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Abstract: Efficient gearbox fault diagnosis is crucial for the cost-effective maintenance and reliable 

operation of rotating machinery. Despite extensive research, effective fault diagnosis remains chal-

lenging due to the multitude of features available for classification. Traditional feature selection 

methods often fail to achieve optimal performance in fault classification tasks. This study introduces 

diverse ranking methods for selecting the relevant features and utilizes data segmentation tech-

niques such as sliding, windowing, and bootstrapping to strengthen predictive model performance 

and scalability. A comparative analysis of these methods was conducted to identify the potential 

causes and future solutions. An evaluation of the impact of enhanced feature engineering and data 

segmentation on predictive maintenance in gearboxes revealed promising outcomes, with decision 

trees, SVM, and KNN models outperforming others. Additionally, within a fully connected net-

work, windowing emerged as a more robust and efficient segmentation method compared to boot-

strapping. Further research is necessary to assess the performance of these techniques across diverse 

datasets and applications, offering comprehensive insights for future studies in fault diagnosis and 

predictive maintenance. 

Keywords: gearbox; fault diagnosis; feature selection; data segmentation; predictive models;  

comparative analysis 

 

1. Introduction 

Gearboxes and rotating machinery are crucial across many industries for their adapt-

ability to torque and speed requirements [1]. In wind turbine systems, gearboxes require 

regular maintenance to ensure operational safety and reliability. Gearbox maintenance is 

time-intensive with an average of 256 h, with 59% of system failures attributed to gearbox 

malfunctions [2]. Factors contributing to these failures include transportation issues, mis-

alignment, tool surface irregularities, overloading, and design/manufacturing errors [3]. 

Studies detail wind turbine sub-assembly failure rates, with reports of 60 days of annual 

downtime due to gearbox faults impacting system efficiency and productivity. 

Predictive maintenance, an advanced form of condition-based monitoring, predicts 

machine failures by analyzing system health data collected through methods like vibra-

tion analysis, thermography, visual inspection, and tribology [4]. Vibration monitoring is 

particularly favored due to its prevalence in stationary machines, allowing for the identi-

fication of undesirable patterns indicative of failure states. With the advancement of tech-

nology, intelligent diagnostic systems, notably artificial intelligence (AI) and deep learn-

ing methods, have gained prominence for their ability to learn from raw data. Statistical 

models, conventional machine learning, and deep neural networks are often utilized in 

data-driven prognostics for predictive maintenance objectives, as depicted in Figure 1. 
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Figure 1. Overview of data-driven prognostic models. 

In gearbox predictive maintenance, feature engineering is essential for optimizing 

predictive models by selecting and constructing the relevant features from raw sensor 

data. Various techniques can be employed, including statistical features to capture funda-

mental behavior, time-domain features for degradation patterns, frequency-domain fea-

tures for gear faults, amplitude modulation features for gear faults, waveform features for 

signal morphology, time-frequency features for simultaneous time and frequency infor-

mation, and trend analysis features for long-term degradation trends [5]. Feature selection 

is crucial for enhancing model performance and interpretability. Filter methods like cor-

relation analysis or information gain, wrapper methods like recursive feature elimination 

or genetic algorithms, and embedded methods like L1 regularization or tree-based feature 

importance aid in selecting key features, contributing to dimensionality reduction, noise 

mitigation, and improved model accuracy [6]. 

Moreover, feature selection contributes to enhancing model performance and gener-

alization, thereby mitigating the risk of overfitting [7]. The inclusion of irrelevant or noisy 

features in the model can result in decreased prediction accuracy and increased complex-

ity. Feature selection addresses this concern by identifying the most relevant features di-

rectly influencing the predictive task. By prioritizing the most informative features, the 

model gains robustness and becomes better equipped to capture the underlying patterns 

and relationships associated with gearbox failures. Additionally, feature selection en-

hances the interpretability and comprehension of predictive models. Identification of the 

most influential features offers insights into the primary factors contributing to gearbox 

failures. This knowledge aids domain experts in comprehending the root causes of failures 

and optimizing maintenance strategies, facilitating informed decision-making processes 

[8]. By selecting a concise set of features, feature selection facilitates improved interpreta-

tion of the results, enabling stakeholders to gain a better understanding of gearbox health 

and the factors driving degradation. 

