maintain the UAV in the air and to correct for the
gravitational pull during flight maneuvers.

K_D is experimentally determined through computational fluid dynamics simulations.
It is integrated into the dynamic model to account for the resistance experienced by the
rotating parts, affecting the UAV’s energy efficiency and the PID controller’s response to
rotational commands.

B_a is obtained through empirical testing, measuring the resistance to rotation at
different speeds. It is included in the simulation to ensure that the controller compensates
for these frictional forces when maintaining stable flight or when changing directions.

K_t is obtained from motor testing; this constant is essential for the control algorithms
that manage motor speed. It is used to accurately translate control inputs into motor torques,
which is crucial for maintaining desired thrust levels and for maneuvering the UAV.

K_v is also obtained from motor testing; the k_v value is used in the motor control
subsystem of the UAV’s simulation model. It helps the optimization algorithm to under-
stand the relationship between voltage and the resulting motor speed, thus enabling precise
speed control for stable flight.

L_a is usually measured in an electrical way, and it is used in the electrical modeling
of the motor in the UAV control system to determine the current consumption and the
phase difference between voltage and current. This affects the PID controller’s ability to
accurately adjust the motor speed in a variety of operations.

I_g is directly measured using a bifilar pendulum setup; it is crucial in the control
system for predicting the response of the rotors to the control inputs. It affects the dynamics
of how quickly a rotor can accelerate or decelerate, which in turn influences the UAV’s
agility and stability.

R_a is measured using electrical instruments. It plays a role in efficiency calculations.
γ_2 is derived by fitting empirical thrust data to a polynomial model; this coefficient

refines the thrust model by accounting for nonlinearities in thrust force generation. The sim-
ulation allows for more accurate prediction and control of the UAV’s vertical acceleration
and deceleration, which is crucial for tasks such as landing or avoiding obstacles.

γ_3 is also derived by fitting empirical thrust data to a polynomial model; like γ_2,
this higher-order coefficient provides even finer control over thrust force modeling. It is
used by the controller to ensure an accurate representation of the UAV’s lift dynamics,
especially under different loads and speed changes.

Next, we propose a control strategy based on the ground coordinate system position
vectors (

.
X,

.
Y,

.
Z) along with the rates of change of the roll, pitch, and yaw angular velocities

(˙α˙, ˙β˙, ˙γ˙). The designed controller [41] regulates the rate of change of the position
vector through an outer loop, while the inner loop targets the angular velocities of yaw,
pitch, and roll. The input to the controller is based on the difference between the actual
and desired values, with the output being the corresponding control quantity required to
achieve precise control. Next, we will detail the design process of the controller, including
the selection and optimization of parameters. The controller uses the deviation between
actual and target values as the input to generate appropriate control signals as outputs,
enabling precise adjustment of the system.
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3. Structure of the Control System
3.1. Design of Control System

We developed a fuzzy PID controller design method based on the whale optimization
algorithm, tailored to the nonlinear kinematic characteristics of quadrotor UAVs. Our
approach includes a cascaded control architecture, where the inner loop is responsible
for attitude control—specifically the angles of roll (ϕ), pitch (θ), and yaw (ψ)—while the
outer loop manages position control, targeting displacement at the x, y, and z coordinates.
The control system uses the difference between the desired and actual positions as the
input for the outer loop controller, which then calculates the necessary lift. Simultaneously,
the desired angles output by the outer loop and the actual angles from the inner loop are
used to compute angular errors. These errors serve as inputs for the inner loop controller,
which then determines the input torques required to maneuver the quadrotor drone. This
integrated approach enables the comprehensive management of the drone’s six degrees of
freedom, including both orientation and displacement. In the subsequent sections, we will
elucidate the application of different controllers in the inner and outer loops and elaborate
on the results of these implementations.

Figure 2 illustrates the configuration of the control system.
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Figure 2. The control system.