This study focuses on the multifaceted aspects of feature selection processes aimed 

at reducing data dimensionality by identifying a subset of relevant features. This dimen-

sionality reduction serves to enhance computational efficiency and alleviate the chal-

lenges associated with the “curse of dimensionality”, particularly pertinent in high-di-

mensional datasets. By eliminating extraneous features, feature selection concentrates the 

model’s attention on the most informative aspects of the data, facilitating more effective 

detection of gearbox faults. Two datasets from distinct gearboxes were utilized for this 

research. The first dataset delineated the processes of feature engineering and ranking 

selection, while the second dataset served for validation purposes. Figure 2 provides an 

overview of the defined processes for this research. Initially, vibration data from the first 
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dataset underwent pre-processing to convert it into a time-series format. The data was 

then classified into three categories: raw data without segmentation, data processed 

through windowing, and data processed through bootstrapping. Subsequently, time-do-

main features were extracted using different condition indicators. Feature selection was 

performed at the concluding stage, wherein a limited set of features were chosen for en-

hanced execution. Various feature ranking methods were employed to facilitate this selec-

tion process. Following feature engineering, the data was analyzed to comprehend the 

impact of applied transformations on its patterns, relationships, and suitability for ma-

chine learning (ML) models. This ensured that the engineered features align with the ob-

jectives and augment predictive performance. The selected features were subsequently 

used as input into various machine learning classification models to determine the opti-

mal models for predictive purposes. The primary motivation for this research lies in en-

hancing feature engineering processes, particularly focusing on feature selection, to 

achieve optimal outcomes for predictive models. 

 

Figure 2. Data processing steps used in the current study. 

2. Dataset and Methodologies 

2.1. Dataset Processing 

An open-source, publicly available gearbox dataset was used for the study [2]. The 

data was sourced from SpectraQuest’s Gearbox Fault Diagnostics Simulator 

(https://data.world/gearbox/gear-box-fault-diagnosis-data-set) (accessed on 28 November 

2022). This dataset comprised both healthy and faulty vibration data obtained from a mal-

functioning gearbox operating under varying load conditions (ranging from 0% to 90%) 

at a constant rotational speed of 30 Hz. Figure 3 presents the vibration measurements of a 

single channel of this gearbox dataset [2]. 

 

Figure 3. Raw data of vibration measurements of a single channel of this gearbox dataset as obtained 

from SpectraQuest’s Gearbox Fault Diagnostics Simulator. 

2.2. Data Segmentation 
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Segmentation of data is a crucial step in facilitating effective analysis and training of 

machine learning models [9]. It involves dividing the dataset into distinct subsets or seg-

ments. Three main types of segmentation viz. temporal, spatial, and categorical were ex-

plored in this study. Temporal segmentation involved partitioning the data based on time 

aspects, ensuring that samples from different time periods were separated [9]. This is par-

ticularly useful for time series analysis and forecasting. Spatial segmentation partitioned 

the data based on geographical or spatial attributes [10]. Categorical segmentation divided 

the data based on discrete categories or classes [11]. To ensure the reliability, the resulting 

segments were evaluated and validated using techniques such as cross-validation [12]. 

In addition to traditional segmentation methods, sliding window techniques were 

employed for data stream analysis. Specifically, fixed-length non-overlapping sliding 

windows (FNSW) and fixed-length overlapping sliding windows (FOSW) were used [13]. 

FNSW was used to partition the data into equal-sized independent segments, while FOSW 

involved sharing some data segments to ensure a higher temporal resolution [14]. To ad-

dress constraints arising from data availability, bootstrapping was employed as a 

resampling technique [15]. It involved creating multiple subsets from the original dataset 

by random sampling with replacements. Twenty datasets were derived through experi-

mental procedures. A sample extracted from each dataset underwent comparative analy-

sis with the sample data originating from the original dataset. Subsequently, only those 

datasets demonstrating a proximal relationship between their sample mean and the mean 

of the original dataset were considered for progression in the analysis. Models trained on 

these subsets were then evaluated for stability and uncertainty. For this study, the follow-

ing segmentation was carried out for the original dataset: 

• Windowing: windowing size was 10 and the original dataset was sequenced to 10-

fold; 

• Bootstrapping: resampling size was 10 and the new data was resampled to 10-fold; 

• Figure 4a,b describe the windowing (FNSW) and bootstrapping techniques, respec-

tively, employed for this study. The algorithm used for this research is described in 

Algorithm 1. 

 

Figure 4. (a) Data segmentation with windowing, (b) data segmentation with bootstrapping. 

Algorithm 1. Calculate y = bootstrap(x,N) 

Require: x > 0∧N ≥ 1 where x is Input data, N is bootstrap resamples 

Ensure: y = bootstrap(x,N) 

1: if N < 1 then 

2:      N ⇐1 

3: end if 

4: if x < 1 then 

5:      print(Input data is insufficient) 

6: end if 

7: S⇐ size(x) 
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8: if S == 1 then 

9:      Out ⇐X(rand{S,N}) 

10: end if 

2.3. Condition Indicators 

Vibration analysis is a widely used technique for predictive maintenance. In this 

study, time-based analysis was used, which involved statistical measurement techniques 

for feature extraction from the vibration signals obtained from the gearbox [16]. These 

features served as condition indicators, providing information about the health status of 

the gearbox. The condition indicators employed in this study included the following: 

• Root mean square (RMS) quantifies the vibration amplitude and energy of a signal 

in the time domain. It is computed as the square root of the average of the sum of 

squares of signal samples, expressed as: 

𝑅𝑀𝑆𝑥  = √
1

𝑁
[∑ (𝑥𝑖)

2𝑁
𝑖=1 ]  (1) 

where x denotes the original sampled time signal, N is the number of samples, and i is the 

sample index. 

• Standard deviation (STD) indicates the deviation from the mean value of a signal, 

calculated as: 

𝑆𝑇𝐷 = √
1

𝑁−1
∑ (𝑥𝑖 − 𝑥 )2𝑁
𝑖=1   (2) 

where xi (i = 1,..,N) is the i-th sample point of the signal x, and 𝑥  is the mean of the signal.  

• Crest Factor (CF) represents the ratio of the maximum positive peak value of signal 

x to its rmsx value. It is devised to boost the presence of a small number of high-

amplitude peaks, such as those caused by some types of local tooth damage. It serves 

to emphasize high-amplitude peaks, such as those indicating local tooth damage. A 

sine wave has a CF of 1.414. It is given by the following equation: 

CF= 
𝑥0−𝑝𝑘

𝑟𝑚𝑠𝑥
 (3) 

where pk denotes the sample for the maximum positive peak of the signal, and x0−pk is the 

value of x at pk.  

• Kurtosis (K) measures the fourth-order normalized moment of a given signal x, re-

flecting its peakedness, i.e., the number and amplitude of peaks present in the signal. 

A signal comprising solely Gaussian-distributed noise yields a kurtosis value of 3. It 

is given by: 

𝐾 =
√𝑁∑ (𝑥𝑖−𝑥 )

4𝑁
𝑖=1

(∑ (𝑥𝑖−𝑥 )
2𝑁

𝑖=1 )
2   (4) 

• Shape factor (SF) characterizes the time series distribution of a signal in the time do-

main: 

𝑆𝐹 =
√
1

𝑁
[∑ (𝑥𝑖)

2𝑁
𝑖=1 ]

√
1

𝑁
[∑ |𝑥𝑖|

2𝑁
𝑖=1 ]

  (5) 

• Skewness assesses the symmetry of the probability density function (PDF) of a time 

series’ amplitude. A time series with an equal number of large and small amplitude 

values has zero skewness, calculated as: 
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𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑁∑ (𝑥𝑖−𝑥 )

3𝑁
𝑖=1

{√∑ (𝑥𝑖−𝑥 )
2𝑁

𝑖=1 }

3  
(6) 

• Clearance factor indicates the symmetry of the PDF of a time series’ amplitude, given 

by: 

𝐶𝐹 =
max|𝑥𝑖|

1

𝑁
[∑ √|𝑥𝑖|

2𝑁
𝑖=1 ]

  (7) 

• Impulse factor denotes the symmetry of the probability density function (PDF) of a 

time series’ amplitude, calculated as: 

𝐼𝐹 =
max |𝑥𝑖|

1

𝑁
[∑ |𝑥𝑖|

𝑁
𝑖=1 ]

  (8) 

• Signal-to-noise ratio (SNR) represents the ratio of the useful signal, such as desired 

mechanical power or motion, to unwanted noise and vibrations generated within a 

gearbox during operation. It is expressed as: 

𝑆𝑁𝑅 = 101𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)  (9) 

where P is the amplitude in dB. 

• Signal-to-noise and distortion ratio (SINAD) measures signal quality in electronics, 

comparing the desired signal power to the combined power of noise and distortion 

components: 

𝑆𝐼𝑁𝐴𝐷 = 101𝑙𝑜𝑔10 (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑠𝑖𝑔𝑛𝑎𝑙+𝑃𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛
)  (10) 

where P is the amplitude in dB. 

• Total harmonic distortion (THD) assesses how accurately a vibration system repro-

duces the output signal from a source. 

• Mean represents the average of the sum of squares of signal samples. 

• Peak value denotes the maximum value of signal samples. 

These indicators were selected based on their ability to capture relevant information 

about the vibration signals and their potential to identify faults in the gearbox. The mean 

and standard deviation responses from the original dataset’s four channels are depicted 

in Figures 5 and 6, respectively. Figure 7 illustrates the correlation plot for all features 

extracted via condition indicators without data segmentation. 
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Figure 5. Mean response between different vibration data. 

 

Figure 6. Standard deviation response between different vibration data. 
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Figure 7. Correlation plot for all features without data segmentation. 
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2.4. Feature Ranking and Selection 

Feature ranking is a critical step in data analysis and machine learning as it helps 

identify the most informative features for a given task. In this study, various feature rank-

ing methods were employed to assess the relevance and discriminatory power of the fea-

tures. These methods allowed the study to rank the features based on their ability to con-

tribute to the predictive task and identify the most relevant features for further analysis. 