Figure 2 shows M, l, J_x, J_y, J_z, d, KT, KM, G, γ_2, γ_3. These parameters are defined
in Table 1, representing the mass of the quadcopter UAV, the distance from each rotor to the
center of gravity, the moment of inertia around the X-axis, the moment of inertia around the
Y-axis, the moment of inertia around the Z-axis, the distance from the motor to the center of
the body, the thrust constant of the rotor, the torque constant of the rotor, the gravitational
acceleration, and the second- and third-order thrust coefficients. Kp, Ki, and Kd represent
the proportional, integral, and derivative gain of the PID controller, respectively. Ee could
represent the external error or environmental error that affects the attitude and position
of the UAV. E generally stands for the error signal, which is the difference between the
desired attitude (or position) and the actual attitude (or position). This error signal is often
the input to the control system.

de
dt denotes the derivative of the error over time, which reflects the rate of change of

the error. It is a term often used in PID (Proportional–Integral–Derivative) control systems,
where it contributes to the D-component, providing a prediction of future errors based on
the current rate of change.

The diagram outlines a control system for a quadrotor UAV that achieves precise con-
trol and robustness to interference by integrating error feedback into real-time adjustments,
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ensuring that the UAV can effectively respond to changes in its environment and maintain
its intended flight path.

Table 1. Control system parameter table.

Parameter Value Unit Description

M 1.5 kg Mass of the quadrotor
l 0.25 m Distance from each rotor to the center of gravity

J_x 0.012 kg·m2 Moment of inertia around the X-axis
J_y 0.012 kg·m2 Moment of inertia around the Y-axis
J_z 0.024 kg·m2 Moment of inertia around the Z-axis
d 0.35 m Distance from the motor to the body center

KT 0.016 N·m/rpm Thrust constant for the rotors
KM 0.011 N·m/rpm Torque constant for the rotors
G 9.81 m/s2 Acceleration due to gravity

K_D 2.8 × 10−7 N·m·s2 Air drag torque coefficient
B_a 1.2 × 10−7 N·m·s Linear friction torque coefficient
k_t 0.018 N·m/A Electric torque constant
k_v 0.022 V·s Speed constant
L_a 0.0008 H Armature impedance
I_g 5.0 × 10−5 kg·m2 Rotor inertia
R_a 0.15 ohm Armature resistance
γ_2 1.6 × 10−6 N·s2 Second-order thrust force coefficient
γ_3 5.2 × 10−9 N·s3 Third-order thrust force coefficient

3.2. Design of Fuzzy PID Controller

In this part, we detail the adaptive tuning method of the PID controller, which uses
fuzzy PID to autotune the parameters and optimizes the command response ability of the
controller through the incremental PID strategy. The output of the controller is generated
using the following formula:

u(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

d
dt

e(t) (8)

Here, Kp, Ki, and Kd denote the proportional gain, integral gain, and differential gain,
respectively, and are modulated in the following proportions.

Kp = Kp0 + δKp

Ki = Ki0 + δKi

Kd = Kd0 + δKd

(9)

In this equation, u(t) denotes the control drive; e(t) is the error signal; Kp0, Ki0, and
Kd0 represent the basic gain of the PID controller; and δKp, δKi, and δKd are adjusted
according to the requirements. This adaptive approach enables the controller to adapt
to fluctuations in system dynamics and external disturbances, maintaining stability and
performance efficiency.

In this study, a control method combining fuzzy PID control and the whale optimiza-
tion algorithm is adopted, and its structure is shown in Figure 3. The chaotic whale can
adjust the δKp, δKi, and δKd of the PID controller, and then, the controller can control the
controlled object. We conclude that combining chaotic mapping, the whale algorithm, the
fuzzy rule, and PID control has a good control effect.
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The design of the fuzzy control rules in this study is described in Table 2.

Table 2. Fuzzy control rule table.