The methods are described as below: 

• T-test is generally employed to discern statistically significant differences between 

the means of two groups. Herein, it was applied in feature ranking to compare fea-

ture means across distinct classes or groups. Features exhibiting significant differ-

ences in means are identified as relevant for discrimination purposes [17]. 

• ROC analysis serves as a pivotal method for assessing the efficacy of classification 

models. Within the context of feature ranking, the ROC curve is utilized to evaluate 

the trade-offs between true positive rates and false positive rates at varying feature 

thresholds. Features characterized by a higher area under the ROC curve (AUC) are 

indicative of superior discriminatory power and are consequently ranked higher [18]. 

• One-way analysis of variance (ANOVA) method is used to compare means across 

three or more groups. Herein, one-way ANOVA served for feature ranking to ascer-

tain the significance of variation in feature values across different classes or groups. 

Features demonstrating noteworthy differences in means between groups are 

deemed pertinent for discrimination [19]. 

• Monotonicity, denoting the relationship between a feature and its target variable, is 

evaluated using Spearman’s rank correlation coefficient. Features exhibiting mono-

tonic relationships with the target variable are considered informative for the study’s 

objectives [20]. 

• Entropy, which serves as a measure of dataset disorder or uncertainty, plays a crucial 

role in feature ranking. Features characterized by higher entropy values signify 

greater variability and information content. To rank features based on their predic-

tive utility, entropy-based methods such as information gain and mutual information 

are employed. 

• Kruskal–Wallis test is a non-parametric statistical test which is utilized to compare 

medians across three or more groups. In feature ranking, this test is instrumental in 

assessing the significance of feature variations across different classes or groups. Fea-

tures demonstrating significant median differences are identified as essential for dis-

crimination [21]. 

• Variance-based unsupervised ranking was used to evaluate feature variability. Fea-

tures exhibiting high variance values are indicative of greater diversity and are thus 

considered more informative for clustering or unsupervised learning tasks [22]. 

• Bhattacharyya distance is a metric quantifying the dissimilarity between probability 

distributions and is utilized to assess feature discriminative power. Larger 

Bhattacharyya distances between feature value distributions across classes indicate 

greater separability, thus highlighting the importance of features for classification 

purposes [23]. 

Figures 8–11 show different feature rankings with one-way ANOVA and t-test with 

windowing and bootstrapping, respectively. 



Machines 2024, 12, 261 10 of 24 
 

 

 

Figure 8. Ranking metric with one-way ANOVA with windowing. 

 

Figure 9. Ranking metric with t-test with windowing. 
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Figure 10. Ranking metric with one-way ANOVA with bootstrapping. 

 

Figure 11. Ranking metric with t-test with bootstrapping. 
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The significance of correlation values ranging from 0 to 1 in ranking selection was 

also examined. A correlation of 0 signified the absence of a linear relationship between 

variables, indicating the importance of considering alternative factors for ranking deci-

sions. Conversely, a correlation of 1 indicates a perfect positive relationship, indicating 

strong evidence of consistent association between variables [24]. For the current research, 

a correlation importance of 1 was adopted to ensure a consistent association with each 

feature and maximize the significance of correlation in the analysis.  

Normalizing schemes are crucial preprocessing steps in feature selection. The choice 

of normalization scheme depends on the specific requirements of the feature selection al-

gorithm and the characteristics of the data. Normalization ensures that different features 

are brought to a similar scale, facilitating faster convergence of algorithms and preventing 

certain features from overshadowing others [25]. Among the normalization schemes, such 

as min-max, softmax-mean-var, and none, min-max normalization is preferred due to its 

ability to maintain data relationships, aid interpretation, ensure fair treatment of algo-

rithms, expedite convergence, and offer resistance to outliers [26]. The formula for min-

max normalization is shown below: 

𝑋𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
  (11) 

Min-max normalization, also referred to as feature scaling, scales the data to a fixed 

range, typically between 0 and 1, using the minimum and maximum values of the data. 

This method preserves the relative relationships between data points while constraining 

them to a specific range. The formula for min-max normalization is provided, and it was 

the chosen normalization scheme for the present research. 

2.5. Machine Learning Models for Gearbox Predictive Maintenance 

Gearbox predictive maintenance is essential for ensuring the reliability and perfor-

mance of industrial machinery. Most commonly used machine learning models are deci-

sion trees [27], support vector machines (SVMs) [28], neural networks [29], linear/logistic 

regression [30], random forests [31], ensemble learning [32], naive Bayes [33], and k-near-

est neighbors [34]. These models are selected based on their ability to analyze large 

amounts of data and identify patterns indicative of potential faults in the gearbox.  