E
EC

NB NM NS ZO PS PM PB

NB PB PB PB PM PS PS ZO
NM PB PB PM PM PS ZO ZO
NS PM PM PM PS ZO NS NM
ZO PM PS PS ZO NS NM NM
PS PS PS ZO NS NS NM NM
PM ZO ZO NS NM NM NM NB
PB ZO NS NS NM NB NB NB

Kp control rules

E
EC

NB NM NS ZO PS PM PB
NB NB NB NB NM NS ZO ZO
NM NB NB NB NM NS ZO ZO
NS NM NM NS NS ZO PS PS
ZO NM NS NS ZO PS PS PM
PS NS NS ZO PS PS PM PM
PM ZO ZO PS PM PM PB PB
PB ZO ZO PS PS PB PB PB

Ki control rules

E
EC

NB NM NS ZO PS PM PB
NB PS PS ZO ZO ZO PB PB
NM NS NS NS NS ZO NS PM
NS NB NB NM NS ZO PS PS
ZO NB NM NS NS ZO PS PS
PS NB NM NS NS ZO PS PS
PM NM NS NS NS ZO PS PS
PB PS ZO ZO ZO ZO PB PB

Kd control rules

In the fuzzy control presented in this article, there are typically two inputs: the error
(E) and the rate of change of the error (EC), along with one output, which is the gain of
the control signal. Table 2 encompasses a set of rules for three fuzzy controllers, targeting
the proportional gain (Kp), integral gain (Ki), and differential gain (Kd). Each cell’s values,
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such as PB, PM, ZO, NS, NM, and NB, represent the linguistic variables of the fuzzy sets,
corresponding to distinct fuzzy logic rules.

The significance of each fuzzy logic rule is as follows:
NB (Negative Big): A significant negative number, indicating a large and negative

error or a large and negative rate of change of error.
NM (Negative Medium): A medium negative number, implying a moderate and

negative error or a moderate and negative rate of change of error.
NS (Negative Small): A small negative number, suggesting a small and negative error

or a small and negative rate of change of error.
ZO (Zero): Zero, meaning the error is near zero, or the rate of change of error is

near zero.
PS (Positive Small): A small positive number, signifying a small and positive error or

a small and positive rate of change of error.
PM (Positive Medium): A medium positive number, denoting a moderate and positive

error or a moderate and positive rate of change of error.
PB (Positive Big): A significant positive number, indicating a large and positive error

or a large and positive rate of change of error.
For instance, if the error (E) is a large positive number (PB), and the rate of change of

error (EC) is also a large positive number (PB), then the proportional gain (Kp) might be
set to a medium negative number (NM), meaning the controller may reduce the output to
attempt to minimize this large positive error.

3.3. Whale Algorithm-Optimized Fuzzy Control Rules

In the design of a fuzzy PID controller based on the whale optimization algorithm
(WOA), the number of control rules increases significantly due to the complexity of the
seven fuzzy state variables and the dual-input–triple-output system. Specifically, with a
fuzzy logic approach, the number of control rules alone can be in the hundreds. Deter-
mining these rules often relies on the experience and knowledge of experts and can be a
daunting task. To solve this problem, a whale optimization algorithm is introduced in this
study to optimize the rule set in the fuzzy controller.

Given that the ITAE (Integral of Time-weighted Absolute Error) takes into account
the product of the absolute error and time, it emphasizes the system’s performance in
the presence of long-standing errors in contrast to other performance metrics, such as
Mean Absolute Error (MAE) or Mean Squared Error (MSE). This emphasis is due to
ITAE’s calculation where the longer the error persists, the greater its impact on the overall
performance metric. This weighting method effectively penalizes large errors persisting
over time, encouraging the control system to reduce errors more rapidly and achieve a
steady state quickly. Moreover, ITAE reduces reliance on expert experience, making the
optimization process more objective and reliable. In multi-input multi-output systems,
each output directly affects performance, and ITAE allows for a balanced consideration of
the long-term performance of each output, thereby finding an optimized overall solution in
complex control systems. In short, ITAE provides an effective means of balancing long-term
performance and rapid system responsiveness. In this study, when designing the fuzzy PID
controller using the Chaotic Mapping Whale Optimization Algorithm (WOA), considering
the potential high complexity and the potentially large number of control rules, utilizing
ITAE as the performance criterion simplifies the controller design. It quantifies the control
system’s response to errors over time and provides a clear objective function, enabling the
whale optimization algorithm to explicitly pursue a control strategy that reduces long-term
errors throughout the optimization process.

Therefore, in this study, we use integration time multiplied by the absolute error (ITAE)
as a performance criterion to evaluate the optimization process. This criterion is achieved
by calculating the time integration of the error of the control quantities X1 and X2. In the
whale optimization algorithm, the fitness function is defined as J(ITAE) = 1/

∫ ∞
0 t

∣∣H(t)
∣∣dt ,

where H(t) denotes the control error. The goal of optimization is to maximize this fitness
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function, which means that the larger the value of the fitness function, the better the control
performance achieved.

3.4. Whale Algorithm
3.4.1. Conventional Whale Optimization Algorithm

The traditional whale optimization algorithm (WOA) is a biomimetic optimization
algorithm proposed by Mirjalili and Lewis in 2016 [42] to mimic the social behavior and
hunting mechanisms of humpback whales. It has been applied in various fields, including
in control systems such as fuzzy PID (proportional–integral–derivative) controllers for
stabilizing quadcopter UAVs. In this case, the WOA can optimize the parameters of the
PID controller to improve performance and stability.

The algorithm functions by simulating the bubble-net hunting strategy of humpback
whales, which is described below.

Encircling prey: Whales locate and encircle their prey before starting the bubble-net
feeding method. Mathematically, this behavior is modeled as

→
D =

∣∣∣∣→C ·
→
X
∗
(t)−

→
X(t)

∣∣∣∣
→
X(t + 1) =

→
X
∗
−

→
A·

→
D

(10)

In this equation,
→
X
∗

is the position vector of the target, which is the best solution found

so far,
→
X is the whale’s position vector,

→
A and

→
C are coefficients that help determine the

nature of the whale’s movement toward the prey or target, t is the current iteration, and
→
D

is the calculated distance vector between the whale’s position and the target’s position.
Bubble-net attacking method (exploitation phase): This phase includes two approaches:

shrinking encirclement and spiral position update.

Shrinking encirclement mechanism: This is achieved by decreasing the value of
→
A in

the equation.
Spiral position update: The spiral equation between the whale and the prey (optimal

solution) is defined as
→
X(t + 1) =

→
D

′
·eb·l · cos(2πl) +

→
X
∗

(11)

In the scenario described above,
→
D is the distance between the whale and its prey. The

constant b is used to define the spiral shape, and l is a random number within the range of
[−1, 1].

Searching for prey (exploration phase): To simulate the random search for prey, the

WOA utilizes the vector
→
A, where the position of the search agents is updated when∣∣∣∣→A∣∣∣∣ > 1, allowing the whales to search outside the region of the current best solution. This

mechanism ensures global optimization capability and exploration of the search space.

Parameter adaptation: The algorithm adaptively adjusts the parameters
→
A,

→
C through-

out the optimization process to balance exploration and exploitation, ensuring that the
algorithm converges to the global optimum.

In the context of quadcopter control, the WOA is generally used to optimize the PID
control parameters (Kp, Ki, and Kd) to achieve the desired performance criteria, such as
minimum overshoot, settling time, and steady-state errors. The optimization process is
as follows:

1. Define the cost function based on the dynamic response characteristics of the quadcopter.
2. Initialize the population of the candidate solution (whales) using random PID parameters.
3. Iteratively apply the WOA step to adjust the PID parameters to the optimal set of

minimized cost functions.
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This approach makes it possible to design a quadcopter control system that adaptively
responds to changes in dynamics and external disturbances, thereby enhancing stability
and maneuverability.