Using machine learning (ML) for gearbox predictive maintenance poses the key chal-

lenge of feature selection from extensive sensor data. The fully connected layer facilitates 

comprehensive connectivity between neurons across layers, enabling the learning of com-

plex relationships between input features and output predictions [35]. Mathematically, it 

is represented as: 

𝑦 = 𝜎 (𝑊𝑖𝑗𝑋 + 𝑏) (12) 

where 𝑦   is the output vector, W denotes the weight matrix defining connections be-

tween neurons, 𝑋  is the input vector, b is the bias vector, and σ signifies the activation 

function introducing non-linearity. It captures intricate data patterns essential for accurate 

predictions, making it a pivotal element in neural network design. Figure 12 depicts the 

layout of a fully-connected neural network layer. Table 1 shows the detailed parameters 

used for this study. For this study, nine networks, corresponding to nine distinct cases, 

were employed. These cases were categorized based on the total number of input layers, 

with options of 50, 100, and 500 units and normalization with z-score, none and z-center 

[36].  
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Figure 12. Layout of a fully connected neural network. 

Table 1. Overview of the parameters of the fully connected later network. 

Layer Type/Training Settings Units 

Feature layer  20 Features 

FullyConnectedLayer1  (50, 100, 500) Fully connected layer 

BatchNormalizationLayer  Batch normalization with 100 channels 

RELULayer ReLU 

FullyConnectedLayer  2 fully connected layers 

Softmaxlayer  Softmax 

ClassificationOutputLayer  crossentropyex with classes “Faulty”/”Healthy” 

Mini batchsize  10 

Learning rate  0.001 

Epochs  30 

2.6. Performance Evaluation 

Performance evaluation was crucial for assessing the effectiveness of the segmenta-

tion approaches, feature selection methods, and machine learning models employed in 

the study. The k-fold cross-validation (with k = 10) was used to compare the performances 

across different iterations. The dataset was divided into segments based on groups with 

windowing and bootstrapping methods, and the process was iterated 10 times. This was 

carried out with a view to ensuring that each group was used as the testing set. In each 

iteration, one group (70%) was reserved for testing, one (15%) for validation, and the re-

maining groups (15%) for training. The evaluation metrics of the testing results across all 

iterations were aggregated to determine the final system performance. Notably, the per-

formance evaluation was conducted independently for two datasets. The system perfor-

mance was analyzed using four evaluation metrics as below [37]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (14) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (15) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
  (16) 

where  
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• TP (true positive): an occurrence is classified as TP if at least one predicted outcome 

is labelled “Healthy” when the true event value is labelled “Healthy”.  

• FP (false positive): an occurrence is classified as FP if at least one outcome is labelled 

“Faulty” when the true event value is labelled “Healthy”. 

• TN (true negative): an occurrence is classified as TN if at least one outcome is labelled 

“Faulty” when the true event value is labelled “Faulty”. 

• FN (false negative): an occurrence is classified as TP if at least one outcome is labelled 

with “Healthy” when the true event value is labelled “Faulty”. 

3. Results and Discussion 

3.1. Experimental Scenarios Based on Feature Selection and Ranking 

The experiment was carried out using different scenarios. The details of the experi-

mental variables and the obtained accuracy are described below in the following section. 

SCENARIO 1: Gearbox Fault Diagnosis Using Raw Data without Feature Selection 

For this case, the raw gearbox vibration dataset with classification as “Healthy” and 

“Faulty” was passed through different ML models. The model used in this case serves as 

a base model for experiment purposes. The dataset was distributed as 80% training and 

20% testing with the 10-fold cross-validation method. Table 2 shows the accuracy results 

of the different machine learning algorithms. At first glance, the maximum accuracy that 

these models could achieve is 60.8% which is fairly low and other models performed quite 

poorly. 

Table 2. Predictions based on raw data—without feature selection. 

Prediction Model  Sub-Type  Accuracy in % 

Decision tree 

Fine tree  58.3 

Medium tree  57.8 

Coarse tree  55.3 

Logistic regression 50.8  50.8 

Naive Bayes (Gaussian)  56.6 

KNN 

Fine KNN 54.8 

Medium KNN  58.1 

Coarse KNN  60.8 

Cosine KNN  56.2 

Cubic KNN  58.0 

Weighted KNN  57.4 

SCENARIO 2: Gearbox Fault Diagnosis Using Raw Data with Feature Selection and with-

out Ranking 

The raw gearbox vibration dataset with classification as “Healthy” and “Faulty” with 

feature selection based on different condition indicators as described before was used. All 

available features were used in this case and no ranking was carried out. Additional mod-

els were employed to differentiate to provide further flexibility to the existing base models 

from the previous case. The dataset was distributed as 80% training and 20% testing with 

the 10-fold cross-validation method. Table 3 shows the accuracy results of the different 

ML algorithms. Here, it is seen that some models did outperform the previous case and 

the maximum accuracy was recorded as 93.8%, which reinstates the importance of using 

condition indicators to improve the overall performance of the predictive models. How-

ever, some new models that were added in this case did not perform well. 
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Table 3. Predictions based after feature selection without ranking. 