3.4.2. Chaotic Mapping-Optimized Whale Algorithm

The chaos mapping-enhanced whale optimization algorithm represents a simple
method for tuning the PID controller, which is essential for achieving the expected dynamic
response in the control system. Its rationale relies on the use of complex models of chaos
theory to diversify the initial population of potential solutions, enabling a more thorough
exploration of the solution space. The enhanced mathematical foundation is built on top of
the application of logic mapping, expressed as xK+1 = 4xk(1 − xk). When the parameter
value is within a certain range, it becomes more refined due to its chaotic behavior. By
merging chaotic sequences, the algorithm is unlikely to succumb to the local optimal trap,
which is a common drawback of traditional time-loss methods. This results in a more robust
and reliable PID controller, as the optimization process explores all possible parameter
settings, ensuring the responsiveness and stability of the control system.

In practice, the chaotic WOA first generates initial populations using chaotic se-
quences [43] to ensure good distribution in the latent solution space. Each individual in
the population represents a set of PID parameters. The algorithm then iteratively updates
each individual’s position in the population using the original WOA equation and chaotic
sequences to navigate to the optimal PID parameter set. This process involves evaluating
the performance of each group using a predefined cost function that reflects the expected
outcomes of the control system, such as minimal overshoot, fast settling time, and low
steady-state error.

The use of chaotic mapping to initialize the whale optimization algorithm (WOA)
has several advantages over the traditional WOA. Due to its inherent irregularity and
stochasticity, chaotic mapping can more uniformly cover the search space, avoiding the
convergence of candidate solutions to local optima. This results in a more diverse initial
population, which enhances the global search capability and could more rapidly converge
to the global optimum. Thus, incorporating chaotic mapping into the WOA can enhance
the algorithm’s ability to escape from local minima, enable a more thorough exploration
of the solution space, and help solve complex optimization problems such as tuning
PID controllers.

Therefore, we integrate chaotic mapping into the optimization process, aiming to
enhance the performance and reliability of the PID controller by boosting global search
capabilities and preventing premature convergence.

4. Simulation and Results Analysis
4.1. Semi-Physical Simulation

This study utilized a hardware-in-the-loop simulation method to conduct flight sta-
bility experiments on a quadrotor drone to evaluate the robustness, control precision, and
latency optimization offered by our fuzzy controller based on the chaotic map-enhanced
whale optimization algorithm. The use of a Raspberry Pi provides powerful computing
capabilities for the drone. Its onboard Ubuntu system allows users to freely modify the
interface settings between the Raspberry Pi and the drone. By programming the Raspberry
Pi, control algorithms can be directly written into the ROS system. Through Pixhawk, the
quadrotor can be flown along a predetermined trajectory, ultimately achieving the effect of
trajectory tracking. As shown in Figure 4.
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The main hardware components and their uses are as follows:

1. A host machine with a virtual machine installed: runs Ubuntu 22.04 and the ROS system.
2. Pixhawk V6X (Holybro from China): an advanced flight controller that controls

the drone.
3. Raspberry Pi 4B (From the United Kingdom): runs external control programs and

system integration and sends external control commands or network signals to the
flight controller.

4. Flycolor X-Cross 80a HV3 5-12S 32bit ESC (Electronic Speed Controller) ( Flycolor
From America): receives signals from the flight controller, processes them, and drives
the rotation of the motors.

5. RCINPOWER G6215-330 Brushless Motor: (SUNNYSKY, From Zhongshan City,
China) rotates to propel the propeller blades, providing upward lift for the drone.

6. A 25,000 mAh 6S solid-state battery (MAD from China): powers the drone.
7. H16 pro remote control (CUAV from China) (including the receiver), with the receiver

installed on the aircraft and the remote control manually operated: controls the plane.
8. TAROT X4 960 MM carbon fiber (Overfly is from Wenzhou, China) frame: the main

support structure for the drone.
9. NEO v3 Pro Positioning Module: (CUAV from China) offers high precision, real-time

positioning capabilities, and other autonomous navigation systems.
10. S1 LIDAR (SLAMKIT from China Shanghai) with a ranging radius of 40 m: provides

resistance to strong light exposure.
11. Dual-axis visual obstacle avoidance: a dual-axis visual obstacle avoidance system

with 1080 P resolution for two-dimensional obstacle detection and avoidance.
12. UBEC: (HOBBYWING from China): provides a stable power supply for the Raspberry Pi.
13. Ammeter: provides a reliable power supply to the flight controller while detecting

real-time voltage levels.

4.2. Closed-Loop System Stability

The whale optimization algorithm (WOA) and fuzzy control PID applied to quadrotor
UAVs have shown promising stability results due to their robustness in dealing with
interference and achieving precise control, especially in trajectory tracking and altitude
control. Here are three studies that demonstrate the effectiveness and stability of these
methods in quadcopter UAV applications.

One research paper integrated the WOA to optimize PID controller parameters, suc-
cessfully reducing overshoot and improving response times in UAV flight dynamics [41].
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Fuzzy Control PID: Implementation of fuzzy control alongside PID in quadrotor UAVs
has shown improved handling of uncertainties and disturbances, leading to more stable
flight patterns [44]. Research on combining fuzzy logic with PID control for UAVs empha-
sized enhanced stability and error minimization during complex flight maneuvers [45].

Next, we added chaos mapping using tools such as MATLABR2022b and Simulink to
effectively demonstrate in a controlled virtual environment. The simulation can model the
complex dynamics and control system so as to analyze the behavior and control strategy
of the drone under various conditions in detail, and the results show that our closed-loop
system is theoretically stable.

4.3. Discussion of Simulation and Results

To verify the effectiveness of the proposed method, the design of a controller is
described, and simulation experiments are performed comparing the advantages and
disadvantages of the three types of controllers under the same conditions, all numerical
simulations run on a computer equipped with an AMD Ryzen 7 4800 H with Radeon Graph-
ics 2.90 GHz processor and 32.0 GB, operating system Windows 11 Home Chinese Version,
using MATLAB R2020b for programming and data processing. All UAV parameters are the
same, as shown in Table 1. The controllers are a fuzzy PID controller optimized by a whale
optimization algorithm enhanced by chaos mapping, a conventional fuzzy PID controller,
and a traditional PID controller. The experimental conditions were as follows: the initial
state of the UAV was set to zero, the simulation time was set to 20 s, the displacement target
set point was 1 m, while the target set point for roll and pitch angles was 0◦, and the yaw
angle was 30◦.

The simulation results are described below.
The simulation results show that the improved whale optimization algorithm can

offer faster convergence speed and better stability in managing the displacement response
of complex control systems, representing a new solution for optimizing control systems.
Additionally, this study analyzes its related parameters.

In Figure 5, (a), (b) and (c) represent responses in the x, y, and z directions over time,
respectively. Figure 5 and Table 3 demonstrate that our algorithm consistently achieves
lower overshoot and faster settling time across all three types of displacement responses.
Notably, in the Y-axis displacement, the overshoot reaches an optimal solution of zero,
significantly enhancing the aircraft’s stability and positioning accuracy, reducing battery
energy consumption for overshoot correction, and ultimately decreasing the risk of flight
accidents. According to the evaluation standards in the field of engineering control, it is
also evident that the chaotic map-enhanced whale optimization algorithm substantially
improves the response time and control precision in displacement responses. This lays a
solid foundation for applying this controller in various drone operations requiring low
latency and high robustness, such as precision positioning and rapid obstacle avoidance.
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Table 3. Comparison of the displacement of the three controllers.