Prediction Model Sub-Type Accuracy (%) 

Decision tree 

Fine tree 87.5 

Medium tree 87.5 

Coarse tree 87.5 

Logistic regression  75 

Naive Bayes 
Gaussian 93.8 

Kernel 93.8 

SVM 

Linear 37.5 

Quadratic 37.5 

Cubic 37.5 

Fine Gaussian 37.5 

Medium Gaussian 37.5 

Coarse Gaussian 37.5 

KNN 

Fine KNN 37.5 

Medium KNN 37.5 

Coarse KNN 37.5 

Cosine KNN 37.5 

Cubic KNN 37.5 

Weighted KNN 37.5 

Ensemble 

Boosted trees 37.5 

Bagged trees 75 

Subspace discriminant 93.8 

Subspace KNN 75 

RUSBoosted trees 37.5 

Narrow neural network 37.5 

SCENARIO 3: Gearbox Fault Diagnosis Using Raw Data with Feature Selection and with 

Ranking 

For this case, the raw gearbox vibration dataset with classification as “Healthy” and 

“Faulty” with feature selection based on different condition indicators as described pre-

viously was used. All available features were used in this case and a further process of 

ranking was performed. Here, the top 20 features were employed irrespective of channel 

consideration. For ranking, the one-way ANOVA method was utilized. The dataset was 

distributed as 80% training and 20% testing with 10-fold cross-validation method. Table 4 

shows the accuracy results of the different ML algorithms, revealing that some models 

outperformed the previous case and the maximum accuracy was recorded to be 100% and 

the lowest was 37.5%. In this case, the models performed significantly better as compared 

to the previous scenario. These results show that the ranking can significantly alter the 

predictive capacity of the models. 
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Table 4. Predictions based after feature selection with ranking selection (one-ANOVA) based on top 

20 features. 

Prediction Model Sub-Type Accuracy (%) 

Decision tree 

Fine tree 87.5 

Medium tree 87.5 

Coarse tree 87.5 

Logistic regression  87.5 

Naive Bayes 
Gaussian 100 

Kernel 93.8 

SVM 

Linear 43.8 

Quadratic 43.8 

Cubic 43.8 

Fine Gaussian 37.5 

Medium Gaussian 43.8 

Coarse Gaussian 43.8 

KNN 

Fine KNN 43.8 

Medium KNN 43.8 

Coarse KNN 37.5 

Cosine KNN 43.8 

Cubic KNN 43.8 

Weighted KNN 43.8 

Ensemble 

Boosted trees 37.5 

Bagged trees 87.5 

Subspace discriminant 100 

Subspace KNN 75 

RUSBoosted Trees 43.8 

Narrow neural network 43.8 

SCENARIO 4: Gearbox Fault Diagnosis Using Raw Data with Feature Selection and with 

Ranking  

The raw gearbox vibration dataset with classification as ”Healthy” and ”Faulty” with 

feature selection based on different condition indicators as described in the previous sec-

tion was used. All the available features were used in this case and a further process of 

ranking was performed. Here, the top five features from each vibration channel were em-

ployed to have a consistent correlation from each channel to channel distribution. For 

ranking, the one-way ANOVA method was utilized. The dataset was distributed as 80% 

training and 20% testing with the 10-fold cross-validation method. Table 5 shows the ac-

curacy results of the different machine learning algorithms. In this case, it is evident that 

some models did outperform the previous case and the maximum accuracy was recorded 

as 100% and other models did improve in terms of performance accuracy. In this case, the 

models performed significantly better as compared to the previous scenario, but the per-

formance of two models (bagged trees and RUSBoosted trees) was seen to be declining. 

Bagged trees are employed to reduce variance within a noisy dataset and RUSboosted 

trees are used for improving classification performance when training data is imbalanced. 

As this case does not apply to the current database, the usage of this model can be ex-

cluded [38]. 
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Table 5. Predictions based after feature selection with ranking selection (one-way ANOVA) based 

on top five features from the same channel. 

Prediction Model Sub-Type Accuracy (%) 

Decision tree 

Fine tree 87.5 

Medium tree 87.5 

Coarse tree 87.5 

Logistic regression  100 

Naive Bayes 
Gaussian 100 

Kernel 100 

SVM 

Linear 100 

Quadratic 100 

Cubic 100 

Fine Gaussian 62.5 

Medium Gaussian 100 

Coarse Gaussian 87.5 

KNN 

Fine KNN 100 

Medium KNN 75 

Coarse KNN 37.5 

Cosine KNN 93.8 

Cubic KNN 68.8 

Weighted KNN 100 

Ensemble 

Boosted trees 37.5 

Bagged trees 75 

Subspace discriminant 100 

Subspace KNN 100 

RUSBoosted trees 37.5 

Narrow neural network 93.8 

3.2. Experimental Scenarios with Windowing and Bootstrapping 

In order to address the challenge of managing larger datasets and mitigating the risk 

of overfitting in ML approaches, this study employed various deep learning models dis-

cussed in previous sections. These models are applied to a dataset that undergoes seg-

mentation to enhance its capacity. The specifications for the fully connected layer param-

eters are outlined in Table 1. Detailed explanations of the data segmentation process and 

feature engineering methodologies utilized in this study are provided in the methodology 

section. The iterative process of bootstrapping and windowing leads to a significant ad-

vancement in the current research experiments, highlighting the critical role of data seg-

mentation over conventional ML models. 