Controller Adjust Time/s Overshoot/% Steady-State Error/m

X

PID 17.95 14.5 0.01
Fuzzy PID 8 18.3 −0.01

Whale-optimized fuzzy PID 2.65 6.5 −0.01

Y

PID >20 43.0 −0.02
Fuzzy PID 13.3 5.0 0.007

Whale-optimized fuzzy PID 3.7 0 −0.01

Z

PID 4.2 22.5 0.01
Fuzzy PID 2.7 16.7 −0.01

Whale-optimized fuzzy PID 2.6 15.7 −0.01

As shown in Figure 6, (a)–(c) represent the response of the control system over ϕ,
θ, ψ, respectively, over time. As shown in Table 4.The simulation results show that the
improved whale optimization algorithm offers faster convergence speed and improved
stability in addressing the angular response of complex control systems. This represents
a new solution for the optimization of control systems. Additionally, this study further
analyzes its related parameters.
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Table 4. Comparison of the angles of the three controllers.

Controller Adjust Time/s Down Overshoot% Overshoot/% Steady-State
Error/Radian

ϕ

PID 2.31 24.2 24.8 −0.001
Fuzzy PID 2.25 19.5 11.6 0

Whale-optimized fuzzy PID 2.07 18.3 11.0 0

θ

PID 1.26 42.8 39.5 0.001
Fuzzy PID 3.2 32.7 27.9 0.001

Whale-optimized fuzzy PID 1.1 24.8 23.0 0

ψ

PID 18 no 74.5 −0.01
Fuzzy PID 2.3 no 61.6 0

Whale-optimized fuzzy PID 1.85 no 55.8 0
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Regarding angle responses, our controller performs better, showing superior values
and performance in terms of not only its settling time, overshoot, and undershoot but also
its steady-state error, which is essentially zero. This indicates that the controller optimized
by the chaotic whale algorithm can achieve more precise expected outputs and maintain its
predetermined direction and path without drifting.

4.4. Anti-Interference Property

Similarly, we introduced a sinusoidal disturbance with an amplitude of 0.001 and a
frequency of 1 radian/s to simulate external disturbances that have periodicity or occur
at specific frequencies. This was utilized to further assess the robustness and dynamic
response characteristics of the three drone control systems when faced with such specific
frequency disturbances.

As shown in Figure 7, (a)–(f) is to control the position response and Angle response of
the system over time under sinusoidal in terferencethe fuzzy PID controller optimized by
the chaotic whale algorithm outperforms other controllers in terms of overshoot, settling
time, and steady-state error even under sinusoidal disturbances. Furthermore, it exhibits
significantly better performance in terms of the frequency and amplitude of oscillations.
For example, the conventional PID shows high-frequency oscillations between 3 and 7 s
on the roll axis, and the fuzzy PID exhibits high-frequency oscillations from 2.5 to 5 s on
the pitch axis. Additionally, the amplitude of the PID reaches nearly 0.6 m on the Y-axis
and 20◦ on the yaw axis. These oscillations under disturbance not only imply differences
in the system’s stability and efficiency but also indicate severe wear on the drone and
safety risks due to low control performance under disturbances. In summary, the chaotic
map-enhanced whale-optimized fuzzy PID also demonstrates significant performance in
terms of disturbance rejection.
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5. Conclusions

In this study, in order to address the low convergence accuracy and slow convergence
speed of the traditional WOA, the initial population diversity of logical chaos mapping
was proposed. According to the optimization algorithm’s formula, to establish a dynamic
model, we used CRICLE to improve the traditional whale algorithm, resulting in the
proposed chaotic whale algorithm fuzzy PID controller. The simulation experiments were
carried out using MatlabR2022b SIMULINK, and the following conclusions were drawn.

1. Compared to the fuzzy PID and ordinary PID, the chaotic mapping-based whale
optimization algorithm fuzzy PID gives the control system higher control accuracy
and stronger robustness.

2. Compared to the fuzzy PID and ordinary PID, the whale optimization algorithm
fuzzy PID based on chaotic mapping performs better in an interference environment.

3. The research in this paper will have better applications in drones that require high
precision and robustness, such as agricultural drones for pesticide spraying and aerial
drones for avoiding skyscrapers. It significantly improves the operational efficiency
and safety of drones in complex environments through the integration of chaotic
mapping and whale optimization algorithms.
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