SCENARIO 1: Gearbox Fault Diagnosis Using windowing with Feature Selection and 

with Ranking (top five features for each channel) 

Table 6 shows the accuracy performance of the model under different parameter con-

figurations when applied to segmented data using windowing. Upon detailed examina-

tion, it becomes apparent that employing various feature ranking methods enables the 

identification of the optimal accuracy for the system under evaluation. Windowing nota-

bly enhances accuracy performance, underscoring the increased adaptability and efficacy 

of these models. Figures 13–15 offer a visual comparison of the performance evaluations. 

These visual representations elucidate the intricate relationships between metrics across 

different ranking schemes, highlighting the significance of factors such as the number of 

network layers and diverse normalization techniques, as elucidated in Table 7. The results 

indicate that configurations yielding optimal performance, as indicated by this metric, 
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tend to converge towards case 3, characterized by normalization using z-score and a fully 

connected network comprising 500 layers. 

Table 6. Accuracy distribution with a different ranking methods with windowing. 

Ranking Method 

Fully Connected Layer (RELU NETWORK) 

Normalization Z-Score Normalization None Normalization Z-Center 

Number of Layers 

50 100 500 50 100 500 50 100 500 

T_TEST 96.97 96.97 96.97 93.94 93.94 90.91 93.94 87.88 93.94 

ROC 100 100 100 100 93.94 96.97 96.97 96.97 100 

One-way ANOVA 93.94 93.94 100 96.97 93.94 100 93.94 96.97 93.94 

Monotonicity 96.97 96.97 96.97 75.76 96.97 96.97 93.94 93.94 81.82 

Entropy 96.97 93.94 96.97 90.91 90.91 90.91 81.82 100 100 

Kruskal–Wallis 93.94 96.97 96.97 96.97 93.94 93.94 93.94 90.91 93.94 

Variance (unsupervised) 93.94 93.94 100 96.97 96.97 93.94 96.97 93.94 96.97 

Bhattacharya 96.97 96.97 96.97 96.97 93.94 93.94 93.94 93.94 87.88 

 

Figure 13. Sensitivity analysis (windowing). 
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Figure 14. Specificity analysis (windowing). 

 

Figure 15. Precision analysis (windowing). 
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SCENARIO 2: Gearbox Fault Diagnosis Using bootstrapping with Feature Selection and 

with Ranking (top 5 feature for each channel) 

Table 7 shows the accuracy performance of the model which varies with different 

parameters when analyzed with data segmented using bootstrapping. Despite notable 

improvements in system performance, the accuracy remains relatively consistent and 

does not exhibit significant fluctuations with parameter adjustments. Figures 16–18 offer 

a graphical representation of a comparative analysis involving various performance eval-

uations regarding the specificity, sensitivity and precision of the analysis. These visuali-

zations highlight the fluctuations in metrics across different ranking schemes, underscor-

ing the importance of both the number of network layers and the utilization of diverse 

normalization schemes, as outlined in Table 7. Minimal changes in performance evalua-

tion were observed under these specific conditions, providing insights into the broader 

research narrative. 

Table 7. Accuracy distribution with a different ranking method with bootstrapping. 

Ranking Method 

Fully Connected Layer (RELU NETWORK) 

Normalization Z-score Normalization None Normalization Z-center 

Number of Layers 

50 100 500 50 100 500 50 100 50 

T_TEST 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 

ROC 100 100 100 100 100 100 100 100 100 

One-way ANOVA 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 

Monotonicity 100 100 100 100 100 100 100 100 100 

Entropy 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 

Kruskal–Wallis 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 96.67 

Variance (unsupervised) 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 93.33 

Bhattacharya 96.67 96.67 100 100 96.67 96.67 96.67 96.67 96.67 

 

Figure 16. Sensitivity analysis (bootstrapping). 
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Figure 17. Specificity analysis (bootstrapping). 

 

Figure 18. Precision analysis (bootstrapping). 

3.3. Validation of the Results 

To validate the efficacy of the proposed enhanced feature engineering, particularly 

focusing on the data segmentation process, another gearbox dataset was evaluated (re-

ferred to as HS—high-speed gearbox). This dataset comprised vibration data collected 

over a period of 6 s, sampled at a frequency of 97,656 Hz, from the three blades of an 

upwind V90 wind generator [39]. The data encompassed both normal operating condi-

tions and fault conditions, with natural faults introduced in the pinion gear. Among the 

17 files, 11 were identified as faulty, while 6 were deemed normal. Employing a fully con-

nected network with parameters similar to those used in the first dataset, the accuracy 

distribution of the system utilizing all features without employing any ranking was 
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analyzed, as depicted in Table 8. For further comparison, the same dataset was processed 

using windowing and bootstrapping techniques. Further, selective ranking methods were 

applied and their respective outputs were observed, as shown in Tables 9 and 10, respec-

tively. In these evaluations, the windowing method consistently exhibited substantial im-

provements, showcasing varied accuracy distributions influenced by different parameters 

and ranking techniques. This highlights its notable versatility and robustness in compari-

son to bootstrapping. Bootstrapping tended to lead to overfitting across most parameter 

changes, thereby demonstrating its limited efficacy as a preferable option. 

Table 8. Validation test—accuracy distribution with all features and no ranking. 

Ranking Method 

Fully Connected Layer (RELU NETWORK) 

Normalization Z-score Normalization None Normalization Z-center 

Number of Layers 

50 100 500 50 100 500 50 100 50 

All features 55 72.5 97.5 42.5 42.5 22.5 47.5 42.5 27.5 

Table 9. Validation test—accuracy distribution with different ranking with windowing. 

Ranking Method 

Fully Connected Layer (RELU NETWORK) 

Normalization Z-score Normalization None Normalization Z-center 

Number of Layers 

50 100 500 50 100 500 50 100 50 

TEST 96.25 100 100 83.75 87.5 93.75 84.38 86.88 94.38 

Variance 99.38 99.38 100 66.88 72.5 95 60.63 75 93.13 

Bhattacharya 100 100 100 98.75 97.5 96.25 96.88 96.88 96.25 

Table 10. Validation test—Accuracy distribution with a different ranking with bootstrapping. 

Ranking Method 

Fully Connected Layer (RELU NETWORK) 

Normalization Z-score Normalization None Normalization Z-center 

Number of Layers 

50 100 500 50 100 500 50 100 50 

TEST 100 100 100 100 100 97.78 100 100 97.04 

Variance 100 100 100 100 100 97.78 100 100 97.04 

Bhattacharya 100 100 100 94.07 98.52 98.15 95.56 100 97.04 

4. Conclusions 

The current study evaluated an enhanced feature engineering process incorporating 

various aspects of feature selection and data segmentation, in the context of gearbox pre-

dictive maintenance. Through a comparative analysis of different feature engineering and 

data segmentation methods, the study explored their impact on the performance and pre-

dictive capacity of the system. Various ML models, including neural networks, decision 

trees, support vector machines (SVM), k-nearest neighbor (kNN), naive Bayes, logistic re-

gression models, and ensemble learning models, were subjected to different hyperparam-

eters to assess their performance. The results indicate that careful consideration of feature 

selection and ranking methods can significantly improve overall accuracy, with decision 

trees (from 58.3% to 87.5%), SVM (from 37.5% to 100%), neural networks (from 37.5% to 

93.8%) and KNN (from 37.5% to 100%) demonstrating particularly promising results com-

pared to naive Bayes (from 93.8 to 100%), logistic regression models (from 75% to 100%) 

and ensemble learning models, as they seem to overfit with data variations. With ensem-

ble learning, except for the subspace discrimination model and subspace KNN, the accu-

racy variation was minimal.  
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Moreover, within the framework of a fully connected network, different ranking 

methods were applied alongside data segmentation using windowing and bootstrapping 

techniques. The windowing technique exhibited greater flexibility, allowing for the explo-

ration of various parameters and ranking methods, and was found to be more robust com-

pared to bootstrapping, where the output remains constant regardless of parameters. The 

normalization z-score for 500 layers showed the highest accuracy when the windowing 

method was used. The ROC method was found to be the most accurate, and it had a 100% 

accuracy level for all three layers of 50, 100 and 500. Furthermore, the Kruskal–Wallis 

method, variance (unsupervised) and one-way ANOVA methods showed poor accuracy 

levels. With the validation, three ranking methods were used, which were the t-test, vari-

ance and the Bhattacharya method. With z-score normalization, all three methods gave an 

accuracy level of 100% for all three layers selected: 50, 100, and 500. Under the 

Bhattacharya method, for 50 layers, the accuracy level was minimal. It was 94.07% under 

the no normalization and 95.56% under the z-center. This observation was consistent 

across validation datasets. Consequently, the windowing technique is suggested as the 

preferable method due to its superior latency and performance efficiency. Nonetheless, 

further research is recommended to explore the potential of both windowing and boot-

strapping techniques across datasets of varying complexity from different applications, 

thereby providing a comprehensive assessment of their overall performance. 
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